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Optimum Equalization of Multicarrier Systems: A
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Abstract—This paper presents a new iterative equalization
algorithm that maximizes capacity for discrete multitone (DMT)
systems. The research modifies a previously proposed criterion
and applies an appropriate transformation to map the objective
function and the constraint set into a canonical region. The
resulting constraint set exhibits an identifiable geometric charac-
teristic. Using the gradient projection method in conjunction with
projection onto convex sets (POCS) provides us with an iterative
search algorithm that facilitates the gradient descent method.
We also generalize the approach to two important subclasses
of equalizers, namely linear phase and unit tap filters. We also
derive a fundamental limit on the performance of the proposed
approach. In comparison with the previous methods, the proposed
equalization algorithm is less computationally complex and more
geometrically intuitive. Simulation experiments confirm the
validity of the proposed method for equalization of DMT systems.

Index Terms—Capacity maximization, convex optimization, dis-
crete multitone systems, multicarrier systems, optimum equaliza-
tion, projection onto convex set.

I. INTRODUCTION

D ISCRETE multitone (DMT) systems provide an efficient
method for partitioning the communication channel into a

set of orthogonal subchannels. Prior to sending the data to the
channel, a portion of transmit sequence, known as cyclic prefix
(CP), is appended to the modulated symbol. The CP makes the
channel-description matrix circulant, thus the orthogonal set of
Fourier basis vectors can be applied to find its associated eigen-
values [16].

A short CP introduces less redundancy and thus improves the
performance of data transmission. However, the length of the
CP is lower bounded by the effective length of the channel [2].
In many practical channels, such as digital subscriber loops, the
effective length of the channel is large, which results in a con-
siderable performance loss due to adding the CP. The solution
is to shorten the impulse response, through equalization, to a fi-
nite-impulse response (FIR) filter, known as the target impulse
response (TIR), that is less disperse, which thus reduces the per-
formance loss introduced by adding the CP [9]. In so doing, an
FIR filter ( ), known as a time-domain equalizer (TEQ) is used
at the receiving end.
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In setting the coefficients of the TEQ, several criteria have
been considered and investigated. Chowet al. provided an
adaptive least mean square (LMS) algorithm for setting the
coefficients of the TEQ [6]. Although it is simple in structure,
the algorithm is not robust and globally optimum. Following
this work, Al-Dhahir and Cioffi proposed a unified robust
method that provides the optimum solution of the impulse
response shortening problem based on minimum mean square
error (MMSE) criterion [1]. Later, in a comprehensive study
performed by the same authors, it was found that the solution
obtained from MMSE approach may not necessarily optimize
the performance (data rate) of the discrete multitone (DMT)
system. Based on this observation, a new objective function
was defined in which its solution approached theoretical
performance level. Nevertheless, the proposed iterative solu-
tion, known as sequential quadratic programming (SQP), is a
magnitude of order more complex with respect to the standard
descent approach. This is mostly due to the fact that at each step
of descent search in SQP, a quadratic constrained optimization
subproblem [with complexity of ] needs to be solved
[13]. Furthermore, in each iteration of the descent search ap-
proach, a numerical approximate of the second-order Hessian
matrix needs to be estimated. Due to this large overhead, the
computational complexity of SQP far exceeds that of standard
iterative descent methods.

This motivates our work in this paper. The research proposed
in this paper takes advantage of the convex property of the con-
straint set to reformulate the original problem into a convex opti-
mization problem. As a result, when combined with the projec-
tion onto convex set (POCS) technique, the stationary point ob-
tained from the algorithm converges to an optimum point. POCS
is a powerful technique which has found widespread applica-
tions in set theoretic signal processing algorithms and real-time
applications [7].

The rest of this paper is organized as follows. Section II
presents an overview of equalizer training approaches for DMT
systems. In Section III, we present a new algorithm for training
the DMT equalizer based on maximum data rate criterion.
Section IV addresses the unit tap and linear phase constraints
on the optimization problem and derives an upper bound on
the performance of the algorithm. Finally, in Section V, the
algorithm is applied to equalization of DMT systems.

