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Abstract—In centralized cooperative spectrum sensing (CSS),
cognitive radios (CRs) monitor the spectrum and send the related
data to a fusion center (FC) via a control channel in order
to more efficiently detect possible idle bands for opportunistic
occupation. In practice, such data must be quantized prior to
transmission, which can lead to loss of the global spectrum
sensing performance due to quantization errors. Additionally,
wireless control channel impairments, such as the multipath
fading, further contributes to performance degradation. In many
researches, the control channel is considered error-free. Even
when errors are considered, they usually affect the transmitted
symbols independently, that is, the control channel is assumed to
be memoryless. Error bursts come from the memory effect of the
channel, and are typically found in wireless communications. In
this paper we consider the effects of burst errors in the control
channel as well as the problem of signal distortion caused by three
methods of quantization in centralized CSS with sample fusion.
The Gerschgorin Radii and Centers Ratio (GRCR) detector is
used as the test statistic for spectrum sensing. Our findings
show that: i) the GRCR is robust in the scenarios taken into
consideration, ii) the uniform quantization may be preferred in
some cases when the control channel is considered perfect, iii)
the nonuniform quantization attains better performance under
errors in the control channel, and iv) the effect of memory in the
control channel may produce, in some situations, performance
gains with respect to the memoryless channel, when both have
the same average bit error rate.

Index Terms—spectrum sensing, memoryless channel, memory
channel, Gilbert-Elliott channel, GRCR detector, uniform quan-
tization, nonuniform quantization.

I. INTRODUCTION

THE rapid expansion of telecommunications services is
the primary reason for the current problem of spectrum

scarcity and congestion. However, research shows that several
spectrum bands are in fact underutilized, since the holders of
the exclusive right of use do not do so uninterruptedly and in
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every location. Therefore, there are idle bands that could be
more efficiently used [2].

The above problem shall be aggravated due to the fore-
seen unprecedented large number of transceivers in the fifth
generation (5G) of the wireless communication systems, thus
demanding a new spectrum access policy. In the current policy,
the right to use the spectrum is given by the regulators exclu-
sively to the incumbent licensed user, or primary user (PU),
who is free to use the resource in a certain geographic
region during the contracted period. The new policy, however,
provides for opportunistic access by unlicensed, or secondary
users (SUs). In this case, the occupation can be simultaneous
to the PUs, provided that any interference is maintained
below a pre-established maximum level, or by means of
the identification of idle bands to which the SUs have non-
simultaneous access with the PU. To identify idle bands, a
reliable spectrum sensing [3] task must be performed by the
cognitive radios (CRs) in order to maximize the chance of
correctly detecting spectrum allocation opportunities.

Spectrum sensing and final decision on the occupation state
of the sensed band can be tasks of a single CR, which
is the case in the non-cooperative spectrum sensing model.
However, this option is less reliable when compared with the
cooperative spectrum sensing (CSS), since cooperation refines
the decision by considering data from several CRs that, once in
different geographical locations, overcome problems inherent
to the lack of cooperation, namely: channel shadowing, hidden
terminal and multipath fading [3].

The CSS can be centralized, distributed, or relay-
assisted [3]. In centralized CSS, each CR sends data via a
control channel to the fusion center (FC) where the informa-
tion is combined in order to arrive at the final decision on the
occupation of the sensed band. Two generic types of fusion
are commonly defined: decision fusion and data fusion. In
decision fusion, each CR makes its own decision and sends it
to the FC. In the data fusion model, the data transmitted over
the control channel may be samples of the signal received by
each CR or other quantity derived from these samples. For
example, the fused data can be the eigenvalues of the received
signal sample covariance matrix [4], quantities related to the
power spectral density of the sensed signal [5], or the energy
of the received signal [6].

In both fusion schemes a test statistic is used in a binary
hypothesis test to detect the presence or the absence of the
PU signal. The test statistic is implemented in each CR in
the case of decision fusion, and it is in charge of the FC
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in the case of the data fusion. The FC is always responsible
for making the final decision regardless of the fusion scheme
adopted. As examples of test statistics, we mention those based
on the eigenvalues of the received signal sample covariance
matrix [4]: the generalized likelihood ratio test (GLRT), the
maximum-minimum eigenvalue detection (MMED), some-
times referred to as eigenvalue ratio detection (ERD), the max-
imum eigenvalue detection (MED), also called Roy’s largest
root test (RLRT), and the energy detection (ED), which can
also be generated without the computation of eigenvalues. The
MED test outperforms others in many scenarios. Nevertheless,
because it is semi-blind as the ED, it needs to estimate the
noise power and is sensitive to the uncertainty in the esti-
mation, which is usually referred to as noise uncertainty. The
same happens with the generalized energy detection (GED) [7]
test, which is an evolution of ED.

It should be noted that a sensing technique that is robust
against noise uncertainty may be not robust in scenarios where
the CRs are subjected to distinct noise powers, which is often
referred to as a nonuniform noise situation. Moreover, a robust
technique in nonuniform noise scenarios may not be robust
under the two effects together when noise levels vary over
time, which is known as dynamic noise [8]. As these effects
may be present in practical spectrum sensing scenarios, it is
necessary to develop techniques that can overcome them.

With this in mind, a new detection technique based on the
Gerschgorin circle theorem has recently been proposed. The
technique was called the Gerschgorin radii and centers ratio
(GRCR) detector [8]. Among other advantages, the GRCR
proved to be robust in the simulations involving the practical-
appealing scenarios of nonuniform and dynamic noise. In order
to provide further analysis of the performances of this new
detector in other situations and scenarios, the GRCR is also
adopted in the investigations herein.

A. Related works
Despite the vast literature on CR-based spectrum sensing

techniques, there is still a need to consider more realistic
scenarios from the standpoint of reliably and flexibly assessing
their performances. As an exemplifying initiative, the effect
of dynamic and nonuniform noise on the performance of
centralized CSS with sample fusion was considered in [8].

