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The Gini index is a statistical dispersion metric widely used in economic
and social sciences to measure inequalities. In this letter, it is used
to build the novel Gini index detector (GID) for cooperative spectrum
sensing. It is shown that the GID: i) is robust against unequal and
dynamical noise and signal powers; ii) is suited to line-of-sight channels
having mild dominant component; iii) can outperform most of the state-
of-the art robust detectors; iv) has the constant false alarm rate property;
v) is one of the simplest detectors available so far.

Introduction: The cognitive radio (CR) concept promises to alleviate the
problems of congestion and scarcity of the radio-frequency spectrum
inherited by the fixed allocation policy currently adopted in wireless
communication networks [1]. The spectrum sensing [2] is a fundamental
task within the CR framework, allowing for dynamic spectrum access
of CR-enabled secondary users (SUs) to vacant bands in the primary user
(PU) network. Cooperative spectrum sensing (CSS) prevails among other
approaches, due to its ability of mitigating channel fading, shadowing
and the hidden node problems [2]. In centralized data fusion CSS, the
PU signal samples collected by the SUs are sent to a fusion center
(FC), where they are processed to allow for the global decision upon
the spectrum occupancy. Thanks to the cooperation, more reliable global
decisions are attained when compared to local CR decisions.

Among the detection strategies for spectrum sensing, the energy
detection (ED), the matched filter detection (MFD), the cyclostationary
feature detection (CFD) and the eigenvalue-based detection (EVD) [2, 3]
are the most widely known. The MFD and CFD are difficult to implement
in practice, since they depend on PU signal or channel information that
cannot be easily available to the SUs. The ED and the EVD do not need
such information, being classified as blind techniques. However, the ED
and some EVD rely on the noise power information, being prone to the
inaccuracies of noise variance estimates.

The most known EVD schemes are the maximum-minimum
eigenvalue detection (MMED), the maximum eigenvalue detection
(MED), and the ones based on the generalized likelihood ratio test
(GLRT) [3]. Among these, the MED needs the noise variance for
decision, although it is the asymptotically optimum nonparametric
detector under the Neyman-Pearson criterion for the case of a single
unknown signal immersed in Gaussian noise with known variance [3].

The realistic situation in which the noise and received signal powers
may be different among the SUs’ receivers, possibly fluctuation over
time and space, can be referred to as the nonuniform-dynamical noise
and signal. This situation can be significantly detrimental to the spectrum
sensing performance [4], motivating the development of robust detection
strategies. In this letter, a simple and powerful test statistic is developed
to cope with the nonuniform-dynamical noise and signal scenario.

System Model: The m SUs in cooperation collect mn samples (n
samples per SU) of the signal received from s PU transmitters.
The mn samples are sent to the FC, where they are arranged
as Y ∈Cm×n =HX+V, where H∈Cm×s is the channel matrix
with elements hij , i= 1, 2, . . . ,m, j = 1, 2, . . . , s, representing the
channel gains between the j-th PU and the i-th SU. These gains are
constant during the sensing interval, and independent and identically
distributed (i.i.d.) between sensing rounds. In order to model a flat
and slow Ricean fading channel, H=GA, where A∈Cm×s has
elements αij ∼CN [

√
K/(2K + 2), 1−K/(K + 1)] that guarantee

unitary second moment of the fading magnitude, where K is
the Rice factor. The matrix G∈Rm×m =diag(

√
p/pavg), where

p= [p1, p2, . . . , pm]T is the vector with the received signal powers in
each SU, and pavg =

1
m

∑m
i=1 pi is the average received signal power

over all SUs. Each PU transmits with a constant power given by pavg/s.
The matrix X∈Cs×n represents the PU signals; its elements can be
zero-mean i.i.d. complex Gaussian random variables (the PU signals are
white noise) or they are drawn from a zero-mean baseband quaternary
phase-shift keying (QPSK) signal with τ samples per symbol (τ = 1 for
i.i.d. samples; τ = n for n.i.i.d. samples having maximum correlation). In
the case of uniform noise, V ∈Cm×n ∼NC(0, σ2Im), with Im being

the identity matrix of order m. In the nonuniform noise situation, the
elements on the i-th row of V have variance σ2

i , i= 1, . . . ,m. If the
average noise variance is σ2

avg =
1
m

∑m
i=1 σ

2
i , the received signal-to-

noise ratio, in dB, averaged over all SUs, is SNR = 10 log10(pavg/σ2
avg).