II. PRELIMINARIES

This section presents an overview of various TEQ methods
for DMT systems as shown in Fig. 1. Throughout this paper, the
symbols and , represent transpose, Hermitian transpose,
and Fourier transform operations, respectively. Matrices and
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Fig. 1. Block diagram of the MMSE equalizer.

vectors are represented by upper-case and lower-case bold char-
acters, respectively. The overall channel response is modeled as
a discrete time FIR filter, expressed by
where is the channel spread. The overall channel response
includes the combined effect of the transmit and receive filters
as well as the channel impulse response. Also, TEQ and TIR
filters are assumed to be FIR filters with lengths and ,
respectively. The input signal is an independent identically
distributed random sequence with power of. As explained
earlier, several objective functions can be used to optimize the
performance of the TEQ. Among the existing methods, MMSE
is known to be the most tractable technique for the impulse
response shortening problem [1]. Several methods based on
this approach have been proposed [10], [8]. In this approach,
the optimum equalizer taps are computed to minimize the mean
square error between output of the TIR and TEQ filters.

To avoid converging to the trivial solution, further constraint
is imposed on the optimization problem. The unit energy con-
straint (UEC) requires the norm of TIR filter to be equal to one

, and the unit tap constraint (UTC) forces one of the
taps in the TIR to be unity .

Further investigations on optimizing the performance of
DMT systems determined that the equalizer setting obtained
by using the MMSE criterion would not necessarily result in
the best geometrical signal-to-noise ratio. A new
criterion for setting the coefficients of the TEQ equalizer to
maximize the was proposed in [3], [4]. According to
this criterion, the optimum setting for TIR filter, which results
in the maximum data rate criterion, is found by solving a dual
constrained optimization problem as expressed by

(1)

s.t. (2)

(3)

In (1), matrix is defined as

where is the th Fourier basis vector given by

The optimization problem given in (1) does not have a
closed-form solution. In [3] and [4], the authors use standard

Fig. 2. Geometrical representation of the algorithm.

optimization software tools in order to solve the above opti-
mization problem. In the next section, we will present a new
iterative gradient search algorithm for obtaining the optimum
solution of the problem given in (1).

III. PROPOSEDITERATIVE GRADIENT SEARCH ALGORITHM

As explained in the previous section, the optimum equaliza-
tion of DMT can be obtained by solving the constrained opti-
mization problem given in (1). As depicted in Fig. 2, the con-
straint set for the problem given in (1) is the intersection of two
regions. The first region rep-
resents a closed set on the Euclidean space . Geometri-
cally, the set represents an ellipsoid in . Because of
the symmetric property of the square matrix , this constraint
set exhibits a closed convex property on the Hilbert space. How-
ever, the unit energy constraint, ,
represents a region on the surface of a unit radial sphere that
lacks convexity. In order to exploit the potential advantage of
POCS, we remove the UEC from the constraint set. Unlike the
MMSE approach, we can remove the UEC from the constraint
set because origin is not among the local maximums of the ob-
jective function and no energy-boosting constraint is needed in
order to avoid converging to the trivial solution. However, upon
obtaining the global minimum, the solution vector can be nor-
malized in order to satisfy the UEC. This scaling would not af-
fect the geometrical signal-to-noise ( ) profile, as the
TEQ coefficients would be scaled accordingly. Consequently,
the mean square error and the additive noise contribution would
be scaled by the same factor. Using the convexity property of the
constraint set , along with a suitable iterative descent algo-
rithm leads us to a stationary point. We considered the gradient
projection method in order to find the feasible direction at each
iteration.

Due to the symmetric property of the square matrix, any
-dimensional vector can be represented as a linear com-

bination of orthogonal eigenvectors of matrix given
by

(4)

where and are the th normalized eigenvector and as-
sociated eigenvalue of matrix which satisfy

(5)
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By substituting (4) into (1), the objective function can be ex-
pressed as

where the new matrix is defined as

...
...

