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Motivation

Accurate Description of Signal

Current Models
Complex-Based

Rayleigh, Hoyt, Rice, Beckmann

Envelope-Based Models
Weibull, Nakagami-m, α-µ, η-µ, κ-µ, α-η-µ, α-κ-µ

Evolution of Wireless Systems
From personal-centered to device/thing centered
Odd Scenarios may lead to nonunimodality
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Motivation

New Scenarios – Emerging Technologies

mmW spectrum – (20)30-300 GHz

Mechanisms – same as lower frequencies
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Motivation

New Scenarios – Emerging Technologies
Perception of Physical Phenomena

Signal attenuation
Penetration into solid
Atmospheric conditions

Absorption by molecules of oxygen, water vapor, different
gaseous components – peaks at 24 GHz, 60 GHz, 120 GHz,
200 GHz

Raindrops – size of the wavelengths – potential
scatterers

Direct paths, reflections, diffractions (negligible)
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Motivation

New Scenarios – Emerging Technologies

Reflections – specular, diffuse

Surfaces with irregularities on the order of the
magnitude of the wavelength are perceived as rougher,
resulting in higher diffusion. Larger surfaces, nevertheless,
contribute with specular components. The partial waves
arising from the scattering process may present phase
correlation due to spatially correlated surfaces. In addition,
the variety of propagation scenarios as perceived at higher
frequencies may render multipath clustering a more
noticeable phenomenon. Moreover, it is expected that at
higher frequencies, the nonlinear effect of the propagation
medium is more pronounced.
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Quadrature µ Processes

Given an enveloped-based distribution what is the
corresponding phase distribution?

fZ(z; A) = f|Z|(z; A) fZ(z; A=A0)
f|Z|(z; A=A0)
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Quadrature µ Process

Quadrature µ Process Type I

fZ (z) = µµ/2 |z|µ−1

Ωµ/2Γ (µ/2)
exp

(
−µ z

2

Ω

)
, −∞ < z <∞
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Quadrature µ Process

Quadrature µ Process Type II

fZ(z) =
|z|

µz
2 exp

(
− (z−λz)2

2σ2
z

)
Iµz

2 −1

(
|λzz|
σ2
z

)
2σ2

z |λz|
µz
2 −1 cosh

(
zλz
σ2
z

)
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Quadrature µ Process

Some Plots

Quadrature µ Process Type I
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Quadrature µ Process

Some Plots

Quadrature µ Process Type II
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model
α→ Nonlinear parameter

Complex Model

S = X + jY = R
α
2 × exp(jθ)

Joint PDF

fR,Θ(r, θ) = α

2 r
α−1fX(r

α
2 cos(θ))fY (r

α
2 sin(θ))
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model
Parameterization-0 (Raw Parameterization)

σ2
x, σ2

y → Powers of the scattered waves of the individual
multipath clusters of the in-phase and quadrature signals

λ2
x, λ2

y → Powers of the dominant components of all cluster
(location parameter) of the in-phase and quadrature signals,
−∞ < λx, <∞,−∞ < λy, <∞

µx, µy → Number of multipath clusters (shape parameter) of
the in-phase and quadrature signals
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model
Parameterization-1 (Local Parameterization)

κx, κy → Ratio of the total power of the dominant
components and the total power of scattered waves of
in-phase and quadrature signals

r̂2
x, r̂2

y → The mean value E(X2) and E(Y 2), given by the
power of multipath cluster and dominant components

µx, µy → Number of multipath clusters (shape parameter) of
the in-phase and quadrature signals
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model
Parameterization-2 (Global Parameterization)

r̂α → Mean value E(Rα) = µxσ
2
x + λ2

x + µyσ
2
y + λ2

y

κ→ Ratio of of the total power of the dominant components
and the total power of the scattered waves, i.e.
κ = (λ2

x + λ2
y)/(µxσ2

x + µyσ
2
y)

