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Abstract—Recently, radar frequency bands have been drawing
much attention as possible candidates for cognitive radio, since
their utilization was revealed to be relatively low. One important
functionality of a cognitive radio system is the spectrum sensing,
which detects the presence of a primary user (PU) signal. The
pulse radar signal, which is the PU signal in radar bands, is
characterized by its sparsity in the time domain. Exploiting
this sparsity, we present a spectrum sensing technique which
combines the intermediate detections from multiple small sliding
sensing windows of the received radar signal into a final decision.
We also show by computer simulation that it can achieve
improvement of the sensing performance in comparison with the
conventional single-window based spectrum sensing approach.

Index Terms—Cognitive radio, cooperative spectrum sensing,
radar, GRCR.

I. INTRODUCTION

HE demand for radio spectrum is explosively growing
T as a consequence of the emergence of numerous wireless
communication systems and services, each one aiming at serv-
ing a massive number of users. However, the spectrum scarcity
combined with the traditional static spectrum allocation policy
places an obstacle to the increasing demand in the near future.
In order to address this obstacle, a lot of research efforts have
been spent. Among them, the cognitive radio (CR) concept
[1] is being considered one of the most promising ones. In
short, it is a spectrum sharing technique that allows for a
secondary user (SU) to access a frequency band whenever it
is not occupied by the primary user (PU), leading to higher
spectrum utilization [2], [3].

Recently, radar bands have been attracting much attention
as possible candidates for cognitive radio, since they were
found to be underutilized and wideband [4]. For instance,
the Federal Communications Commission (FCC) has regulated
that wireless local area network (WLAN) devices be able
to detect radar signals and then switch the wireless network
device to another channel to avoid interference with these
signals [5]. Thus, the successful operation of cognitive radio
in radar bands requires the capability of spectrum sensing [6],
which is an essential component of a CR to decide upon the
presence or absence of radar signals in a given sensed band.

An immediate approach for radar signal detection is to
compare the received signal power for a short time with a
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predetermined decision threshold. Since this is categorized
as an energy detection approach [6][7], it does not exploit
the inherent characteristics of a pulse radar signal, and is
susceptible to noise power uncertainty. This approach can be
refined by applying multiple pulse detection [8] where a single
pulse is identified as the change of the received signal power
by more than a specific amount in time for both the leading and
falling edges. More elaborated detection strategies explores the
autocorrelation between pulses in time [9], and the spectral
characteristics distinguishing radar signals from noise [10].

Usually, a pulse radar periodically radiates a train of short
pulses that tends to be sparse in time. The conventional
spectrum sensing techniques are based on applying some
detection algorithm to a whole sensing interval, not exploit-
ing this sparsity. Motivated by this fact, in this paper we
present an improved spectrum sensing strategy in which the
conventional single sensing event during a sensing interval is
transformed into multiple short-time detection events by means
of a sliding window approach. The multiple sensing results are
then combined to yield the final decision upon the occupation
of the sensed band. Since there is no requirement for the
detectors adopted in this sliding window approach, we have
chosen the recently-proposed Gerschgorin radii and centers
ratio (GRCR) detector [11], which exhibits the constant false
alarm rate (CFAR) property and is robust against nonuniform
and dynamical noise and received signal powers. We call the
proposed detector the Sliding GRCR.

The remainder of this paper is organized as follows. The
system model is given in Section II. The proposed Sliding
GRCR approach is described in Section III. Section IV is
devoted to the numerical results and discussions. Finally, we
end up with some conclusions in Section V.

II. SYSTEM MODEL
A. Signal Model

Adapting the model of [11] to the radar signal detection
problem, consider a cooperative spectrum sensing scheme in
which m cognitive SUs collect mn samples (n samples per
SU) of the signal received from a radar transmitter during the
sensing interval. At the fusion center (FC) of the secondary
network, the received signal matrix Y € C"™" is given by

