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Abstract—We investigate multiple-input multiple-output
(MIMO) eigenmode transmission using statistical channel state
information at the transmitter. We consider a general jointly cor-
related MIMO channel model, which does not require separable
spatial correlations at the transmitter and receiver. For this model,
we first derive a closed-form tight upper bound for the ergodic
capacity, which reveals a simple and interesting relationship in
terms of the matrix permanent of the eigenmode channel coupling
matrix and embraces many existing results in the literature as
special cases. Based on this closed-form and tractable upper bound
expression, we then employ convex optimization techniques to
develop low-complexity power allocation solutions involving only
the channel statistics. Necessary and sufficient optimality condi-
tions are derived, from which we develop an iterative water-filling
algorithm with guaranteed convergence. Simulations demonstrate
the tightness of the capacity upper bound and the near-optimal
performance of the proposed low-complexity transmitter opti-
mization approach.

Index Terms—Capacity bound, convex optimization, ergodic ca-
pacity, multiple-input multiple-output (MIMO) channel, perma-
nents, power allocation, statistical eigenmode transmission.

I. INTRODUCTION

M ULTIPLE-input multiple-output (MIMO) wireless sys-
tems, equipped with multiple antennas at both the trans-

mitter and the receiver, have attracted tremendous interest in re-
cent years as a means of enabling substantially increased link
capacity and reliability compared with conventional systems
[1]–[6]. The performance of practical MIMO systems is char-
acterized by various system parameters, such as the average
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transmit power and the transmit–receive antenna configurations,
as well as various channel phenomena such as spatial correla-
tion, line-of-sight components, thermal noise, interference, and
Doppler effects due to mobility. Each of these factors has an im-
pact on the MIMO channel capacity.

In realistic environments, where the channel characteristics
may vary significantly over time, substantial MIMO capacity
benefits can be obtained by tracking the states of the fading
channels, and using this channel state information (CSI) to op-
timally adapt the MIMO transceiver parameters. However, such
closed-loop MIMO strategies require both the transmitter and
receiver to acquire some form of CSI. Whilst it is reasonable to
assume that the instantaneous CSI can be obtained accurately at
the receiver through channel estimation, whether or not this in-
formation can be obtained at the transmitter depends highly on
the application scenario. For example, for fixed or low mobility
applications, the channel conditions vary relatively slowly, in
which case instantaneous CSI can be fed to the transmitter via
well-designed feedback channels in frequency division duplex
(FDD) systems, or using the reciprocity of uplink and downlink
in time division duplex (TDD) systems. However, as the mo-
bility and hence the fading rate increases, obtaining accurate in-
stantaneous CSI at the transmitter becomes much more difficult.
For such a scenario, it is reasonable to exploit statistical CSI at
the transmitter. The motivation for this approach stems from the
fact that the channel statistics vary over much larger time scales
than the instantaneous channel gains, and the uplink and down-
link statistics are usually reciprocal in both FDD and TDD sys-
tems[7], [8]. Therefore, the statistical information can be easily
obtained by exploiting reciprocity, or by employing feedback
channels with significantly lower bandwidth compared with in-
stantaneous CSI feedback systems. In addition, transceiver de-
signs based on statistical information are typically more robust
to imperfections, such as delays, in the feedback channel.

Capacity analysis and transceiver designs using the statistical
CSI at the transmitter are highly dependant on the channel mod-
eling. The most common approach has been to adopt the pop-
ular Kronecker model [9]–[19], where the correlation between
the fading of two distinct antenna pairs is the product of the cor-
responding transmit and receive correlations [9], [20]. The pri-
mary advantage of this separable model is that it is analytically
friendly, however various measurement campaigns have demon-
strated that it can have deficiencies in practice [21], [22]. To
overcome these deficiencies, more generalized channel models
have been proposed, including the virtual channel representa-
tion [23], [24], the unitary-independent-unitary (UIU) model
[25], [26], and Weichselberger’s model [21]. In contrast to the
Kronecker model, these are jointly correlated channel models
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which not only account for the correlation at both link ends, but
also characterize their mutual dependence.