η → Ratio of the total power of the in-phase and quadrature
waves of the multipath cluster, i.e. η = µxσx/(µyσy)

q → Ratio of two ratios: The ratio of the power of dominant
component to the power of the scattered wave of the
in-phase signal and its counter part for the quadrature
signal; q = λ2

xµyσ
2
y/(λ2

yµxσ
2
x)

p→ Ratio of the number of multipath cluster; p = µx/µy

µ→ The total number of multipath clusters; µ = µx + µy
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model - Joint PDF

Parameterization-0 (Raw Parameterization)

fR,Θ(r, θ) = αrα(1+µx
4 +µy

4 )−1 |cos(θ)|
µx
2 |sin(θ)|

µy
2

8 σ2
xσ2

y |λx|
µx
2 −1 |λy|

µy
2 −1 exp

(
λ2
x

2 σ2
x

+ λ2
y

2 σ2
y

)
× exp

(
−
(

cos2(θ)
σ2
x

+ sin2(θ)
σ2
y

)
rα

2

)
× exp

((
λx cos(θ)

σ2
x

+ λy sin(θ)
σ2
y

)
r
α
2

)

×
Iµx

2 −1

(
|λx cos(θ)| r

α
2

σ2
x

)
Iµy

2 −1

(
|λy sin(θ)| r α2

σ2
y

)
cosh

(
λx cos(θ)r

α
2

σ2
x

)
cosh

(
λy sin(θ)r

α
2

σ2
y

)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model - Joint PDF

Parameterization-1 (Local Parameterization)

fR,Θ(r, θ) =
αµxµy(κx + 1)

µx
4 + 1

2 (κy + 1)
µy
4 + 1

2 | cos(θ)|
µx
2 | sin(θ)|

µy
2 r

α

(
µx
4 +

µy
4 +1
)
−1

8 κ
µx
4 −

1
2

x κ

µy
4 −

1
2

y r̂

µx
2 +1
x r̂

µy
2 +1
y exp

(
κxµx

2 + κyµy
2 )
)

× exp
(
−
(

(κx + 1)µx cos2(θ)
r̂2x

+
(κy + 1)µy sin2(θ)

r̂2y

)
rα

2

)
× exp

((√
κx(κx + 1)µx cos(θ)

r̂x
+

√
κy(κy + 1)µy sin(θ)

r̂y

)
r
α
2

)

×

Iµx
2 −1

(√
κx(κx+1)µx| cos(θ)|r

α
2

r̂x

)
Iµy

2 −1

(√
κy(κy+1)µy| sin(θ)|r

α
2

r̂y

)
cosh
(√

κx(κx+1)µx cos(θ)r
α
2

r̂x

)
cosh

(√
κy(κy+1)µy sin(θ)r

α
2

r̂y

)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model - Joint PDF

Parameterization-2 (Global Parameterization)

fR,Θ(r, θ) = αµ2p(η + 1)2(κ+ 1)
µ
2 +1r

α
2 (µ+2)−1| sin(θ)|

µ
p+1 | cos(θ)|

µp
p+1

2η(p+ 1)2
(

κ
ηq+1

)µ
2−1 (ηq)

µp
2(p+1)−

1
2 r̂

α
2 (µ+2) exp

(
κµ(η+1)(qp+1)

(p+1)(ηq+1)

)
× Φ(θ, r)×Θ(θ, r)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model - Joint PDF

Parameterization-2 (Global Parameterization)

Φ(θ, r) = exp

(
−
µ(η + 1)(κ+ 1)

(
η sin2(θ) + p cos2(θ)

)
η(p+ 1)

(
r

r̂

)α)

× exp

(
2µ(η + 1) cos (θ − φ)

η(p+ 1)

√
ηκ(κ+ 1) (η + qp2)

ηq + 1

(
r

r̂

)α/2)

φ = arg(sign(λx) + j(1/p)((η/q))1/2sign(λx))
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model - Joint PDF

Parameterization-2 (Global Parameterization)