Another important aspect of the centralized CSS that has
been explored in recent research is the imperfection of the
control channel, which is used to exchange control information
between the CRs and the FC. Many research works consider
this channel perfect, not producing symbol errors in the trans-
mitted data. Moreover, these works do not consider the error
produced by the quantization of the information sent when
the data fusion approach is adopted. Since quantization errors
and symbol errors in the control channel may compromise the
performance of the final decisions on the occupation state of
given band of interest, it is of the utmost importance that these
aspects be taken into account in performance analyzes.

After the publication of [8], the performance of the GRCR
detector has been the subject of a few research, for in-
stance [1], where the errors induced by uniform and nonuni-
form quantizers were investigated under nonuniform noise

across the CRs. The results in [1] show that uniform quan-
tization may be preferred when the number of quantization
bits is greater than 2, because of the lower complexity and
the absence of need for knowing the statistics of the signal to
be quantized. As far as quantization is concerned, an scheme
based on the Kullback-Leibler divergence is proposed in [9]
in order to reduce the amount of data in the control channel.
The scheme is able to maintain a performance similar to that
achieved with infinite resolution (floating-point representation)
with, at best, only 4 quantization bits. The reduction of data
traffic in the control channel is also accounted for in [10].
Similarly to [9] the authors of [10] propose a quantization
strategy with better results than the other four competing
strategies, with the possibility of maintaining the performance
close to that obtained with infinite resolution, but using only 3,
4, 5 and 6 quantization bits. A new nonuniform quantization
method is proposed in [11], attaining a performance close to
that obtained by uniform quantization. The method applies
a variable number of quantization bits, employing higher
resolution to specific signal levels. This procedure causes the
average number of quantization bits to be reduced at the
same time as the performance improves due to nonuniform
quantization.

The importance of reducing the amount of data in the
control channel and the robustness of the test statistic against
the signal distortion due to quantization with low resolution
are the focus of [1], [9]–[11]. However, the bit errors produced
during the transmission to the FC have not been considered,
i.e., the control channel has been considered error-free.

In [12], the bit errors in the control channel are explored
in a centralized CSS with decision fusion and data fusion.
In the case of data fusion, a quantization scheme with only
2 bits per sample was found to be able to outperform the
fusion of decisions in the error-free situation. The research
also highlights the performance limitation imposed by errors
in the control channel to the two fusion schemes. The effect of
these errors are mitigated via an amplify-and-forward method.
In [13], a new fusion method is proposed, which also takes into
account errors in the control channel. Called on/off signaling,
in this scheme CRs report data to the FC only in specific
situations defined according to the adopted combination rule
at the FC. With the new technique it is possible to achieve
performances compatible with those obtained with perfect
channel. In addition, it is still possible to reduce the amount
of data in the control channel relative to the conventional
fusion scheme, while maintaining superior performance. Both
quantization errors and bit errors in the control channel are
considered in [14], where a fusion technique is proposed to
achieve good performance under errors without involving an
increase in the amount of data sent to the FC. The results
are compared with other fusion schemes in terms of detection
performance, amount of information required to perform the
spectrum sensing, sensitivity to parameter estimation and
computational complexity in parameter optimization. In fact,
the technique described in [14] has good performance under
errors in the control channel and its computational complexity
can be considered low in comparison to the other techniques
analyzed.
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In [12]–[14] it is emphasized the importance of considering
errors in the control channel when performance analyzes are
carried out. However, all these references assume that bit errors
are generated by control channels without memory. This means
that there is no possibility of errors occurring in the form of
bursts in the data sent to the FC.

In summary, [1], [9]–[14] consider quantization errors in
some cases, and in others the effects of the quantization errors
are added to the errors produced by the control channel. To the
best of our knowledge, no analysis has been made assuming
burst errors in the information transmitted to the FC. Since this
type of error is common in a wireless mobile channel, it is
important to consider it in performance analyzes of spectrum
sensing schemes. Therefore, in this article, which is an exten-
sion of the research presented in [1], we consider the effects
of burst errors in the control channel and the problem of signal
distortion caused by two nonuniform (nonlinear) quantization
methods and a uniform (linear) one, in the centralized CSS
with sample fusion, applying the GRCR detector as the test
statistic at the FC. Our results show that: i) the GRCR detector
is robust in the scenarios analyzed, ii) the uniform quantization
may be preferred in some cases when the control channel is
assumed to be perfect, iii) the nonuniform quantization attains
better performance under errors in the control channel, and
iv) the effect of memory in the control channel can generate
performance gains with respect to the memoryless channel
(especially with uniform quantization) when both are subjected
to the same average bit error probability.

B. Contributions and structure of the paper
The research reported in [1] analyzes the effect of quan-

tization on the performance of the GRCR detector in cen-
tralized CSS with sample fusion. The samples in each CR
are quantized in three different ways: i) standard uniform
quantization, ii) nonuniform quantization under the maximum
output entropy (MOE) design criterion, and iii) nonuniform
quantization under the minimum mean square error (MMSE)
design criterion. Quantized samples are transmitted to the FC
through an error-free control channel.

This article covers the investigations reported in [1] using
a more detailed approach, and extends them by additionally
assuming an erroneous control channel under two models. One
model has no memory, meaning that the channel produces
independent errors in subsequent bits, which is a character-
istic behavior of an additive white Gaussian noise (AWGN)
channel. The other model has memory, which means that the
channel is capable of producing bit errors that may occur in
bursts. The assumption of memory gives an yet more practical
appeal to the research, since the memory effect is typical in
mobile wireless channels due to multipath fading.

Burst errors are produced by the well-known discrete-time
Gilbert-Elliott channel (GEC) model, whose parameters are
calculated in a simple way that is consistent with the physical
behavior of a mobile wireless channel. When no memory
is assumed, a discrete-time binary symmetric channel (BSC)
model is used instead.