Under various assumptions on the system configuration and
channel model, several important works have been reported on
the transmitter optimization problem using the statistical CSI
at the transmitter in recent years. In particular, for multi-input
and single-output (MISO) wireless channels with correlated
Rayleigh or uncorrelated Rician entries, it was shown in [27]
that the capacity-achieving strategy is to send independent data
streams in the directions defined by the dominant eigenvectors
of the transmit correlation matrix. This result was extended to
Rayleigh fading MIMO channels with Kronecker correlation
structure in [15]–[18], to uncorrelated Rician MIMO channels
in [28], [29], to the UIU model in [25], [26], and to the virtual
channel representation in [24]. These prior contributions have
also considered the task of optimally allocating power across
the transmit eigendirections (i.e., defining the eigenvalues
of the optimal transmit covariance matrix), for maximizing
capacity. However, in most cases, the power allocation problem
has been tackled by optimizing the exact ergodic capacity ex-
pression, and this approach has led to computationally involved
numerical optimization procedures. For example, see [30], [31]
for Kronecker channels, and [26] for jointly correlated UIU
channels. In these contributions, iterative power allocation ap-
proaches were presented which involved numerical averaging
over channel samples for each iteration of the algorithm.

In this paper, we investigate the statistical eigenmode trans-
mission (SET) over a general jointly correlated MIMO channel,
using the statistical CSI at the transmitter. Our idea is to first de-
rive a closed-form tight upper bound for the ergodic capacity of
the general jointly correlated MIMO channel model. This upper
bound expression reveals a simple and interesting relationship
in terms of matrix permanents, and embraces many existing re-
sults in the literature as special cases, such as those presented for
Kronecker channels in [10], [13], [14], [17], [18]. Based on this
closed-form and tractable upper bound expression, we then em-
ploy convex optimization techniques to develop low-complexity
power allocation solutions in terms of only the channel statis-
tics. We derive necessary and sufficient optimality conditions,
and propose a simple computation algorithm, inspired by the
iterative water-filling techniques presented previously for trans-
mitter optimization of multiuser systems [32], [33], which is
shown to converge within only a few iterations. Numerical sim-
ulations demonstrate the tightness of the capacity upper bound
and the near-optimal performance of the proposed low-com-
plexity transmitter optimization approach, i.e., suffering negli-
gible loss with respect to the ergodic capacity of the jointly cor-
related MIMO channel.

A. Notation

The following notation is adopted throughout the paper:
Upper (lower) bold-face letters are used to denote matrices
(column vectors); in some cases, where it is not clear, we will
employ subscripts to emphasize dimensionality. The
identity matrix is denoted by , the all-zero matrix is denoted
by , and the all-one matrix is denoted by . The superscripts

, , and stand for the conjugate-transpose, trans-
pose, and conjugate operations, respectively. We employ

to denote expectation with respect to all random variables
within the brackets, and use to denote the Hadamard
product of the two matrices and . We use or the
lower-case representation to denote the ( , )th entry of the
matrix , and denotes the th entry of the column vector

. The operators , , and represent the matrix
trace, determinant, and permanent, respectively, and
denotes a diagonal matrix with along its main diagonal.

We will use to denote the set of all size- permutations
of the numbers , where . By using the no-
tation , we mean that ,

for , and for and
. We will use to denote the set of all ordered length-

subsets of the numbers . By the notation
, we mean that ,

for , and . The cardinalities of
the sets and are and respectively.

With and defined as above, we will use to denote
the sub-matrix of an matrix obtained by selecting the
rows and columns indexed by and respectively. will
denote the sub-matrix of obtained by selecting the rows in-
dexed by when , and the sub-matrix of ob-

tained by selecting the columns indexed by when .
Also, we will use and to denote the sequences comple-
mentary to and in and , re-
spectively. As such, will represent the sub-matrix of

obtained by deleting the rows and columns indexed by and
, respectively. Finally, for notational convenience, we will use

to represent the sub-matrix of obtained by deleting its
th row and th column.

II. CHANNEL MODEL AND STATISTICAL EIGENMODE

TRANSMISSION

A. Channel Model

We consider a single-user MIMO link with transmit and
receive antennas, operating over a frequency-flat fading

channel. The -dimensional complex baseband received
signal vector for a single symbol interval can be written as

(1)

where is the transmitted signal vector, is the
channel matrix with th element representing the com-

plex fading coefficient between the th transmit and th receive
antenna, and is the zero-mean additive complex
Gaussian noise vector with . It is assumed
that and satisfy the following power constraints:

(2)

(3)

We define the transmit signal to noise ratio (SNR) as .
If the total transmitted power is equally distributed across all
transmit antennas, so that , then also
corresponds to the average SNR per receive antenna.
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For the jointly correlated MIMO channel which we consider
throughout this paper, the channel matrix is given by

(4)

where , and are and
deterministic unitary matrices, is an de-

terministic matrix with at most one nonzero element in each row
and each column, is an deterministic matrix with
nonnegative elements, and is an random ma-
trix with elements having zero mean and independent identical
distributions (i.i.d.). Note that we do not constrain the elements
of to be Gaussian. Without any loss of generality, we can
assume that the nonzero elements of are real, with indices

for . Let us define

(5)

It is easy to show that

(6)

and the power constraint (3) can be rewritten as

(7)

From (4), the transmit and receive correlation matrices can be
expressed as

(8)

(9)

where and are diagonal matrices with
and . This implies that in

the channel model defined in (4), and are the eigen-
vector matrices of the transmit and receive correlation matrices,
respectively. These matrices are characterized by the transmit
and receive antenna configurations. For example, when uniform
linear arrays (ULA) are employed at both the transmitter and
receiver, it is shown in [23] that the eigenvector matrices can be
set to discrete Fourier transform (DFT) matrices.