Θ(θ, r) =
I µ
p+1−1

(
2µ(η+1)| sin(θ)|

p+1

√
κ(κ+1)
ηq+1

(
r
r̂

)α/2)
cosh

(
2µ(η+1) sin(θ)

p+1

√
κ(κ+1)
ηq+1

(
r
r̂

)α/2)
×
I µp
p+1−1

(
2µp(η+1)| cos(θ)|

η(p+1)

√
ηκq(κ+1)
ηq+1

(
r
r̂

)α/2)
cosh

(
2µp(η+1) cos(θ)

η(p+1)

√
ηκq(κ+1)
ηq+1

(
r
r̂

)α/2)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model

Envelope Based Model

Rα =
µx∑
i=1

(Xi + λxi)2 +
µy∑
i=1

(Yi + λyi)2

Rα = U + V

Envelope PDF

fR(r) = αrα−1
∫ rα

0
fU (rα − ν)fV (ν)dν

Michel Daoud Yacoub Channel Modeling for Advanced-Generation Wireless Systems 21/51



Motivation Quadrature µ Processes The α-η-κ-µ Fading Model Conclusions and Challenges

The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion

ck = 1
k

k−1∑
j=0

cjdk−j

mk = 1
k

k−1∑
j=0

mjqk−j

Michel Daoud Yacoub Channel Modeling for Advanced-Generation Wireless Systems 22/51



Motivation Quadrature µ Processes The α-η-κ-µ Fading Model Conclusions and Challenges

The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 0 – Parametrization 1

PDF

fR (r) =
αrα

µx+µy
2 −1∑∞

k=0
k!ckL

µx+µy
2 −1

k
(2rα)(µx+µy

2

)
k

2
µx+µy

2 Γ
(
µx+µy

2

)
exp

(
rα

2
)

CDF

FR (r) =
rα

µx+µy
2

∑∞
k=0

k!mkL
µx+µy

2
k

((
2

µx+µy
+1
)

2rα
)

(µx+µy
2 +1

)
k

2
µx+µy

2 +1Γ
(
µx+µy

2 + 1
)

exp
(
rα

2
)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 2

PDF

fR (r) =
αrαµ−1∑∞

k=0
k!ckLµ−1

k
(2rα)

(µ)k
2µΓ(µ) exp

(
rα

2
)

CDF

FR (r) =
rαµ

∑∞
k=0

k!mkLµk
(

2(µ+1)rα
µ

)
(µ+1)k

2µ+1Γ(µ+ 1) exp
(
rα

2
)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 0

c0 =
2µx+µy (1 + 3σ2

x

)−µx2 (1 + 3σ2
y

)−µy2
exp

(
3λ2
x

6σ2
x+2 + 3λ2

y

6σ2
y+2

)

dj =µx
2

(
1− σ2

x

1 + 3σ2
x

)j
+ µy

2

(
1− σ2

y

1 + 3σ2
y

)j

− 2jλ2
x

(
1− σ2

x

)j−1

(1 + 3σ2
x)j+1 −

2jλ2
y

(
1− σ2

y

)j−1

(
1 + 3σ2

y

)j+1
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 0

m0 =2µx+µy+3(µx + µy + 2)
µx+µy

2 +1

(3 (µx + µy) + 8)

×
(
(µx + µy)

(
1 + 3σ2

x

)
+ 8σ2

x

)−µx
2(

(µx + µy)
(
1 + 3σ2

y

)
+ 8σ2

y

)µy
2

× exp
(
− λx

2 (3 (µx + µy) + 8)
2 (µx + µy) (1 + 3σ2

x) + 16σ2
x

)
× exp

(
− λy

2 (3 (µx + µy) + 8)
2 (µx + µy)

(
1 + 3σ2

y

)
+ 16σ2

y

)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 0

qj =µx
2

( (
1− σ2

x

)
(µx + µy)