The results reported herein show that nonuniform quanti-
zation attains better performances under errors in the control

channel, and that the memory effect of the channel can even
bring performance gains in some cases. The performance
achieved with the MOE quantizer is the best under errors in
the control channel. The opposite is verified with the error-free
channel, a case in which the MMSE quantizer outperforms the
others.

In summary, the main contributions of this article are:
1) the analysis of the GRCR detector performance un-

der uniform and nonuniform quantization errors in the
samples sent to the FC, via error-free control channel,
considering different numbers of quantization bits. Part
of this analysis is reported in [1];

2) the analysis of the GRCR detector performance under
uniform and nonuniform quantization errors affecting
the digitized samples sent to the FC, via erroneous
control channel, with and without memory, with a fixed
number of quantization bits. This contribution is in
addition to those in [1];

3) the proposition, as a byproduct, of a simple model-
ing process to determine the parameters of the GEC
model, guaranteeing that a mobile wireless channel is
adequately mimicked.

The remainder of this article is organized as follows: in
Section II, the system model and the GRCR detector are
described. Section III describes the uniform and nonuniform
quantization processes. Section IV is devoted to control chan-
nel models. The numerical results are presented and discussed
in Section V. Finally, the conclusions are drawn in Section VI.

II. SYSTEM MODEL AND THE GRCR DETECTOR

A. System model

The action of sensing and deciding on the occupation state
of a given frequency band can be modeled mathematically as
a binary hypothesis test described by [15]

y(t) =



hx(t) + v(t) for H1,

v(t) for H0,

where y(t) represents the continuous-time received signal,
v(t) denotes the Gaussian noise, x(t) represents the signal
transmitted by the primary user, h represents the gain of the
sensing channel between the primary transmitter and a given
receiver, which is usually assumed flat and slow in the context
of spectrum sensing, and H0 and H1 denote, respectively, the
hypotheses of absence and presence of the primary signal in
the sensed band.

The performance of the spectrum sensing can be measured
by the probability of detection Pd = Pr{decision = H1 |H1},
and the probability of false alarm Pfa = Pr{decision = H1 |H0}.
The probability of detection is the probability of a decision
in favor of the presence of the PU signal when it is indeed
present. The probability of false alarm is the probability of a
decision in favor of the presence of the PU signal when it is in
fact absent. In centralized data fusion CSS schemes, it follows
that Pfa = Pr{T > γ |H0} and Pd = Pr{T > γ |H1}, where T
denotes the test statistic used by the FC (the GRCR in the
present work), and γ is the decision threshold. Performances
can be analyzed graphically to facilitate interpretation, by
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means receiver operating characteristic (ROC) curves. A ROC
curve gives Pfa versus Pd as they vary by the influence of the
variation of the decision threshold γ.

Under the discrete-time signal model, N complex samples
of the signal received by the m-th CR, m = 1, 2, . . . , M , form
the vector ym ∈ CN×1 given by

ym =
hmx + vm
σvm

, (1)

where the scalars hm ∼ CN (0, 1) denote the zero-mean
complex Gaussian gains of the channels between the primary
transmitter and m-th CR, modeling a flat and slow Rayleigh
fading that is constant during the sensing interval and in-
dependent and identically distributed (i.i.d.) across different
sensing rounds and CRs. The sensing channel power gains
are normalized to 1, that is, E{|hm |2} = 1, where E{·} is
the mathematical expectation operator and |·| is the absolute
value of the argument. Still referring to (1), x ∈ CN×1

represents the signal transmitted by the PU, and is formed
by i.i.d. zero-mean complex Gaussian samples with variance
σ2

x . This assumption of a Gaussian-distributed PU signal has
little impact on the performance of the GRCR detector [8].
Zero mean i.i.d. complex Gaussian samples with variance σ2

vm
form the noise vector vm ∈ CN×1, which is associated to the
thermal noise at the input of the m-th CR. Notice that the
CRs may be impaired with different noise variances, which
characterizes the already-mentioned nonuniform noise model.

It can be noticed in (1) that the noise standard deviation σvm

is used to normalize the received signal samples in each CR.
We highlight that this is not meant to indicate that this quantity
must be explicitly known by each CR in practice. The division
by σvm is a simple alternative to model the action of an
automatic gain control (AGC), which is commonly present in
any receiver, preceding the analog-to-digital conversion. This
action can be understood by recalling that the noise variance
is approximately equal to the received signal power in the
low signal-to-noise ratio (SNR) regime, which is common in
the spectrum sensing scenario [16]. Hence, the division by
σvm makes the variance of ym approximately equal to 1,
additionally equating the dynamic ranges (in terms of variance)
of the samples to be quantized by all CRs.

From all {ym }, firstly assuming no distortion due to quan-
tization and no control channel errors, the received signal
sample matrix Y ∈ CM×N is formed at the FC as

Y =
[
y1y2 · · · yM

]T
, (2)

in which the symbol T stands for the transpose operation.
From Y, the FC computes the sample covariance matrix

R ∈ CM×M ,
R = YY†/N, (3)

in which the symbol † represents the Hermitian (complex
conjugate and transpose) operation. Finally, from R the FC
computes the GRCR test statistic, as described in the next
subsection, and makes a final decision upon the occupation
state of the sensed band.

When bit errors, quantization errors or both are introduced,
the real and imaginary samples in ym , as defined in (1),

are separately quantized with b bits and digitized before
transmission to the FC. Hereafter we denote any quantized
variable with a superscript containing the number of quanti-
zation bits between parenthesis. For instance, the unquantized
ym becomes the quantized y(b)

m , and so on.

B. The GRCR detector

The Gerschgorin circles theorem [17, p.82] states that the
M eigenvalues λ of a symmetric matrix of order M × M are
located in the union of M circles (or disks), such that |λ−rii | ≤∑

j,i |ri j |, where ri j is the element in the i-th row and j-th
column of the matrix. In other words, the theorem dictates that
the locations of the eigenvalues in the complex plane are inside
the region limited by the union of the Gerschgorin circles.