...
...

Due to the properties of matrix , its th entry can be
computed efficiently as

(6)

By virtue of (4), the constraint set can be written as

Using this transformation, the optimization problem given in (1)
subject to the constraint set can be written as

where is the projection vector given by

The principal drawback of the gradient projection method is
the substantial overhead for computing the projection at each it-
eration. As we will address next, the canonical property of this
constraint set enables us to perform the projection in an effi-
cient way. The main idea with regard to the gradient projection
method is that, in each iteration, a feasible direction is obtained
by taking a step along a negative gradient followed by a projec-
tion onto the constraint set given by

(7)

Here denotes the projection onto constraint set, is a
positive step-size, and is the gradient of the objective func-
tion given by

(8)

There are several step size selection procedures for the gradient
projection method. In order to simplify the search direction, we

consider a constant step size . As stated in [5, p. 215], the
limit points of a sequence generated by the gradient projection
with a constant step size are stationary, provided thatis limited
in the range of , wherein is some constant
satisfying

Next we derive the projection onto the convex set. Given a
point , the projection of this point onto the set
would be a point in the set such that it minimizes the distance

among all the points inside the set. In light of this fact,
projection of a point would be on the boundary of
the set. Also, each point inside the constraint set would satisfy
the constraint and would be projected onto itself. Therefore, the
projection operator is defined as follows

if

if

where is a point in which satis-
fies the constraint with equality

To find this point, we construct the Lagrange functional

By taking the partial derivative of with respect to par-
ticular , and setting it to zero, we obtain

(9)

Also, taking the partial derivative of the Lagrangian functional
with respect to Lagrange multiplierand setting it to zero pro-
vides the following:

(10)

Substituting (9) into the above equation provides

(11)

Clearly (11) is a nonlinear equation in. It can be shown
that, starting from , the iterates generated by Newton’s
method

(12)

would always lead us to the unique positive solution of this
equation. This results in a projection vectorthat has a smaller
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distance to than that furnished by use of any other root [14].
Upon computing the Lagrange multiplierfrom (12), the pro-
jection vector is found through (9).

A few additional remarks regarding the effect of initial condi-
tion are appropriate. First, the objective function lacks the con-
vexity property. Therefore, the stationary point obtained from
exploiting this algorithm is dependent upon the choice of ini-
tial condition. A proper choice of initial conditions leads us to
a stationary point close to the optimal solution. A feasible ini-
tial condition can be the solution obtained from MMSE-UEC
approach. As a second comment, in order for the algorithm to
converge to a stationary point, the initial condition should be set
so that the starting point satisfies the inequality constraint (fea-
sible point). In the following sections, we investigate the effect
of UTC and linear phase constraint on the optimization problem.

IV. REMARKS

In some applications, it is desirable to impose a UTC on the
TIR filter. This constraint forces theth tap of the TIR filter
to unity. Decision feedback equalization is a special case of
UTC with . Including the UTC as a constraint equation
in our optimization problem, the constraint set becomes the in-
tersection of an ellipsoid and a hyperplane. The fundamental
theorem of POCS defines a successive projection algorithm for
solving the problem of finding a point in the intersection of sev-
eral closed convex sets [14]. Based on this theorem, given two
closed and convex setsand , the sequence generated by
the following algorithm:

where and denote, respectively, the projections onto D
and C, will converge to a point , in the intersection of
two sets. Given the vector, projection of this vector over UTC,
denoted as , can be obtained from (cf. Appendix - A)

(13)

In optimizing the performance of TEQ, the effect of phase
distortion was not considered. In order to remove the phase
distortion, linear phase constraint must be imposed on the TIR
filter. This would add another constraint set to the previous
problem increasing the complexity of the problem. The linear
phase constraint is the intersection of hyperplanes in Euclidean
space that is both closed and convex. Therefore,
projection onto convex sets can be extended to provide the
optimum solution under linear phase constraint. Following, we
provide the projection operator for linear phase type III filters
[15]. The alternative constraints can be found in [12]. For linear
phase type III filters, the projection operator is obtained (cf.
Appendix - B) from

(14)

in which parameters and can be found from (18) and
(22), respectively.