(µx + µy) (1 + 3σ2
x) + 8σ2

x

)j

+ µy
2

( (
1− σ2

y

)
(µx + µy)

(µx + µy)
(
1 + 3σ2

y

)
+ 8σ2

y

)j
+
(
− µx + µy

3 (µx + µy) + 8

)j
−

2jλx2(µx + µy + 2)(µx + µy)j
(
1− σ2

x

)j−1

((µx + µy) (1 + 3σ2
x) + 8σ2

x)j+1

−
2jλy2(µx + µy + 2)(µx + µy)j

(
1− σ2

y

)j−1(
(µx + µy)

(
1 + 3σ2

y

)
+ 8σ2

y

)j+1
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 1

c0 =
2µx+µy

(
3r̂2
x

(κx+1)µx + 1
)−µx

2
(

3r̂2
y

(κy+1)µy + 1
)−µy

2

exp
(

3
2

(
κxµxr̂

2
x

(κx+1)µx+3r̂2
x

+ κyµy r̂
2
y

(κy+1)µy+3r̂2
y

))

dj = µx
2

(
1− 4r̂2

x

(κx + 1)µx + 3r̂2
x

)j
+ µy

2

(
1−

4r̂2
y

(κy + 1)µy + 3r̂2
y

)j

+ 2jκxµxr̂2
x(

r̂2
x − (κx + 1)µx

) ( (κx + 1)µx
(κx + 1)µx + 3r̂2

x

)j+1(
1− r̂2

x

(κx + 1)µx

)j

+
2jκyµy r̂2

y(
r̂2
y − (κy + 1)µy

) ( (κy + 1)µy
(κy + 1)µy + 3r̂2

y

)j+1(
1−

r̂2
y

(κy + 1)µy

)j
.
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 1

m0 =
2
(
µx+µy

2 + 1
)µx+µy

2 +1

(
3(µx+µy)

8 + 1
)

(
µx+µy

8 + (3(µx+µy)+8)r̂2
y

8(κy+1)µy

)−µy
2

(
µx+µy

8 + (3(µx+µy)+8)r̂2
x

8(κx+1)µx

)µx
2

× exp
(
− (3(µx + µy) + 8)κxµxr̂2

x

2
(
(κx + 1) (µx + µy)µx + (3(µx + µy) + 8) r̂2

x

))

× exp
(
−

(3(µx + µy) + 8)κyµy r̂2
y

2
(
(κy + 1) (µx + µy)µy + (3(µx + µy) + 8) r̂2

y

))
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 1

qj =
µx

2

(
(µx + µy)((κx + 1)µx − r̂2

x)
(κx + 1)(µx + µy)µx + (3 (µx + µy) + 8)r̂2

x

)j
+
(
−

µx + µy

3 (µx + µy) + 8

)j
+
µy

2

(
(µx + µy)((κy + 1)µy − r̂2

y)
(κy + 1)(µx + µy)µy + (3 (µx + µy) + 8)r̂2

y

)j
−

2jκx(µx + µy + 2)r̂2
x

(κx + 1) (µx + µy)

×
(

1−
r̂2
x

(κx + 1)µx

)j−1(
(κx + 1)(µx + µy)µx

(κx + 1)(µx + µy)µx + (3 (µx + µy) + 8)r̂2
x

)j+1

−
2jκy(µx + µy + 2)r̂2

y

(κy + 1) (µx + µy)

(
1−

r̂2
y

(κy + 1)µy

)j−1

×
(

(κy + 1)(µx + µy)µy
(κy + 1)(µx + µy)µy + (3 (µx + µy) + 8)r̂2

y

)j+1
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 2

c0 =
8µ
(

3(p+1)r̂α
(η+1)(κ+1)µ + 2

)− µ
p+1

(
3η(p+1)r̂α

(η+1)(κ+1)µp + 2
)− µp

p+1

exp
(

3κµr̂α(η+1)(2µp(η+1)(κ+1)(ηq+1)+3ηr̂α(p+1)(pq+1))
(ηq+1)(2µ(η+1)(κ+1)+3r̂α(p+1))(2µp(η+1)(κ+1)+3ηr̂α(p+1))