In [8], it was found that the ratio between the sum of the
radii and the sum of the centers of the Gerschgorin circles
with respect to the sample covariance matrix has different
behaviors under the hypotheses H0 and H1. Figure 1 shows
the Gerschgorin circles and the corresponding centers derived
from a sample covariance matrix R computed in a CSS
scenario containing M = 5 CRs, each collecting N = 500,
Figure 1(a), and N = 1500, Figure 1(b), complex samples
of the received signal under an average SNR of −10 dB. In
this case the centers of the circles are always located on the
positive part of the real axis, since any covariance matrix is
positive semi-definite.

6 8 10 12 14 16
−5

−3

−1

1

3

5
H0

Im
ag

in
ar

y
ax

is

6 8 10 12 14 16
−5

−3

−1

1

3

5
H0

6 8 10 12 14 16
−5

−3

−1

1

3

5

Ri

Ci

H1

Real axis

(a) N = 500

Im
ag

in
ar

y
ax

is

6 8 10 12 14 16
−5

−3

−1

1

3

5

Ri

Ci

H1

Real axis

(b) N = 1500

Fig. 1: Gerschgorin circles under H0 and H1, for a sample covariance matrix
R obtained from M = 5, SNR of −10 dB, N = 500 (a) and N = 1500 (b).
The marks × are the centers of the circles. This figure is better viewed in
color.

Figures 1(a) and 1(b) were both obtained under hypotheses
H0 and H1, for N = 500 and N = 1500, respectively. It can
be seen that, for any of these N values, in fact the results
have distinct behaviors across the hypotheses. It can also be
noted that the distinct behavior across both hypotheses is more
pronounced with the larger N . This behavior enables the use of
the theorem as test statistic for the detection of the PU signal
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in the context of spectrum sensing. Thus, the test statistic of
the GRCR detector is given by the ratio between the sum of
the radii and the sum of the centers of the Gerschgorin circles
of the sample covariance matrix R, that is,

TGRCR =

∑M
i=1 Ri∑M
i=1 Ci

, (4)

where Ri =
∑

j,i |ri j | is the radius and Ci = rii is the center of
the i-th Gerschgorin circle, for i, j = 1, 2, . . . , M . If TGRCR > γ,
the decision at the FC is made in favor of the presence of the
primary signal. Otherwise, if TGRCR < γ, the PU signal is
assumed absent in the sensed band.

As quoted above, in practice the samples in ym must be
quantized as part of the digitization prior to transmission.
Therefore, it is inevitable that some level of signal distortion
will occur as a function of the number of quantization bits of
the analog-to-digital converter. When a b-bit quantization is
applied, the test statistic of the GRCR detector, given in (4),
is denoted by T (b)

GRCR.

III. QUANTIZATION METHODS

A. Uniform quantization
Figure 2 shows a hypothetical uniform quantization process

with NQ = 2b quantization levels. Signal statistics at its input,
such as the probability density function (PDF) and the cumu-
lative distribution function (CDF), are in this case completely
ignored in the quantization process, and the signal is treated
as if it was evenly distributed across its dynamic range.

y

Input signal distribution

r1

n1

z1
r2

n2

z2
...
zu−2

ru−1

nu−1

zu−1

ru

nu

zu
ru+1

nu+1

zu+1
...

zNQ−1

rNQ

nNQ

Fig. 2: Hypothetical uniform quantization process.

The quantizer has NQ output levels {n1, n2, . . . , nNQ }, NQ−1
quantization thresholds {z1, z2, . . . , zNQ−1} equally spaced and
NQ quantization regions, defined as

ru =



(ξ, zu
]
, u = 1,

[zu−1, zu] , 2 ≤ u ≤ NQ − 1,
[zu−1,+∞) , u = NQ.

(5)

In (5) ξ = 0 exclusively in the quantization of the maximum
value in ym , whereas ξ = −∞ in the quantization of the
samples in ym .

Considering the signed uniform quantizer described in [18],
the u-th output level is nu = −2b− f −1+ (u−1)2− f . The variable
f indicates the number of bits assigned to the fractional part
of nu . Consequently, b − f is the number of bits assigned to
the integer part of nu . If f = 0, all bits are used to quantize the
integer part of nu . On the other hand, if f = b, all bits are used
to quantize the fractional part of nu . Note that the quantization
levels are not symmetric due to the inclusion of the zero as a
possible output value, that is, nNQ/2+1 = 0. Therefore |n1 | >
nNQ . The u-th quantization threshold is given by

zu = (nu + nu+1) /2, 1 ≤ u < NQ. (6)

In the quantization strategy adopted here, the samples in
ym are normalized by ymmax , which is the quantized maximum
absolute value (real or imaginary) across the samples of ym .
Consequently, the result is the vector yn

m = ym/y(bmax)
mmax , where

bmax indicates the number of bits used to quantize ymmax .
Using this approach, it is guaranteed that {−1 / yn

m / 1}
due to the quantization of ymmax before normalization. Note
that we would have yn

m strictly limited to ±1 if ymmax were
not quantized before the normalization of ym .

Since ymmax > 0, its quantization has to be unsigned. Hence,
for the uniform quantization of ymmax , the u-th output level is
nu = (u − 1)2− f .

The last process before quantizing the received signal
samples is to weight yn

m by nNQ = 2− f (2b−1 − 1), yielding
ynw
m = 2− f (2b−1 − 1)yn

m , which makes the dynamic range of
the signal at the quantizer input to be {−2− f (2b−1−1) / ynw

m /
2− f (2b−1 − 1)}. Thus, as happens in practice, it is possible to
control the chances of having samples of the signal outside
the dynamic range of the quantizer by controlling bmax.