The statistics of characterize realistic propa-
gation environments. From (4) and (6), we have

(10)

(11)

where denotes variance. The matrices and re-
flect the line-of-sight (LOS) and scattering components of the
channel, respectively. The th element of , i.e., ,
corresponds to the average power of and captures the
average coupling between the th receive eigenmode and th
transmit eigenmode. For this reason, we refer to as the
eigenmode channel coupling matrix. It can be seen that the
eigenvalues of the transmit and receive correlation matrices are
summations of the elements of the matrix in each column and
each row, respectively. These eigenvalues are nonseparable,
which reflects the joint correlation feature of the channel.

The channel model described by (4) provides a general
formula which embraces many existing channel models [9],
[20]–[26]. For example, if , is a rank-one matrix,
and has Rayleigh-faded elements, then (4) reduces to
the popular separable-correlation Kronecker model [9], [20].
By allowing to have arbitrary rank and fixing and

to be DFT matrices, one can achieve the virtual channel
representation for ULAs [23]. If we further allow and

to be arbitrary unitary matrices, one can obtain Weich-
selberger’s channel model[21]. Moreover, by setting
we arrive at the unitary-independent-unitary (UIU) model
introduced in [25], [26]. Our model is also related to the model
in [24], where one LOS component was included in the virtual
channel representation for the ULA MIMO channels. Here, we
allow multiple LOS components in eigenmode to cover more
general transmission links, such as those in distributed radio
networks [34].

B. Statistical Eigenmode Transmission

Throughout the paper, we assume that the receiver knows the
channel perfectly, whilst the transmitter only has access to the
statistical parameters, including , , and (and thus

). Under these assumptions, the ergodic capacity of the MIMO
channel is achieved by selecting the transmitted signal vector
to have zero mean and to follow a proper Gaussian distribution
[1]. Let the covariance matrix of be .
Then the power constraint on can be rewritten as ,
and the ergodic capacity is given by

(12)

where . Substituting (4) into (12) yields

(13)

where . Let , where is the
eigenvector matrix, and is a diag-
onal matrix of the corresponding eigenvalues. When has in-
dependent and symmetrically distributed elements, it has been
shown in [26] and [24] that the optimal eigenvector matrix for
achieving the capacity is , and thus is diagonal. In
[24], it has been pointed out that this solution also applies when
one element of contains a LOS component. We note however,
that the channel model given by (4) allows for multiple possible
LOS components. For this more general case, one can arrive at
the following result.

Theorem 1: The eigenvector matrix of the capacity-achieving
matrix for the jointly correlated channel (4) is given by

. The ergodic capacity can therefore be expressed as

(14)
where is an vector containing the eigenvalues ,

.

The proof follows similar approaches to those used in [24],
[26], [27], [29] and is therefore omitted. Theorem 1 demon-
strates that the optimal signaling directions are defined by the
eigenvectors of the transmit correlation matrix of the MIMO
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channel. This agrees with and extends prior results in the lit-
erature to the more general channel model given by (4). For
the transmitter optimization problem, the major remaining chal-
lenge is to determine the eigenvalues of the capacity-achieving
input covariance matrix . This is equivalent to the task of op-
timally allocating the available transmit power budget over the
optimized transmit eigen-directions, determined in Theorem 1.

In general, it is very difficult to derive an exact closed-form
solution for the power allocation problem. A major source of
this difficulty is due to the complexity in evaluating tractable
closed-form solutions for the expectation in (14). This is also
the case for many other less general MIMO channel scenarios,
such as the popular Kronecker correlation model [15], [16]. As
such, the standard approach has been to develop numerical op-
timization techniques (see e.g., [30] and [31]).

In this paper, considering the general jointly correlated
MIMO channel model, we develop a new approach which leads
to the design of simple, robust and practical power allocation
solutions. In particular, our approach is based on deriving a
tight closed-form upper bound on the expectation in (14) which
can then serve as an approximation to the capacity. Based on
this expression, we are then able to derive new optimized power
allocation solutions which are simple and fast to compute.
These power allocation solutions will be shown to serve as
very accurate approximations to the optimal capacity-achieving
solution, with low computational complexity requirements.