Y=hx"+V, (1)
where the superscript T denotes transposition, and
h = [hy, hy, . .., hy]T is the channel vector with A; representing

the complex channel gains between the radar transmitter and
the i-th SU receiver, for i = 1, ..., m. These gains are assumed
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to be constant during the sensing interval, and independent
and identically distributed (i.i.d.) between consecutive sensing
rounds. The channel vector is modeled as h = Ga, where
a € C™! is the vector whose elements are zero-mean
complex Gaussian random variables having unitary second
moment to represent flat and slow Rayleigh fading channels.
The matrix G € R"™™ is a diagonal gain matrix given by
G = diag (,/p/pavg), with p = [p1.p2,....pm]" being the
vector with the received signal power levels in each SU, where
Pavg = % 2.t pi is the average received signal power over all
SUs. If the overall channel power gain is unitary (without loss
of generality), the radar signal is transmitted with a constant
power paye. The matrix V. € C"™" contains independent
zero mean complex Gaussian noise samples. To consider the
possibility of nonuniform noise variances across the SUs’

receivers, the elements in the i-th row of V have variance 0'1.2,

i = 1,...,m. Then, denoting the average noise variance as
2 _ l m 2 . . . . .

Tave = 2 o7, the received signal-to-noise ratio, in dB,

averaged over all SUs, is SNR = 101log;,, (pavg/(rgvg).

Finally, the vector x € R"¥! in (1) represents the samples
of the radar signal. In practice, a pulse radar signal is formed
by a series of short time pulses having duration of about 1-5
microseconds [5]. The time between the start of consecutive
pulses is typically on the order of 1 millisecond, yielding a
very low duty-cycle waveform. From the perspective of the
detector, the received signal from a rotating radar is seen as
a series of bursts of pulses. The time from the start of one
burst to the start of the next one is typically on the order
of 1-10 seconds. That said, in base-band representation the
radar signal vector model as seen by the SUs’ receivers looks
likex=1[...,v,v,...,v,0,0,...,0,v,v,...,v,0,0,...,0,...17,
where v is set according to the desired radar signal power
Pavg and duty-cycle D, i.e., v = y/pag/D. The number of
consecutive vs (i.e., the pulse duration expressed in terms of
a number of samples per pulse) and consecutive Os (i.e., the
pulse spacing, also expressed in samples) are set to yield the
desired duty-cycle. The number of pulses within the sensing
interval is assumed to be a uniform random variable U ~
[1, N] to represent the asynchronous operation between the
radar bursts and the spectrum sensing interval, where N is the
number of pulses per burst.

B. GRCR Detector

At the FC, the sample covariance matrix of the received
signal is computed as R = %YYT, where 1 denotes the
complex conjugate and transpose. The Gerschgorin radii and
centers ratio (GRCR) test statistic defined in [11] is

i1 i

Zﬁl rij ’
where r;; is the element in the i-th row and j-th column of
R fori,j=1,....,m.

The performance metrics often used to assess the spec-
trum sensing performance are the probability of detection
and the probability of false alarm, respectively defined as
P4 = Pr(decision = H;|H;) and Pg, = Pr(decision = H;|Hp),
where H, and Hj are the hypotheses of the presence (i.e.

rij

2

TGRCR =

Y = hx" + V) and absence (i.e. Y = V) of the radar signal,
respectively, and Pr(-) is the probability of the underlying
event. Notice that the absence of the radar signal might be
declared if no radar signal is being transmitted or if the sensing
interval falls in between radar signal bursts.

III. PROPOSED SLIDING GRCR APPROACH

The motivation behind the Sliding GRCR approach goes as
follows: for the succesful detection of a pulse radar signal,
it could be better to adopt a divide-and-conquer strategy in
which the whole sensing interval (single sensing round) is
split into multiple smaller sensing windows (multiple sensing
rounds), since the signal has a small duty-cycle. By doing so,
the large pulse energy can be captured in one of the sensing
rounds, affected by a noise energy smaller than the one present
in the whole sensing interval. However, a simple partition of
the sensing interval into adjacent windows may be ineffective,
since a pulse might not entirely fall into a given window due
to its random position, reducing the detection capability. A
more effective approach is to slide a sensing window through
the whole sensing interval as an attempt to hit the radar
pulse with higher probability. An intermediate decision on the
presence or absence of the radar signal is then made for each
step of the sliding window. When the window reaches the
end of the sensing interval, a logic operation is made among
the intermediate decisions to yield the final global decision.
In principle, this sliding window approach can be combined
with any detection technique, but it can benefit from the low
complexity and the CFAR property of the GRCR test statistic
devised in [11]. The name Sliding GRCR was given to the
resulting spectrum sensing technique due to the application of
the GRCR to the approach just described.