After the quantization of ynw
m with b bits, ynw(b)

m and y(bmax)
mmax

are sent to the FC through the control channel. At the FC,
the quantized and possibly corrupted samples are retrieved
according to the operation

y(b)
m =

y(bmax)
mmax

2− f (2b−1 − 1)
ynw(b)

m . (7)

Subsequently, the matrix Y(b) of quantized samples are
formed from all y(b)

m , analogously to (2), the sample covariance
matrix R(b) is computed from Y(b) , analogously to (3), and the
GRCR test statistic T (b)

GRCR is formed from R(b) , analogously
to (4). The final decision upon the occupation of the sensed
band is then made by comparing T (b)

GRCR with the decision
threshold γ.

B. Nonuniform quantization

This quantization, to be efficient, requires knowledge of the
signal statistics at the quantizer input. According to (1), the
samples collected by the CRs prior to the quantization process
have a Gaussian distribution with zero mean. Thus, in light
of (1), underH0 the PDF and the CDF of the real or imaginary
samples to be quantized are respectively given by

f (y |H0) = e−y
2
/
√
π, (8)

F (y |H0) =
∫ y

−∞
f (y |H0)dy = 1 − 1

2 erfc (y) , (9)

being erfc(x) = 2√
π

∫∞
x e−t2

dt the complementary error func-
tion. The variable y denotes any real or imaginary sample
collected by the m-th CR; indexes were dropped for notational
simplicity.

Also in light of (1), under H1 the samples collected by the
CRs prior to quantization have a conditioned (on hm) Gaussian
distribution with zero mean. Thus, it follows that

f (y |H1) =
e−y

2σ2
vm /(σ2

x+σ
2
vm )√

π(σ2
x + σ

2
vm )/σ2

vm

, (10)
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F (y |H1) = 1 − 1
2

erfc
*..
,

yσvm√
σ2

x + σ
2
vm

+//
-
. (11)

Figure 3 shows a hypothetical example of a nonuniform
quantization process with NQ = 2b quantization levels. The
levels are no longer equally spaced, as they are now dependent
of the PDF of the input signal. Each level is defined as the
center of mass of the PDF in each quantization region, ru , as
described by (5), with ξ = −∞, that is,

nu =

∫
ru

y f (y)dy∫
ru

f (y)dy
(12)

where the integral
∫
ru

y f (y)dy corresponds to the expected
value of y in the u-th quantization region ru , being f (y) =
PH0 f (y |H0) + PH1 f (y |H1) and PH0 e PH1 the probabilities
related to PU activity.
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Fig. 3: Hypothetical nonuniform quantization process.

1) Maximum output entropy (MOE) quantizer: The MOE
quantizer seeks for quantization thresholds zu , 1 ≤ u < NQ,
such that the entropy of the output levels is maximized [19].
This is achieved if

∫
ru

f (y)dy = 1/NQ in each quantization
region ru . As a consequence, each output level will have
probability pu = Pr{nu } = 1/NQ, and the output entropy
becomes H = −∑

u pu log2(pu ) = b bits.
The quantization thresholds can be obtained by the inverse

CDF of the input signal, i.e.,

zu = F−1
(

u
NQ

)
, (13)

where F (zu ) = Pr{y ≤ zu } =
∫ zu
−∞ f (y)dy = u/NQ and F (y) =

PH0 F (y |H0) + PH1 F (y |H1). Subsequently, the output levels
of the quantizer are obtained via (12).

2) Minimum mean square error (MMSE) quantizer: In this
quantizer, the Lloyd-Max iterative algorithm is used to find
the best values of nu so that the MMSE between the input
signal y and its quantized version nu is minimized [20]. Since
the calculation of nu in (12) requires the knowledge of zu as
given by (6), and the calculation of zu requires the knowledge
of nu , initial values for nu are arbitrarily chosen so that the
first calculations of zu are performed. Afterwards, the algo-
rithm recursively calculates new quantization thresholds and
output levels until convergence is achieved. Mathematically,
the Lloyd-Max algorithm finds the values of nu and zu by
solving the unconstrained optimization problem

minimize
NQ∑
u=1

∫
ru

(y − nu )2 f (y)dy, (14)

being nu and zu the optimization variables. The stopping
criterion of the algorithm is based on a maximum target

distortion value. If the mean square error is greater than the
desired maximum distortion value, new values are calculated
for nu and zu .

IV. CONTROL CHANNEL MODELS

Since the decisions made by the FC upon the occupation
state of the sensed band can be affected by errors introduced
by the control channel, such errors must be modeled for simu-
lations of analyses. In this section we describe the two models
adopted herein, namely: the binary symmetric channel (BSC)
without memory, and the Gilbert-Elliott channel (GEC). The
former produces independent bit errors, whereas the latter may
produce errors in bursts due to the memory effect of the
channel. Subsection IV-A and the Subsection IV-B describe
the two models, respectively.

A. Binary symmetric channel (BSC)

Figure 4 illustrates the binary symmetric channel model
without memory with error (crossover) probability Pe. Thus,
the probability of a correctly received bit is 1 − Pe.

0 0

1 1

1−Pe

Pe

Pe

1−Pe

Input Output

Fig. 4: Memoryless binary symmetric channel (BSC) model.

The BSC model is called binary because the input alphabet
is binary. It is said to be symmetric in that a bit ‘0’ in its
input can be turned into a bit ‘1’ in its output with the same
probability that a bit ‘1’ can be turned into a bit ‘0’. The errors
produced in a given bit is independent of the occurrence or not
of an error in the previous bit, which means that the channel
has no memory.

The transition matrix of the BSC model is given by

P =
[
p(y0 |x0) p(y1 |x0)
p(y0 |x1) p(y0 |x1)

]
=

[
1 − Pe Pe

Pe 1 − Pe

]
, (15)

where p(y0 |x0) is the conditional probability of receiving a bit
‘0’ given that a bit ‘0’ was transmitted; the other probabilities
are defined analogously.