We note that the power-allocation problem for jointly corre-
lated channel scenarios has also been considered in [26], where
necessary and sufficient conditions as well as an iterative numer-
ical algorithm were proposed. One drawback of that algorithm is
that for each iteration it requires numerically averaging certain
random matrix structures involving the inverse of instantaneous
realizations of the MIMO channel. Moreover, since the compu-
tation algorithm requires access to instantaneous MIMO CSI,
then under the statistical-feedback assumption, such power-al-
location computations must be typically performed at the re-
ceiver. In contrast, in this paper we develop more practically
appealing power-allocation algorithms which involve only the
channel statistics. As such, they are simpler and more efficient
to compute, since they do not require random matrix averaging
during the power-allocation computation. Moreover, our new
power-allocation algorithm has the additional advantage of per-
mitting computation at either the receiver or the transmitter.
This extra flexibility is particularly important for various prac-
tical applications, such as downlink transmission where it is
often desirable or necessary to restrict computations to the base
station.

We start by rewriting the ergodic capacity (14) as

(15)

where

(16)

is the expected mutual information between the transmitted
signal and the received signal under SET. Due to the

concavity of the function, the mutual information
is upper bounded by

(17)
Thus, the ergodic capacity is upper bounded by

(18)

For the case of Kronecker MIMO channels, it has been shown
in [10], [13], [14], [17], [18] that such bounds are very tight and
admit closed-form expressions by using the expansion of the
determinant.

III. CLOSED-FORM CAPACITY UPPER BOUND

USING PERMANENTS

In this section, we derive a closed-form expression for the
capacity upper bound (18) for the jointly correlated MIMO
channel model in (4). We also develop algorithms for its effi-
cient computation. The upper bound derivation is based heavily
on exploiting linear-algebraic concepts and properties of matrix
permanents, which we introduce and develop in the sequel.

A. Matrix Permanents: Definitions and Properties

The permanent of a matrix is defined in a similar fashion to
the determinant. The primary difference is that when taking the
expansion over minors, all signs are positive [35]–[38]. The per-
manents of square matrices have been thoroughly investigated
in linear algebra and various applied fields. The permanents of

matrices with have also been defined and
investigated[35]. In this paper, to facilitate our capacity upper
bound derivation we find it necessary to extend the definition of
permanents to allow for arbitrary and , and provide their
useful properties.

Definition 1: For an matrix , the permanent is
defined as

(19)

where denotes the th element of .

From this definition, one can easily establish a number of
important properties of the matrix permanent, as given in the
following lemma. These properties will be useful in subsequent
derivations.

Lemma 1: Let be an matrix, an vector,
an vector, and a scale constant. Then

(20)

(21)

(22)

(23)
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(24)

(25)

For an matrix with , there exists an analogy
between the matrix permanent and the Laplace expansion of the
determinant [35], [39]. The following lemma gives the straight-
forward extension of this result for arbitrary1 and .

Lemma 2: Let be an matrix. Then

(26)
where and with .

Note that for the case , and

.

For the special case , (26) can be reexpressed as follows:

(27)

where . This is analogous to the cofactor
expansion of the determinant [39]. With , (26)
simplifies to

.
(28)

The following two key lemmas are particularly important for
deriving the closed-form capacity upper bound in the sequel.

Lemma 3: Let be an matrix. Then

(29)

where and when .

A proof is provided in Appendix A. The values of
and in Lemma 3 will be called

extended permanents of , which we denote as

(30)

1The result for the case� � � is obtained by employing (20), and following
the same steps as used in the derivation for the case� � � , given in [35].

Lemma 4: For an random matrix with independent
elements, suppose that there exists at most one non-zero element
in each row of . Then we have

(31)

where .

A proof is provided in Appendix B. For the spe-
cial case where all elements of are independent and
identically distributed with zero mean and unit vari-
ance, we have that and

. This agrees
with prior results in [10], [17], [18], [40].

The following conjecture is useful when dealing with the op-
timal power allocation problem in Section IV.

Conjecture 1: Let be an matrix of nonnega-
tive elements. Then is concave on

and .

For the general case with arbitrary and , the formal proof
of this result is not available at this stage. In Appendix C, we
provide proofs for several special cases, which lend support to
the validity of this conjecture.

B. Capacity Upper Bound

Armed with the general results of the preceding subsection,
we can now derive a closed-form expression for the upper bound
on the ergodic capacity.