)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 2

dj = µ

p+ 1

(
2µ(η + 1)(κ+ 1)− (p+ 1)r̂α

2µ(η + 1)(κ+ 1) + 3(p+ 1)r̂α

)j
+ pµ

p+ 1

(
2µp(η + 1)(κ+ 1)− ηr̂α(p+ 1)
2µp(η + 1)(κ+ 1) + 3ηr̂α(p+ 1)

)j
− 8jκµ2ηp2q(η + 1)2(κ+ 1)

ηq + 1
(2µp(η + 1)(κ+ 1)− ηr̂α(p+ 1))j−1r̂α

(2µp(η + 1)(κ+ 1) + 3ηr̂α(p+ 1))j+1

− 8jκµ2(η + 1)2(κ+ 1)
ηq + 1

(2µ(η + 1)(κ+ 1)− (p+ 1)r̂α)j−1r̂α

(2(η + 1)(κ+ 1)µ+ 3r̂α(p+ 1))j+1

Michel Daoud Yacoub Channel Modeling for Advanced-Generation Wireless Systems 32/51



Motivation Quadrature µ Processes The α-η-κ-µ Fading Model Conclusions and Challenges

The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 2

m0 =
8µ+1(µ+ 1)µ+1

(
2µ+ (3µ+4)(p+1)r̂α

(η+1)(κ+1)µ

)− µ
p+1

(3µ+ 4)
(

2µ+ ηr̂α(3µ+4)(p+1)
µp(η+1)(κ+1)

) µp
p+1

× exp

− κµr̂α
(

2µ2p(η + 1)(κ+ 1) + ηr̂α(3µ+4)(p+1)(pq+1)
ηq+1

)
(

2µ2(η+1)(κ+1)
3µ+4 + (p+ 1)r̂α

)(
2pµ2(κ+ 1) + ηr̂α(3µ+4)(p+1)

η+1

)

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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Series Expansion
Parametrization 2

qj = µ

p+ 1

(
µ(2µ(η + 1)(κ+ 1)− (p+ 1)r̂α)

2µ2(η + 1)(κ+ 1) + (3µ+ 4)(p+ 1)r̂α

)j
+
(
− µ

3µ+ 4

)j
+ µp

p+ 1

(
µ(2µp(η + 1)(κ+ 1)− ηr̂α(p+ 1))

2pµ2(η + 1)(κ+ 1) + ηr̂α(3µ+ 4)(p+ 1)

)j
− 8jκµj+2ηp2q(η + 1)2(κ+ 1)(µ+ 1)(2µp(η + 1)(κ+ 1)− ηr̂α(p+ 1))j−1

(ηq + 1) (2pµ2(η + 1)(κ+ 1) + ηr̂α(3µ+ 4)(p+ 1))j+1 r̂−α

− 8jκµj+2(η + 1)2(κ+ 1)(µ+ 1)(2µ(η + 1)(κ+ 1)− (p+ 1)r̂α)j−1r̂α

(ηq + 1) (2µ2(η + 1)(κ+ 1) + (3µ+ 4)(p+ 1)r̂α)j+1
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Special Cases
One parameter distribution from two parameter distribution

From α-µ, Nakagami-m is obtained with αT = 2 and
µT = m.
From α-µ, Weibull is obtained with αT = α and µT = 1.
From η-µ, Nakagami-m is obtained with ηT = 1 and
2µT = m.
From η-µ, Nakagami-m is obtained with ηT → 0 or ηT →∞
and µT = m.
From η-µ, Hoyt can be obtained with ηT = (1 + b) / (1− b)
and µT = 1/2.
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Special Cases
One parameter distribution from two parameter distribution