Proposed Detector: The Gini coefficient, sometimes referred to as Gini
index or Gini ratio, is a statistical dispersion metric widely used in
economic and social sciences, for example to measure incoming, wealth
or educational inequalities across populations. In one of its mathematical
forms [5, p. 3400], the Gini index G is half of the relative mean absolute
difference, which is the ratio between the mean absolute difference and
the arithmetic mean:G= (

∑N
i=1

∑N
j=1 |xi − xj |)/(2N

∑N
i=1 xi). This

index was originally thought to operate on the values xi obtained from a
frequency distribution. Moreover, G≥ 0.

Here, the Gini index is applied to the received signal sample
covariance matrix (SCM) of order m, R=YY†/n, where † denotes the
Hermitian operation. The discrepancy between the shapes of R when the
PU signals are absent (hypothesis H0) and present (hypothesis H1) is
checked using the inverse of the Gini index adapted to complex entries.
Thus, the proposed Gini index detector (GID) test statistic is

TGID =
2(m2 −m)

∑m2

i=1 |ri|∑m2

i=1

∑m2

j=1 |ri − rj |
, (1)

where ri is the i-th element of the vector r formed by stacking all
columns of R. The constant 2(m2 −m) does not influence the decision,
but conveniently makes TGID = 1 when R= Im, which is the limiting
situation under H0. Thus, TGID tends to increase when R departs from
the identity, yielding the decision rule: decide in favor ofH1 if TGID ≥ ξ,
where ξ is the decision threshold; decideH0 otherwise.

Fig. 1 shows empirical probability density functions (PDFs) of TGID
under H0 and H1, for two noise levels. Besides demonstrating the
capability of TGID for signal detection, Fig. 1 also shows that the GID
has the constant false alarm rate (CFAR) property, since the support of
the PDF underH0 does not change under different noise levels.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 c
ou

nt

TGID

          
      

0

1

2 2
avg

avg

1
0.1

i

ip p

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.0

0.5

1.0

1.5
N

or
m

al
iz

ed
 c

ou
nt

TGID

          
      

0

1

2 2
avg

avg

10
1

i

ip p

Fig. 1 Empirical PDFs of TGID for σ2
i = 1 (left) and σ2

i = 10 (right), for
m= 5, n= 100, SNR =−10 dB, K = 10, and pi = pavg.

Numerical Results: A typical tool for analyzing the spectrum sensing
performance is the receiver operating characteristic (ROC) curve, which
trades the probability of detection Pd and the probability of false alarm
Pfa by varying the decision threshold. These metrics can be concisely
assessed by means of the area under the ROC curve (AUC), which is
adopted hereafter and computed by Monte Carlo simulations.

The state-of-the-art competing detectors chosen for comparisons are
the eigenvalue-based GLRT, the MED, the MMED [3], the arithmetic to
geometric mean (AGM) detector [6], the traditional ED, the Hadamard
ratio (HR) detector [7], the volume-based detector 1 (VD1) [8], and the
Gershgoring radii and centers ratio (GRCR) detector [4]. The first four
detectors were not developed to cope with the nonuniform-dynamical
noise and signal powers, whereas the last four are robust ones. These
competing test statistics are given in Table 1, where λ1 ≥ λ2 ≥ · · · ≥ λm
are the eigenvalues of R, det(R) is the determinant of R, yij are the
elements of Y, rij are the elements of R, and E=diag(d), where
diag(d) is the diagonal matrix whose diagonal is d= [d1, d2, · · · , dm],
with di = ‖R(i, :)‖2, where ‖ · ‖2 is the Euclidian norm.