Theorem 2: The ergodic capacity in (14) is upper bounded by

(32)

where

(33)

Proof: We start by writing the upper bound for the expected
mutual information under SET in (17) as

(34)

where

(35)

By using the characteristic polynomial expansion of the
determinant, as well as the Cauchy-Binet formula for the
determinant of a product matrix [39], can be expressed
in (36), shown at the top of the following page. Let us denote

. Then, , and it is easily found that

. The matrix satisfies the conditions in
Lemma 4. Thus, we have

(37)
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(36)

Substituting (37) into (36) and using the properties of the per-
manents in Lemma 1, as well as (28) and Lemma 3, we find that

(38)

Substituting (38) into (34) and using (18) complete the proof.

From the above theorem, we see that the upper bound on ca-
pacity is completely determined by the average SNR ( )
and the eigenmode channel coupling matrix . This bound is
particularly useful, since we may now apply (33) to maximize

with the respect to (i.e., address the power allocation
problem), without the need for performing Monte-Carlo aver-
aging over random realizations of the MIMO channel matrix.

It is interesting to consider the special case when and
, where and are and real vec-

tors. In this case, the jointly correlated channel model consid-
ered in this paper reduces to the popular Kronecker correlation

model. Defining and , the eigenmode
channel coupling matrix can then be expressed as

, and (33) reduces to (39), shown
at the bottom of the page where (39) is equivalent to the upper
bounds presented previously for Kronecker-correlated channels
in [17], [18]. Moreover, for the special case (i.e., the case
of equal-power allocation), (39) reduces further to the capacity
upper bound presented in [10].

C. Efficient Computation Algorithms

To evaluate the closed-form capacity upper bound expression
given by (32) and (33), we must evaluate the extended perma-
nent of the matrix . Clearly, when the size of the
matrix is small, this can be done by simply expressing the ex-
tended permanent as a conventional permanent via (30), and
then either directly applying Definition 1, or using the Laplace
expansion in Lemma 2. However, in both cases, as the size
of the matrix grows, the computational complexity increases
significantly, and more efficient methods are needed. To see
this, consider the task of evaluating the permanent of a general

matrix . The complexity associated with computing
matrix permanents is conventionally measured in terms of the
number of the required multiplications. Adopting this measure,
the number of multiplications required for evaluating the matrix
permanent using Definition 1 and the Laplace expansion (e.g.,
via (27)) are and , respectively, where

and . Clearly, as the matrix
dimensions increase, the computational complexity increases
exponentially. For this reason, it is necessary to investigate more
efficient computational algorithms.

(39)
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The best-known algorithm for computing the matrix perma-
nent of arbitrary dimensions is due to Ryser [36],2 who showed
that the permanent of the matrix (with ) can
be evaluated via

(40)

where , and represents the sum of the el-
ements in the th row of the matrix argument. A similar for-
mula also exists for the case . This algorithm requires

multiplications, with and defined
as above.

In our case, we are interested in computing the extended
permanent in (33), i.e., the permanent of or

, where . By directly computing
this quantity based on Definition 1, the Laplace expansion,
or Ryser’s method, the number of required multiplications
is , and

, respectively, where
and . For prac-

tical values of and , these complexities can be quite high.
As such, we are motivated to establish new and more efficient
methods for computing the extended permanent, which we now
consider.

Let us define the following auxiliary matrix :

(41)

We will establish new efficient computation algorithms for
based on the following key result.

Lemma 5: Let . Then

(42)

where .
A proof is presented in Appendix D. This result shows that

the extended permanent can be calculated directly from
the polynomial expansion of . Considering the case

, from Definition 1 in (19), Laplace expansion (27) and
Ryser’s expression (40), we have the following three formulas
for :

(43)

(44)

(45)

2For the case of square matrices, further improvements have also been pro-
posed [37].

It is convenient to reexpress (45) by letting

(46)

with , such that

(47)

This yields

(48)
Importantly, we find that each of the equivalent ex-
pressions (43), (44) and (48) admit simple and effi-
cient recursive algorithms for calculating the coeffi-
cients of . To demonstrate this, consider (43). Let

, where
. Then, for

, and therefore the coefficients of can be
evaluated recursively via

.
(49)

This result, combined with Lemma 5, presents an efficient
algorithm for computing the extended permanent .
In a similar manner, efficient computational algorithms can
also be easily obtained based on (44) and (48). We omit
the specific details of these. For arbitrary and , with

and defined as above, the number of required
multiplications for the three polynomial-based computation
algorithms are ,

and , respectively.
Fig. 1 presents the number of required multiplications for

evaluating based on the three polynomial-based com-
putation algorithms, for various antenna configurations of the
form . The number of required multiplications
for calculating by directly using Definition 1, Laplace
expansion and Ryser’s formula are also shown for comparison.
We clearly see that the polynomial-based algorithms have sig-
nificantly reduced computational complexity compared with the
direct methods; in many cases yielding orders of magnitude im-
provements. Of the polynomial-based algorithms, the Laplace
expansion gives the least complexity for , whereas the
Ryser-based formula is most efficient for .