From κ-µ, Nakagami-m is obtained with κT → 0 and
µT = m.
From κ-µ, Rice is obtained with κT = k and µT = 1.
From η-κ(Beckmann), Hoyt is obtained with
ηT = (1 + b) / (1− b) and κT → 0.
From η-κ (Beckmann), Rice is obtained with ηT = 1 and
κT = k.
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Special Cases
No parameter distribution from one parameter distribution

From Nakagami-m, Rayleigh is obtained with m = 1.
From Nakagami-m, semi-Gaussian is obtained with
m = 1/2.
From Weibull, Rayleigh is obtained with α = 2.
From Weibull, Negative Exponential is obtained with α = 1.
From Hoyt, Rayleigh is obtained with b = 0.
From Hoyt, semi-Gaussian is obtained with b→ ±1.
From Rice, Rayleigh is obtained with k → 0.
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Special Cases
Three-Fading-Parameters Models:

The α-κ-µ model is obtained from the α-η-κ-µ one with
αT = α, µT = µ, κT = κ, η = p, qT = q, r̂T = r̂.

The α-η-µ model is obtained from the α-η-κ-µ one with
αT = α, 2µT = µ, κ→ 0, ηT = η, p = 1, r̂T = r̂.
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Special Cases
Two-Fading-Parameter Models

The α-µ model is obtained from the α-η-κ-µ one with
αT = α, µT = µ, κ→ 0, η = p, r̂T = r̂.

The η-µ model is obtained from the α-η-κ-µ one with α = 2,
2µT = µ, κ→ 0, ηT = η, p = 1, r̂T = r̂.

The κ-µ model is obtained from the α-η-κ-µ one with α = 2,
µT = µ, κT = κ, η = p, qT = q, r̂T = r̂.

The η-κ (Beckmann)model is obtained from the α-η-κ-µ one
with α = 2, µ = 1, κT = κ, ηT = η, p = 1, qT = q, r̂T = r̂.
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Some Plots
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Figure: Envelope PDF for αµ = 1 (η = 100, κ = 1, q = 1/10, p = 5,
r̂ = 1)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Some Plots
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Figure: Envelope PDF for αµ = 1 (η = 20 , κ = 10, q = 1, p = 1/5,
r̂ = 1)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Some Plots
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Figure: Envelope PDF for varying µ (α = 1, η = 20, κ = 10, q = 1,
p = 1/5, r̂ = 1)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Some Plots
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Figure: Envelope PDF for varying q (α = 1, η = 20, κ = 10, µ = 1.75,
p = 1/5, r̂ = 1)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Some Plots
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Figure: Envelope PDF for varying p (α = 1, η = 20, κ = 10, µ = 1.75,
q = 1/5, r̂ = 1)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Some Plots
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Figure: Envelope PDF for varying η (α = 1, κ = 10, µ = 2.25, q = 1/5,
p = 1/6, r̂ = 1)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Some Plots
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Figure: Phase PDF in polar coordinates, for varying p, no dominant
components, and two symmetric values of η (α -irrelevant, κ = 0,
µ = 2.25, q = 1, r̂-irrelevant)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Some Plots
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Figure: Phase PDF for varying κ (α -irrelevant, η = 3, µ = 2.25, q = 1,
p = 3, r̂-irrelevant)
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The α-η-κ-µ Fading Model

The α-η-κ-µ Fading Model – Some Plots
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Figure: Phase PDF for varying q (α-irrelevant, η = 3, κ = 0.1,
µ = 2.25, p = 3, r̂-irrelevant)
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Conclusions and Challenges

Conclusions and Challenges
To deepen the knowledge of the particular cases

To obtain new particular cases

To obtain new series expansions for envelope PDF and
CDF

To obtain other forms of parameterizations

To obtain the general moments
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Conclusions and Challenges

Conclusions and Challenges
To find a way of estimating the parameters

To propose efficient ways of simulation techniques

To derive higher order statistics

To propose correlation models

To fit field data
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Thank You!
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