Figure 5 illustrates the temporal distribution of error events
in the BSC and the GEC model during an interval correspond-
ing to 1000 bits. Figure 5(a) depicts the BSC error events,
whereas Figure 5(b) and Figure 5(c) refer to the GEC for the
average burst lengths L = 5 and L = 200 bits, respectively. It
can be noticed the evenly-distributed error events in the BSC
model, and the burst of errors in the GEC model, with the size
of the burst increasing with the increase of L.

It is informative to mention that a burst is not necessarily
formed by consecutive errors during an entire deep fading.
A burst is usually defined as having gaps in-between smaller
groups of errors, which is consistent with the physical behavior
of the channel: during a deep fading the instantaneous SNR
drops drastically, meaning that during this interval the AWGN
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dominates the error events, making them independent, but with
higher probability of having groups of consecutive errors.

If the transmissions to the FC apply binary phase-shift
keying (BPSK) modulation over a flat (not frequency-selective
fading) and slow (approximately constant fading withing a
symbol interval) Rayleigh channel, the average probability of
bit error is [21]

Pe =
1
2
*
,
1 −

√
Γ

1 + Γ
+
-
, (16)

where Γ = E[α2]Eb/N0 is the average SNR per bit, and where
α is the fading envelope, E[α2] is the average power gain of
the channel, Eb is the average energy per bit, and and N0 is
the unilateral power spectral density of the AWGN.
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Fig. 5: Temporal error distribution for the BSC (a), and the GEC with different
average burst lengths: L = 2 bits (b), and L = 200 bits (c).

B. Gilbert-Elliott channel (GEC)

Figure 6 illustrates the GEC. The model has two states: the
good state, which is represented by the letter G, and the bad
state, which is represented by the letter B. When in the good
state the probability of bit error is given by PG; when in the
bad state, this probability is denoted by PB.

The GEC model is an extension of Gilbert’s work [22]. In
the original Gilbert channel model, errors are only produced in
the bad state, that is, PG = 0. Thus, in spite of causing errors in
bursts, the original model is not flexible in terms of simulations
based on physical parameters of an actual wireless channel.
Elliott [23] extended the work of Gilbert by allowing errors in
both states and possibly with different probabilities. In both
Gilbert and Elliott’s works, each channel state is defined as an
independent BSC model, each with the corresponding error
probability (see Figure 6), and with PB � PG. With PB � PG

the chance of having more bits in error in state B is greater
than in state G, resulting in errors that occur in bursts.

In the model depicted by Figure 6, PGG is the probability of
remaining in state G and PBB the probability of remaining in
state B. The transitions between states occur with probability
PGB from the good to the bad state, and with probability PBG
from the bad to the good state. Hence, the transition matrix
of GEC model is

P =
[
PGG PGB
PBG PBB

]
=

[
PGG 1 − PGG

1 − PBB PBB

]
. (17)

The steady-state probabilities of being in the good and in the
bad states are given by πG = (1 − PBB)/(1 − PBB + 1 − PGG)
and πB = (1 − PGG)/(1 − PBB + 1 − PGG), respectively, and
the average bit error probability is calculated generically
as [24], [25]

Pe = PGπG + PBπB =
PG(1 − PBB) + PB(1 − PGG)

1 − PBB + 1 − PGG
. (18)

In terms of modeling, the transition probabilities of the GEC
are also computed for a given average bit error probability Pe,
which is also determined from (16) if the control channel is a
flat and slow Rayleigh fading channel.

In practice, the length of the burst errors, which is associated
to the channel memory depth, is a function of the time over
which the received signal remains under fading. Figure 7
helps to understand the memory effect of the channel and
the state transitions in the GEC model. Figure 7(a) shows
the instantaneous envelope of the signal received by a mobile
terminal, and a reference threshold ρ that defines the states
good and bad shown in Figure 7(b). During the time over
which the signal level remains below the threshold, the error
probability increases. Therefore, the longer this time, the
greater the average burst error length L.
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PBG
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1 1

1−PG

PG
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Input Output
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1 1

1−PB

PB

PB

1−PB

Input Output

Fig. 6: Gilbert-Elliott channel (GEC) model with memory.

1) Parameterization of the GEC model: The right choice
of the GEC model parameters guarantees that the burst error
distribution correctly mimics a real mobile wireless control
channel. On the other hand, a wrong parameterization not
only disconnects the model to the actual channel behavior, but
also may lead to inconsistent entries in the channel transition
matrix [24], [26]. In order to overcome such problems, firstly
some GEC model parameters were estimated by means of
a continuous-time waveform channel simulation that takes
into account the key physical parameters that influence the
statistical behavior of the actual channel [27]. Then, these
estimates were used to compute the remaining GEC model
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TABLE I: Key parameters influencing the statistical behavior of the Gilbert-
Elliott channel model.

Gilbert-Elliott channel (GEC) model parameters

Carrier frequency fc
Mobile speed v

Symbol rate Rs

Light speed c = 3 × 108 m/s
Symbol duration T = 1/Rs

Maximum Doppler shift Dmax = v fc/c

Reference threshold ρ

Average fading duration τ = (eρ2 − 1)/(ρDmax
√

2π)
Average number of symbols in τ K = τ/T

Average burst length L

parameters in an easy and generic way. The main physical
parameters that are related to the statistical behavior of a real
mobile wireless fading channel are listed in Table I.

Recalling that the aim of this article is to assess the
performance of the GRCR detector when the control channel
is subjected to quantization and burst errors, it becomes clear
that, at least, different quantization methods and different
channel memory depths should be considered. The different
quantization methods are those already described in Sec-
tion III. The different channel memory depths can be achieved
by simply setting different average burst lengths L. However, it
is possible to produce a given L by choosing channels having
different combinations of the other parameters given in Table I.
In other words, a given L can be achieved for many different
sets of the parameters listed in Table I. Thus, the objective of
developing a rule for the GEC model parameterization is that
of making it simpler and independent, to a certain extent, of
the choice of the waveform physical channel parameters.
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Fig. 7: Reference threshold and instantaneous received signal envelope at a
mobile terminal (a), and the states defined according to the threshold (b).