IV. OPTIMAL POWER ALLOCATION WITH

THE CAPACITY BOUND

A. Asymptotic Optimality at Low and High SNR

Based on the tight closed-form capacity upper bound in The-
orem 2, we can now address the transmitter power allocation op-
timization problem by dealing with only the eigenmode channel
coupling matrix and the transmit SNR ( ). The op-
timal solution for maximizing the upper bound will then serve
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Fig. 1. Comparison of the number of required multiplications for calculating �� ����� with the polynomial-based algorithms and the direct computation algorithms.

as an approximation to the optimal capacity-achieving power
allocation solution. Our numerical results will confirm the ac-
curacy of this approximation.

The power allocation optimization problem can be formu-
lated as follows:

(50)

subject to (51)

Before dealing with this problem in its most generality, we
briefly check the asymptotic optimality of our approach at
low and high SNR. For arbitrary SNRs, we will then develop
optimality conditions and an iterative numerical algorithm in
the framework of convex optimization.

For low SNRs, can be expressed as

(52)

where . Without any loss of generality, assume
that . Maximizing the
first-order (in ) term in (52) subject to the constraint (51) gives
the following power-allocation policy

for
for .

(53)

This means that beamforming along the strongest transmit
eigenmodes (specified by the channel coupling matrix ) is
optimal in the low SNR case.

For high SNRs, with , we have

(54)

which is maximized by the following power allocation policy

(55)

i.e., equal-power allocation over the transmit eigenmodes.
These low and high SNR power allocation policies, derived
based on the capacity upper bound, coincide exactly with the
optimal capacity-achieving power allocation policies for the
low and high SNR regimes, considered previously in [24], [26].

B. Optimality Conditions for Arbitrary SNRs

We now address the general case with arbitrary SNRs. To this
end, let , , and . Then, using Conjecture
1, we can write

(56)

where and . Therefore,
the function is concave on the space of nonnegative ,
and the optimization problem given by (50) and (51) is a con-
cave optimization problem. As such, there exists only one local
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optimal solution, which is also a global solution. This solution
could be evaluated by employing standard convex optimization
algorithms, such as interior point methods [41].

Since the problem is concave, we can derive necessary
and sufficient conditions for the optimal solution using the
Karush–Kuhn–Tucker (KKT) conditions. To this end, let

and be the Lagrange multipliers
for the inequality constraint and the equality constraint

respectively. Then the KKT conditions satisfied by
the optimal can be expressed as

(57)

(58)

where denotes the partial derivative of with re-
spect to , for . From (33), these derivatives can be
written as

(59)

where . To evaluate the remaining
derivatives in (59) it is useful to apply the Laplace expansion
property of permanents, given by (27), to express as
follows:

(60)

where

(61)

(62)

denotes the th element of , denotes the sub-ma-

trix of obtained by deleting the th column, denotes
the sub-matrix of obtained by deleting the th row and th
column, denotes the vector obtained by
deleting the th element of , and denotes the vector
obtained by replacing the th element of by unity. Therefore,
(59) becomes

(63)

Substituting (63) into (57) and eliminating the slack variable ,
the KKT conditions become

(64)

(65)

where and .
In summary, we have the following theorem.

Theorem 3: The expected mutual information upper bound
is concave with respect to , and the necessary and suffi-

cient conditions for optimal power allocation are given by (64),
where is chosen to satisfy the power constraint in (65).

Note that when the eigenmode channel coupling matrix is
square and diagonal,3 we have

(66)

and the conditions in (64) simplify to

(67)

This is the same formula as the water-filling solution when the
transmitter has instantaneous CSI [1], and one can easily ob-
tain the optimal power allocation via the water-filling algorithm.
However, in the general case of an arbitrary eigenmode channel
coupling matrix, the solution can not be obtained as easily and
numerical approaches are required.

C. Iterative Water-Filling Algorithm

In this section, we propose a simple iterative water-filling
algorithm (IWFA) for evaluating the optimal power allocation
policy which satisfies (64). Our algorithm is based on observing
that the right-hand side of (64) is independent of , and is
motivated by the IWFA methods proposed in [32], [33] for
transmitter optimization of multiuser systems with instanta-
neous CSI known to the transmitters. Simulation results, given
in Section V, show that this approach works very well and is
highly efficient; typically converging after only a few iterations,
with the first iteration achieving near-optimal performance. The
proposed algorithm includes the following steps:

1) Initialize , , and .
2) Calculate and

,
.