An upper-bound on objective function given in (1) can be
obtained as follows:

Note that the first inequality follows from the Cauchy–Schwartz
inequality while the second inequality is obtained from applying
Rayleigh inequality as expressed by

where ( ) is the minimum (maximum) eigenvalue of
matrix .

The above expression shows that increasing quadratic in-
equality constant (QIC) would result in a larger upper-bound
for the objective function. On the other hand, a smaller value
for QIC causes the dual constraint problem given in (1) to
better approximate the primary objective function [4]. This fact
is consolidated through computer simulation in the subsequent
section.

V. SIMULATIONS AND PERFORMANCEEVALUATION OF THE

ALGORITHMS

In this section, we explore the potential performance achiev-
able through the use of the proposed algorithm for equalization
of DMT systems. We ran a series of simulations on CSA loops
sampled at 276 kHz. The number of subchannels considered
is . The TEQ and TIR are assumed to have lengths
of and , respectively. Receiver and thermal
noise is modeled as additive white Gaussian noise (AWGN)
with power of 30 dBm across the two-sided bandwidth.
Near end cross-talk (NEXT) noise is modeled by exciting a
coupling filter with spectrum of ( )
by a white Gaussian noise with power of 10 mW. Unless
specified, signal power is set such that the matched filter bound
( ) of 15 dB is achieved at the receiving
point. Furthermore, it is assumed that the power is uniformly
distributed among the entire set of subchannels. In computing
the data rate of the DMT system, the entire bandwidth is used
and no limitation is imposed on the number of bits allocated
for each subchannel. Also the noise margin and coding gain of
0 dB are assumed over the entire set of subchannels.

A. Effect of Channel-Impulse Response

In order to evaluate the performance of the proposed algo-
rithm, computer simulations have been performed on a series of
CSA loops. Fig. 3 shows the percentage of improvement in ca-
pacity with respect to the capacity obtained from MMSE–UEC
approach. Decision delay, initial condition, and QIC are
set to the settings furnished by the MMSE–UEC approach.
Simulation results indicate that the algorithm exhibits robust
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Fig. 3. Performance of the proposed algorithm for various CSA lines.

Fig. 4. Signal-to-distortion profile for MMSE-TEQ and max. Data rate TEQ.

convergence for all CSA loops used in the study. As shown
in the figure, the capacity of the proposed method exceeds
that of MMSE–UEC approach in the range of 10 to 35%.
Fig. 4 compares the signal-to-distortion ratio of maximum
capacity equalization against MMSE–UEC approach for the
CSA-1 loop. As shown in the figure, the MMSE approach
exhibits considerable performance degradation over half of the
subchannels. This degradation can be viewed as sharp notches
in the signal-to-distortion profile. Equalization of DMT based
on maximum capacity outperforms the MMES–UEC approach
by removing these nulls from the signal to distortion profile.

B. Effect of QIC ( ) and Decision Delay ( )

In order to investigate the effect of QIC, the proposed algo-
rithm is applied for equalization of a typical CSA loop, namely
CSA-6. Fig. 5 depicts the capacity profile as a joint function
of QIC and decision delay. The QIC is set to ,
where and is the residual mean-square

Fig. 5. Capacity profile versus decision delay and QIC.

Fig. 6. Performance of the proposed algorithm under UTC.

error obtained from the MMSE equalization. As stated previ-
ously, increasing QIC would increase the volume of the con-
straint region that provides more freedom in the search direc-
tion. On the other hand, the dual optimization problem would
better approximate the capacity maximization problem if QIC is
small. As the figure shows, the maximum capacity is displaced
downward as increases from 0.2 to 1.