In Table I, K = τ/T measures the average number of
symbols possibly affected during a deep fading; the actual
number of affected symbols will depend on the fading statistics
itself, and on the AWGN level. However, as K increases,
clearly L also increases. Therefore, to simplify matters we
make L = K . Moreover, since the purpose of the present

modeling is to implement computer simulations, we normalize
the symbol rate, that is, Rs = 1 symbol/s, which is a common
practice. Hence, the average burst length becomes L = τ = K .
Thus, it suffices that τ be varied so that the burst errors have
the desired average length.

With a given L = τ and ρ, the maximum Doppler shift
is calculated through Dmax = (eρ

2 − 1)/(ρτ
√

2π). The input
of the above-mentioned continuous-time channel simulation
are the average SNR per bit, Dmax, and ρ = 1/

√
2. The

estimated parameters are PG and PB. The above value of ρ
was chosen due to the fact that it corresponds to the maximum
level crossing rate of the fading envelope, which improves the
estimation of the probabilities PG and PB for a give simulation
execution time. These probabilities are obviously influenced
by the SNR, but are also influenced by Dmax, since a higher
Doppler shift means a faster channel fading and, thus, a shorter
average fading duration. This shorter fading duration reduces
the probability of the channel be in the bad state, which in
turn changes PB and, consequently, PG.

The probability of staying in the bad state, PBB, can be cal-
culated from the average burst error length [28]. Specifically,

PBB = 1 − 1
L
. (19)

From this probability, it follows that PBG = 1− PBB can be
determined.

The probability of permanence in the good state, PGG, is
derived by means of (18), that is,

PGG =
PB − PG(PBB − 1) + Pe(PBB − 2)

PB − Pe
, (20)

and from (17) PGB = 1 − PGG. Since PBB = 1 − 1/L, as given
in (20), the expression for PGG can be written as

PGG = 1 +
PG − Pe

L(PB − Pe)
. (21)

V. NUMERICAL RESULTS

Computer simulations were carried out using the MATLAB®

software, aiming at assessing the performance of the GRCR
detector when the control channel is subjected to quantization
and burst errors. The performance was analyzed through
ROC curves, as well as each corresponding area under the
curve (AUC). The AUCs are particularly useful to make
it clear any performance difference depicted by close apart
ROC curves. Each point on a ROC curve was generated
from 150000 Monte Carlo events. In addition, all graphs also
contain ideal ROCs, which correspond to the ideal error-free
control channel, without quantization distortion (floating-point
operation). These curves are identified with the word ‘raw’ in
the graphs.

The CSS scenario consists of a single PU transmitter and
M = 9 CRs. In each sensing period, each CR collects N =
75 or N = 150 complex samples of the received signal and
sends them to the FC via the control channel. The PU signal
was transmitted at unit power and the powers of the signal
received by the CRs were set so that the average SNRs were
configured from −12 dB to −8 dB in steps of 0.5 dB, yielding
an SNR of −10 dB when averaged over all CRs. The primary
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TABLE II: Transition matrices as a function of L.

Γ = 6 dB, Pe = 5.3 × 10−2 and ρ = 1/
√

2
L PGG PGB PBG PBB PG PB

2 0.499562 0.500438 0.500000 0.500000 0.024060 0.081912
50 0.987027 0.012973 0.020000 0.980000 0.004170 0.128278
600 0.998918 0.001082 0.001667 0.998333 0.004135 0.128274
1200 0.999465 0.000535 0.000833 0.999167 0.004022 0.129248
2400 0.999716 0.000284 0.000417 0.999583 0.004174 0.124598
4800 0.999874 0.000125 0.000208 0.999792 0.004473 0.133520

user activity was modeled as a Bernouli random variable, with
50% in the idle state for false alarm counts, and 50% in the
active state for detection counts. Such values correspond to
PH0 = PH1 = 0.5, which were chosen in order to represent the
largest uncertainty about the occupancy of the sensed band. It
is important to highlight that, if PH0 , PH1 , 0.5, there would
be no change in terms of the probability of false alarm, Pfa,
and the probability of detection, Pd, since the statistical power
of the detector is not influenced by the PU activity.

The quantization of the samples sent to the FC was made
with b bits. When the uniform quantization was adopted, the
number of bits assigned to the fractional part of the quantizer
output level nu was set to f = b, since {−1 / yn

m / 1}. The
number of bits used to quantize the maximum value (real or
imaginary) in ym was set to bmax = 3, with f = 1, since
ymmax > 0. In cases where the erroneous control channel is
assumed, the average SNR per bit was set to Γ = 6 dB. Thus,
the average bit error probability, Pe, given by (16), was kept
the same for the BSC and the GEC models.

A. Results for the error-free control channel

In the case of a perfect control channel, the uniform and
the nonuniform quantization methods were implemented with
b = 4, 3 and 2 bits. Figure 8(a) was generated with b = 4
quantization bits. Note that with N = 75 or N = 150 samples
collected by each CR in each sensing period, the different
quantization schemes have practically the same performances,
which are also close to the ROCs for the unquantized and
error-free transmissions (raw data). This fact reveals that the
GRCR detector has sufficient statistical power to operate
without high losses even with low analog-to-digital resolu-
tion applied to the signal transmitted to the FC. Moreover,
since the quantizers have almost the same performances, it is
emphasized that the uniform quantization is more attractive
in this case due to the lower implementation complexity (not
needing to know any statistics of the signal at the quantizer
input).

In Figure 8(b), which considers b = 3 quantization bits,
it can be observed that the performances of the quantization
schemes are slightly different from each other, and that the
sensitivity of the GRCR detector to the quantization resolution
starts to become noticeable when compared to Figure 8(a) and
to the ideal (raw) ROC. With N = 75 samples, such differences
are slightly larger (see the corresponding AUCs if necessary).
From a practical standpoint, however, any of the quantization
processes can be adopted when b = 3, with advantage of the
uniform quantizer in terms of complexity, if its slightly lower
performance can be considered satisfying.