3) Calculate , ,

via the conventional water-filling algorithm with power
constraint .

4) Calculate .
5) If , set

, and recalculate .
6) Set and return to Step 2 until the algorithm

converges or the iteration number is equal to a prede-
fined value.

Here, stands for the value of in the th iteration. In Step 1 in
the first iteration, is initialized to , i.e., to the equal power al-
location. Note, however, that could also be initialized in a dif-
ferent way. For example, in practice it is reasonable to suppose
that the channel statistics change smoothly from frame to frame,
where a more appropriate starting point for any given frame
would be the optimal value of from the previous frame. This
could speed up the convergence of the IWFA. In Step 3, the con-
ventional water-filling algorithm is performed with the required
variables and calculated in Step 2. Following the
calculation of the in Step 4, Step 5 is performed to guar-
antee the convergence of the iterative procedure. We discuss this
issue in detail below. In Step 6, the convergence of the algorithm
can be determined by checking whether
(or ) is less than some predefined tolerance.

3In this special case, the MIMO channel is essentially reduced to a set of
non-interfering scalar subchannels.
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Theorem 4: The IWFA for optimal power allocation con-
verges to the capacity upper bound .

Proof: In order to verify the convergence of our proposed
IWFA for optimal power allocation, we define the following
function for a given :

(68)

It can be seen that is a concave function with respect to .
The water-filling solution in Step 3 of the IWFA is exactly equal
to the solution of maximizing , for a given subject
to the power constraint . Therefore, with the
resulting from Step 3 of the IWFA, we have

(69)

From the concavity of , it can be shown that the following
relation holds:

(70)

Combining (69) and (70) yields

(71)

Therefore, after Step 5 of the IWFA, we have that
. This, along with the fact that the problem (50)–(51) is

convex, completes the proof.

Notice that the relation (71) suggests, mathematically, to
update with in the th iteration of
the IWFA, whereas the KKT conditions (64) suggest a more
intuitive interpretation based on the water-filling principle.
In our proposed IWFA, we update with the water-filling
solution if the resulting is increased. This allows very
fast convergence, as we demonstrate through simulations in
the following section. To guarantee the convergence, we use

to replace the water-filling solution when
the resulting is not increasing in each iteration.

V. SIMULATIONS

In this section, we present numerical results to evaluate the
tightness of the capacity bound, and to demonstrate the effi-
ciency and performance of the proposed transmitter optimiza-
tion approach under SET. We consider a MIMO system with
five transmit and five receive antennas, and present results for
both the jointly correlated MIMO channel model and the Kro-
necker-correlation model. For the jointly correlated channel, we
adopt the same channel parameters as used in [24], where
and has the following structure

(72)

For the Kronecker channel, we adopt the constant-correlation
model for constructing the transmit and receive correlation ma-
trices [10]. An constant-correlation matrix is given by

(73)

where is the correlation coefficient. We set the
transmit and receive correlation coefficients to be and

respectively.
Fig. 2 compares our closed-form ergodic mutual informa-

tion upper bound (18) with Monte-Carlo simulated exact curves
based on (16), for the case (equal-power allocation).
Results are shown for both the jointly correlated channel and
the Kronecker channel, with the above settings. We see that the
upper bound is rather tight for both channel models, especially
for low to moderate SNRs (e.g., dB). Moreover, we see
that the bound for the Kronecker model is slightly tighter than
for the more general jointly correlated model. Interestingly, we
will show that, despite this difference in tightness, the low-com-
plexity power allocation policies derived based on these bounds
perform near-optimally for both the Kronecker and jointly cor-
related channel models.

Figs. 3 and 4 present the ergodic mutual information achieved
by the SET approach employing the proposed IWFA (derived
based on our closed-form upper bound), in the jointly correlated
and Kronecker channel scenarios, respectively. For comparison,
the exact ergodic capacity curves are also shown, which were
obtained by numerically evaluating (14) using a constrained op-
timization function of the Matlab optimization toolbox. The er-
godic mutual information achieved with equal power allocation
(55) and beamforming (53) are also shown for further compar-
ison. We clearly see that, for both channel models, the proposed
SET approach performs near-optimally, suffering almost neg-
ligible loss compared with the true channel capacity. Further-
more, we see that equal power allocation and beamforming are
optimal in the high and low SNR regimes, respectively, which
agrees with our analytical conclusions put forth in Section IV-A.
The capacity upper bound curve is also shown on the figures,
and once again is seen to be tight.