Figure 1 illustrates the operation of the proposed Sliding
GRCR spectrum sensing with some hypothetical numerical
values. In this figure, a single radar burst with N pulses (3
in this example) during the sensing interval is shown. The
beginning of the first pulse is a random variable, since the
radar burst and the sensing interval are not synchronous to
each other. Each pulse lasts an interval corresponding to W,
samples (20 in this example). The sliding window has a size
of S,, samples and moves through the sensing interval (600
samples in this example) in steps of size S5 samples.

The number of samples collected by each SU, n, the number
of radar pulses per burst, N, the radar pulse width, Wp. and
the radar signal duty-cycle, D, are related via

n="2 3)

Depending on the sliding window size Sy, the number of
steps S, € N,, which is the total number of sensing rounds
during the whole sensing interval, is given by

o=+ 1 @)

In each sensing round, the GRCR test statistic (2) is formed
from a sample covariance matrix R computed from a received
signal matrix Y similar to (1), but of order m X S, instead
of m x n. The final global decision is reached via the logic
OR operation among the intermediate decisions made in all
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Fig. 1. Radar burst with N = 3 pulses, pulse width W}, = 20 samples, and
duty-cycle D = 10%. The whole sensing interval corresponds to n samples,
Ss is the step size and Sy is the window size.

rounds, which is equivalent to say that the decision will
be made in favor of the presence of the radar signal if
max{TGrcr (1), Trcr(2), . . ., TGRcrR(Sn)} > ¥, where y is the
decision threshold.

The computational complexity of calculating a sample co-
variance matrix from a received signal matrix Y of order mxSy,
is O(Sym?). Then, the complexity of the Sliding GRCR is
O(S,Sym?) due to the repeated sensing rounds. It can be
noticed from (4) that S,Sy > n. Since the complexity of the
original GRCR is O(nm?) [11], the Sliding GRCR will exhibit
a complexity greater than or equal to the original GRCR, with
the equality holding when the step size is equal to the window
size, i.e., S; = Sy. Notice that the energy consumption due to
the existence of multiple sensing windows is related to the
computational burden at the FC. The multiplicity of windows
do not affect both the energy spent for sensing at each SU, and
the energy due to the transmission over the report channel.

The proposed Sliding GRCR approach has its parame-
ters fully configurable to allow for a trade-off between the
spectrum sensing performance and overall sensing speed. For
instance, if the window size S, fits the pulse width W,, the
maximum pulse energy is captured, improving the sensing
performance. Moreover, if the step size is Sg = 1, the chance
of hitting a radar pulse is maximized at the expense of a large
number of sensing rounds and, thus, a large processing time.

Finally, it is worth emphasizing that the average SNR of
the configuration according to the system model described in
Section IL, i.e. SNR = 10log,, (pavg/o-,fvg), will be higher than
the actual SNR due to the random number of radar pulses seen
by the SUs during the sensing interval. It can be shown that
the actual SNR can be well approximated by

- (N+1)pavg
SNR ~ 101log;, [—2NU§VE | 5)

The reason why (5) is not exact is that, based on the model
depicted in Fig. 1, a radar pulse can be partially included in
the sensing interval.

IV. NUMERICAL RESULTS

A typical tool for analyzing Pq and Pg, simultaneously is
the receiver operating characteristic (ROC) curve, which trades
Py, versus Py by varying the decision threshold y. The results
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Fig. 2. Performances of the Sliding GRCR (Sy, = W;) and the original GRCR
(Sw = n) for detecting a radar signal under different SNR and Ss values, for
m =5, n=2400, W, =30, D = 5%, and N = 4.

shown hereafter are given in terms of ROC curves obtained
from 20000 Monte Carlos events in which the received signal
matrix Y is generated under the H; and H, hypotheses.