C. UTC and Effect of Unit Tap Index

Next we examine the effect of UTC on the optimum equaliza-
tion of a DMT system. Fig. 6 shows the relative improvement in
data rate for maximum data rate equalization under UTC for var-
ious CSA lines. In optimizing the performance of the equalizer,
QIC, decision delay, and unit tap index are set to the optimum
values obtained from the MMSE-UTC approach. Changing the
unit tap index of the TIR filter results in a different normal vector
for the constraint hyperplane that shapes the constraint region
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Fig. 7. Capacity profile versus decision delay and unit tap index.

Fig. 8. Signal-to-distortion ratio for MMSE-TEQ and Max Capacity-TEQ
with linear phase type (I) constraint.

accordingly. The optimum unit tap indexis found through per-
forming exhaustive search on valuesranging from 1 to .
In order to show how the unit tap index of TIR can affect the per-
formance of the proposed algorithm, the optimum equalization
algorithm is performed on a typical CSA loop. Fig. 7 depicts the
capacity profile as a joint function of decision delay and unit tap
index for CSA-1 loop. As the figure shows, a noncausal TIR
would maximizes the performance of the DMT system for this
particular case.

D. Effect of Phase Distortion

In order to investigate the effect of phase nonlinearity on
the performance of DMT systems, we impose the linear phase
constraint on the maximum capacity equalization problem. We
consider the CSA-1 loop used in Section V-A and impose the
linear phase type I constraint on the optimum equalization.
Fig. 8 shows the signal-to-distortion ratio over subchannels

Fig. 9. Comparison between phase response of TIR filter under various
constraints.

TABLE I
ALGORITHM SUMMARY AND CORRESPONDINGCOMPUTATIONAL COMPLEXITY

for this experiment. Fig. 9 compares the phase response of
the TIR for MMSE-UEC, optimum capacity equalization, and
optimum capacity equalization with linear phase constraint. As
expected, the optimum capacity equalization with linear phase
outperforms the other schemes through removing the phase
distortion from the frequency response.

VI. CONCLUSION

Optimum equalization of multicarrier systems can be viewed
as a constrained optimization problem over convex sets. The
constraint sets exhibit identifiable geometrical characteristics
which make the projection operation significantly efficient.
Based on these observations, we have proposed a novel iterative
algorithm as a straightforward application of POCS for solving
the optimum equalization of multicarrier systems. Computa-
tional complexity of the algorithm is summarized in Table I.

APPENDIX

In this section, we obtain the projection operator for UTC and
linear phase constraints.



1768 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 10, OCTOBER 2001

A. Unit Tap Constraint

As we expressed earlier, the UTC forces theth element of
TIR filter to unity. Using (4), we can represent theth element
of TIR as a linear combination of theth elements of orthogonal
eigenvectors of matrix . Consequently, the UTC set ( ) can
be formulated as

(15)

The above equation conforms a hyperplane in which is
both closed and convex. In general, the projection operator is a
vector which minimizes the Lagrange functional, i.e.,

(16)

As shown in [11], the projection operator for this constraint is
obtained as follows:

(17)

The above equation along with (17) results in the projection
operator as given in (13).

B. Linear Phase Type III

Linear phase type III filters satisfy the antisymmetry property
as expressed by

The first constraint is the intersection of hyperplanes in .
Using the orthogonal eigen-vectors of the Hessian matrix,
this constraint set can be expressed as

which conforms to the following constraint set:

Similarly, the second constraint can be viewed as another hy-
perplane in which encounters origin and can be repre-
sented as

Using the above equations, the Lagrangian functional can be
written as

where the variables and are defined as

(18)

(19)

It can be shown [12] that the projector operator for this con-
straint is in the following form:

(20)

where the Lagrange functionals are the solution to the following
set of linear equations:

(21)

where the matrix and vector are defined as

The Lagrangian multiplier vector can be obtained through suc-
cessive iteration of POCS algorithm or simply through inverting
the matrix as follows:

(22)
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