Figs. 5 and 6 demonstrate the convergence of the proposed
IWFA for optimal power allocation in the jointly correlated and
Kronecker channel scenarios, respectively. Here, the SNR was
set to 10 dB, and in all cases the algorithm was initialized using

. These figures show the evolution of the eigenvalues ,
, and the capacity bound for each iteration.

From these results, we see that the proposed IWFA converges
after only a few iterations, with the first iteration achieving near-
optimal performance in all cases.

VI. CONCLUSION

We have investigated statistical eigenmode transmission over
a general jointly correlated MIMO channel. For this channel,
we derived a tight closed-form upper bound for the ergodic
capacity, which reveals a simple and interesting relationship
in terms of matrix permanents of the eigenmode channel cou-
pling matrix, and embraces many existing results in the liter-
ature as special cases. Based on this expression, we proposed
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Fig. 2. Comparison of the exact ergodic mutual information and the mutual information upper bound. Results are shown for the jointly correlated channel model
and the Kronecker model, with equal-power allocation (i.e., ��� � �).

Fig. 3. Comparison of the ergodic capacity of the jointly correlated MIMO channel achieved by numerically solving (14), and our proposed iterative water-filling
algorithm under SET. The capacity upper bound and the information rates achieved by equal power allocation and beamforming are also shown.

and investigated new power allocation policies in the frame-
work of convex optimization. In particular, we obtained neces-
sary and sufficient optimality conditions, and developed an ef-
ficient iterative water-filling algorithm with guaranteed conver-
gence. The tightness of the capacity bound and the performance
of our novel low-complexity transmitter optimization approach
was confirmed through simulations. Our approach was shown to
suffer near-negligible loss compared with the ergodic capacity
of the jointly correlated MIMO channel.

APPENDIX I
PROOF OF LEMMA 3

Let and . From the defi-
nition of the permanents, we have

(74)
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Fig. 4. Comparison of the ergodic capacity of the Kronecker MIMO channel achieved by numerically solving (14), and our proposed iterative water-filling algo-
rithm under SET. The capacity upper bound and the information rates achieved by equal power allocation and beamforming are also shown.

Fig. 5. Convergence of the iterative water-filling algorithm for optimal power allocation in the jointly correlated channel. Results are shown for SNR � �� dB.

where and denote the th elements of and
respectively. Note that the following identity holds:

(75)

where

is the sequence complementary to in . Hence

(76)

It can be seen that
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Fig. 6. Convergence of the iterative water-filling algorithm for optimal power allocation in the Kronecker channel. Results are shown for SNR � �� dB.

where is the Kronecker delta operator, and
only if and .

Therefore, we have

(77)

where when . Using (28), we have

(78)

Through a similar procedure, one can obtain that

(79)

This completes the proof.

APPENDIX II
PROOF OF LEMMA 4

From the definition of the determinant, we have

(80)

where denotes the number of inversions in the permu-
tation from the normal order , and is the

th element of . Since the rows of are independent, we
have

(81)

Since the elements in each row are independent and there is only
one possible non-zero mean element in each row, we have

(82)

where is the th element of . Substituting (82) into (81)
and then into (80) yield

(83)

This completes the proof.
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APPENDIX III
PROOF OF THE CONCAVITY OF IN

SEVERAL CASES

Case 1: : In this case, we have that
. The concavity of comes

from that of [41].

Case 2: and : In this case, is a row
vector, and we have that . The concavity of

comes from that of the log function.

Case 3: and : In this case, we will first show
that the following inequality holds:

(84)

where and
. Then we will prove the concavity of

from (84).

Since and are positive on , the inequality (84)
holds if and only if the following inequality does:

(85)

Let . Then we have that and
. By substituting these

expressions into , we can obtain

(86)

Therefore we achieve (85) and then (84). From (84), we have

(87)

where . Taking logarithm on both sides and using the
concavity of the log function yields

(88)

This completes the proof of the concavity of .

Case 4: is of Rank One: Let , where and
are vectors of and elements, respectively. In this case, we
have

(89)

where the function is the th elementary symmetric
function defined as [42]

(90)

Since is logarithmically concave, we obtain from (89)
that is concave.

APPENDIX IV
PROOF OF LEMMA 5

We consider the case with . The proof for the case
with is similar. From the definition of the permanents,
we have

(91)

where represents the th element of . For each product
term in the above expression, the following relation holds:

(92)

Substituting (92) into (91) yields

(93)

From Lemma 3, we have the expansion of . By com-
paring the resulting expansion of with (93), we com-
plete the proof.
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