Table 1: Competing test statistics.
TGLRT = λ1∑m

i=1 λi
TMED = λ1

σ2
avg

TAGM =
1
m

∑m
i=1 λi

(
∏m

i=1 λi)
1
m

THR =
det(R)∏m
i=1 rii

TMMED = λ1
λm

TED =
∑m
i=1

1
σ2
i

∑n
j=1|yij |2

TGRCR =
∑m

i=1

∑
j 6=i|rij |∑m

i=1 rii
TVD1 = log

[
det(E−1R)

]
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In the uniform noise and signal powers situation (Unif. for
short), σ2

i = σ2
avg = 1, and pi = pavg according to the SNR. For

nonuniform-dynamical noise and signal powers (Nunif. for short),
σ2
i ∼U [0.05σ2

avg, 1.95σ
2
avg] and pi ∼U [0.05pavg, 1.95pavg] in each

sensing round. QPSK PU signals with τ = 5 samples per symbol were
adopted for all reported results.

Fig. 2 shows the AUC versus the Rice factor K under Unif. (left)
and Nunif. (right) situations. Notice that the MED, the GLRL, the AGM
and the MMED are not robust, whereas the other ones are. Moreover,
it can be observed the superiority of the GID for K ≥ 2, even beating
the ED and the MED (recall that these detectors need the noise variance
information). The advantage of the GID becomes even more pronounced
when the number of PUs increases, as shown in Fig. 3, where it can be
seen that most of the detectors are also penalized at very low K.
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Fig. 2 AUC versusK under Unif. (left) and Nunif. (right) conditions, for s= 1
QPSK PU signal, m= 10 SUs, n= 50 samples, and SNR =−10 dB.
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Fig. 3 AUC versusK under Unif. (left) and Nunif. (right) conditions, for s= 5
QPSK PU signals, m= 10 SUs, n= 50 samples, and SNR =−10 dB.
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Fig. 4 AUC versus n under Unif. (left) and Nunif. (right) conditions, for s= 5
QPSK PU signals, m= 10 SUs, K = 6, and SNR =−15 dB.

The results in Figs. 4 and 5 are given for s= 5 PUs and Rice factor
K = 6. These figures show the AUC as a function of the number of
samples n and the average SNR, respectively. It can be seen that the GID
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Fig. 5 AUC versus SNR under Unif. (left) and Nunif. (right) conditions, for
s= 5 QPSK PU signals, m= 10 SUs, n= 50 samples, and K = 6.

unveils comparable or superior performances for any SNR or number of
samples. It is slightly outperformed by the ED at SNRs below −15 dB.

Computational Complexity: The GID has roughly the same complexity
of the GRCR, which is O(nm2) [4], owed mainly by the computation
of the SCM. The ED, which is the simplest detector, has complexity
O(nm); the complexities of the GLRT, the MMED, the MED, the AGM,
the HR and the VD1 are aroundO(nm2) +O(m3) [4]. Thus, along with
the GRCR, the GID is the second less complex robust detector available,
to the best of the author’s knowledge.

Conclusion: This letter proposed the Gini index detector for cooperative
spectrum sensing. It was demonstrated that the detector is robust against
nonuniform-dynamical noise and signal powers, is better suited to line-
of-sight channels having mild dominant signal component (although the
need for dominance is relaxed if the number of primary transmitters
increases), can outperform most of the state-of-the art robust detectors
under a variety of system parameters, is blind, has the constant false
alarm rate property, and is one of the simplest detectors available so far.
It is worth mentioning that very similar conclusions were obtained when
considering that the primary signals are white noise. The corresponding
results were omitted for conciseness.
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