We assumed m =5 SUs and a radar signal with duty-cycle
D = 5%, with a maximum of N = 4 pulses per burst during
the sensing interval under the ; hypothesis. The random
interval shown in Fig. 1 was made uniformly distributed in
[0,n — W, — 1] samples, meaning that at least a single entire
pulse is present during the whole sensing interval under Hj.

To consider a scenario of practical significance, nonuni-
form noise variances and nonuniform received powers were
assumed. In each sensing, they were independently drawn from
a uniform distribution such as 0'l.2 ~U [0.050'§Vg, 1.950'§vg]
and p; ~ U[0.05payg, 1.95pave ], respectively.

Figure 2 shows the performance of the Sliding GRCR for
a radar pulse width W, = 30 samples, window size Sy = 30
samples, and window step sizes S = 1 (S, = 2371 sensing
rounds) and S; = W, = 30 (S, = 80 sensing rounds), under
different SNR values, for n = 2400 samples collected by each
SU. The corresponding performances of the original GRCR
(Sw = n, Sy = 1) are also shown. From this figure it can be
readily noticed that the Sliding GRCR outperforms the original
GRCR for any SNR. Notice from (4) that, with Ss = Sy, then
SnSw = n, meaning that the complexity of the Sliding GRCR is
equal to the complexity of the GRCR. In the case of S5 = 1, the
largest performance gain over the original GRCR is attained,
at the expense of a higher computational complexity.

In Figure 3, the SNR is kept fixed at —15 dB, and the
window size Sy is varied, again for m = 5, n = 2400, W, = 30,
D = 5%, N =4, and S = W, = 30. This figure illustrates
that the performance improves as the window size decreases
from Sy = n = 2400 to Sy, = W, = 30. In this case, the
performance is traded against the number of sensing rounds
Sn, but the computational complexity remains unchanged.

Figure 4 is similar to Fig. 3, but now the pulse width
was reduced to W, = 5, which in practice is equivalent to
a reduction in the received signal sampling rate. The other
system parameters are m = 5, n = 400, D = 5%, N = 4,
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Fig. 3. Performances of the Sliding GRCR and the original GRCR (Sy, = n,
Sn = 1) for detecting a radar signal under different values of the window size
Sy, for m =5, n = 2400, W, = 30, D = 5%, N =4, and SNR = —15 dB.
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Fig. 4. Performances of the Sliding GRCR and the original GRCR (Sy, = n,
Sn = 1) for detecting a radar signal under different values of the window size
Sw, for m =5, n = 400, W, =5,D= 5%, N =4, and SNR = —10 dB.

and SNR = —10 dB. One can see that the reduction of the
window size has brought improvements up to Sy, = SW,, = 25.
However, the sensing performance for the case of Sy, = W, = 5
became even worse than the single-round sensing made by
the original GRCR. This behavior is due to the poor sample
covariance matrix estimation when Sy is small, because the
order of Y is m X Sy.

Even when the sampling rate is small, causing the reduction
of the number of samples during the pulse existence, it is still
possible to recover the monotonic performance improvement
of the Sliding GRCR as the window size approaches the pulse
width. Figure 5 exemplifies this situation. The difference from
Fig. 4 is that the number of SUs has been increased from
m =5 to m = 30. Then, if the number of samples obtained
from a radar pulse is small, increasing the number of SUs in
cooperation may reestablish the desired behavior of the sliding
spectrum sensing approach.
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Fig. 5. Performances of the Sliding GRCR and the original GRCR (Sy = n,
Sh = 1) for detecting a radar signal under different values of the window size
Sy, for m =30, n =400, W, =5, D = 5%, N =4, and SNR = -17 dB.

V. CONCLUSION

Exploiting the temporal sparsity of a pulse radar signal, we
presented a novel spectrum sensing technique that combines
intermediate detections from multiple small sliding sensing
windows into a final global decision. Simulation unveiled
that the sliding window approach can provide significant per-
formance improvement over the conventional single-window
spectrum sensing. Moreover, it can be combined with any
spectrum sensing scheme, and is flexible by allowing full con-
trol over the spectrum sensing performance and computational
burden. If the SUs are equipped with multiple antennas, the
Sliding GRCR can be performed in each SU for local decision,
allowing for the implementation of a decision fusion strategy.
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