With b = 2 bits of resolution, it can be noticed from
Figure 8(c) that all quantization methods yield performance
losses with respect to the raw ROC, but the uniform quantizer
produces the higher performance penalty. The influence of N
can again be noticed, with the difference between the raw ROC
and the ROCs under quantization being larger with N = 75
samples. Additionally, it can be concluded that with only
b = 2 bits the nonuniform quantization strategies can yield
performances not too far from the one achieved with raw data,
with a slight advantage of the quantizer developed under the
MMSE criterion over the one developed under the MOE rule.

In terms of overall performance ratings, with b < 4
quantization bits the results with the MMSE quantizer were
the best, followed by the results with the MOE and the uniform
quantizers. With b = 4, all quantization methods attains
roughly the same performances, meaning that the uniform
quantizer is preferred due to its lower complexity.

The above conclusions are maintained if the system parame-
ters are changed, as can be inferred from [1], where a different
set of parameters were adopted and the same conclusions have
been drawn.

B. Results for the erroneous control channel

In the remaining results of this section, quantization was
performed with b = 4 quantization bits, since in this case the
performances obtained with the three quantizers are practically
the same, and also approximately equal to the performance
obtained under the error-free and without quantization trans-
missions, independent of the different distortion level imposed
by each quantizer. Moreover, the number of complex signal
samples collect by each CR was fixed in N = 150.

For the simulations with the GEC model, the average burst
error lengths L were varied taking as reference the total
number of bits sent to the FC by each CR in each sensing
round. This number is 2bN+bmax = 2×4×150+3 = 1203 bits,
in the uniform quantization, whereas 2bN = 2×4×150 = 1200
bits, in the nonuniform quantization, where the multiplication
by 2 is a consequence of applying separate quantization
processes for the real and imaginary sample values. Thus,
in order to asses the CSS performance with average burst
lengths very far below, far below, below, around, above and far
above the number of bits transmitted by each CR per sensing
round, L was made equal to 2, 50, 600, 1200, 2400 and 4800
bits. These values of L were produced by simply varying the
configuration of the Doppler shift in the simulation [27]. For
each L, a transition matrix P for the GEC model, as defined
in (17), has been computed according to Section IV-B1. The
probabilities of the resulting matrices are listed in Table II
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according to the value of L, for Γ = 6 dB, Pe = 5.3 × 10−2

and ρ = 1/
√

2. The table also gives PG and PB for each L.
Independent GEC models were applied to the transmissions
performed by each of the M = 9 CRs.
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Fig. 8: ROC curves for the error-free control channel with uniform and
nonuniform quantization, with b = 4 (a), b = 3 (b) and b = 2 (c) bits,
and with N = 75 and N = 150 samples.

Figure 9 presents the results for the erroneous control

channel with the BSC and the GEC models for different
values of L. Curves for the error-free channel (EFC) and no
quantization (raw data), as well as curves for the EFC with
b = 4 quantization bits were added for comparison purposes.

Figure 9(a) considers L = 2, which yields approximately
the same error statistics as the BSC model. Indeed, the
performances obtained with the GEC and the BSC models are
practically equal to one another for each of the three quantizers
(uniform, nonuniform under MOE rule, and nonuniform under
MMSE rule), which is an expected outcome.

In all graphs of Figure 9 it can be seen that the performance
achieved with all quantizers in the error-free channel closely
approximates the raw data performance, in which the channel
is error-free and applies no quantization (floating-point oper-
ation), a result already reported in Figure 8(a).

The graphs (b) to (f) in Figure 9 show that the performances
obtained with the nonuniform quantizer designed under the
MMSE rule improves slightly as L increases, the same happen-
ing, but more noticeably, with the uniform quantizer. This can
be inferred by observing the corresponding ROCs departing
from the ones considering the BSC model. Thus, it can be
concluded that in some cases the effect of memory in the
control channel can even produce performance gains to the
centralized CSS with the GRCR detector. It remains an open
problem to justify this behavior, since it is not clear how
the memory depth relates to the effects of the quantization
errors. The performances obtained with the nonuniform MOE
quantizer have shown that it is immune to the channel memory
depth.

In general, errors produced in the control channel can
significantly affect the performances of the GRCR detector,
especially if uniform quantization is adopted. However, the
detector is capable of offering attractive performances con-
sidering the high average bit error probability of the control
channel, which is Pe = 5.3 × 10−2 for Γ = 6 dB.

The performances with the MOE quantizer proved to be the
most robust under errors in the control channel. In addition to
this advantage, it is emphasized that the MOE quantizer has
a smaller implementation complexity, fewer operations and,
consequently, less processing time than the MMSE. In terms
of implementation complexity, the uniform quantizer is the
best, but the performances have been the most sensitive to the
control channel errors.

VI. CONCLUSIONS

This paper considered a centralized cooperative spectrum
sensing with sample fusion, exploring the performance of the
recently proposed Gerschgorin radii and centers ratio (GRCR)
detector, under independent and burst errors in the control
channel transmissions, as well as under the effect of different
signal quantization methods and resolutions.

Under the error-free control channel, the GRCR proved to
be quite robust to signal distortion due to quantization. In
addition, it has been demonstrated that uniform quantization
may be preferred when the number of bits is greater than b = 2
due to the attractive performance results and the unneeded
statistics of the input signal. With b = 2, the performance
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suffers great losses if the uniform quantization is adopted; the
nonuniform quantizers yielded quite superior performances in
this case.

It has been shown that quantization errors and an erroneous
control channel can significantly affect the CSS performance
in comparison to the cases in which the error-free control
channel with infinite resolution (floating-point operation) is
considered. It has been also observed that, in some cases,
the memory effect of the GEC model can bring performance
gains as the memory depth increases. The nonlinear quantizer
developed under the MOE rule showed better performances in
the erroneous control channel, followed by the MMSE-based
nonlinear quantizer, and by the uniform quantizer.
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