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Performance of Eigenvalue-Based Spectrum Sensing
with Approximate Eigenvalue Estimation Methods
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Abstract—This article presents a performance and computa-
tional run-time analysis of cooperative spectrum sensing tech-
niques based on the eigenvalues of the received signal sam-
ple covariance matrix, under three methods for approximate
eigenvalue estimation: the Cholesky iterations algorithm, the
Gershgorin theorem with transformed covariance matrix, and
the conventional Gershgorin theorem. Widely used eigenvalue-
based test statistics are addressed: the generalized likelihood
ratio test, the ratio between the maximum and the minimum
eigenvalues, and the Roy’s largest root test. Simulation results
show that the first two eigenvalue estimation methods can
yield comparable performances, whereas the latter may operate
satisfactorily only in situations of high signal-to-noise ratios.
It is also demonstrated that the test statistics are not equally
sensitive to eigenvalue estimation errors. The Cholesky iterations
algorithm is attractive in terms of run-time and performance for
all spectrum sensing techniques, while the simple Gershgoring
method may be attractive for the Roy’s largest root test.

Index Terms—Cognitive Radio, Cooperative Spectrum Sensing,
Eigenvalue Estimation.

I. INTRODUCTION

The current fixed radio-frequency allocation policy for
wireless communications, combined with the high growth in
the number of different systems and the demand for new
telecommunications services, culminated in the congestion and
scarcity of the radio-frequency spectrum. However, some stud-
ies have shown that, actually, there is a high underutilization of
the frequency bands already allocated to the primary networks
(those that own a paid license to operate in such bands) [1].
In this context, the cognitive radio (CR) technology [2] has
been considered as a promising solution to the problem
of congestion and spectrum scarcity, bringing, among other
benefits, the possibility of a shared use of spectrum between
secondary networks (those having no paid license) and the
primary ones.

Among the various functionalities of a CR, it is the spectrum
sensing [3], [4] that allows for the detection of vacant bands,
also called spectrum holes or whitespaces. Spectrum sensing
can be performed by a single CR, or by multiple CRs in a
cooperative basis. The cooperative spectrum sensing (CSS)
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has the advantage of providing high reliability to the primary
signal detection process, thanks to the spatial diversity gain
produced by the CRs localized in different geographic posi-
tions. As a consequence, multipath fading, shadowing and the
hidden terminal problem can be efficiently mitigated [3].

The CSS can be distributed or centralized. In the first
approach, the information about the state of the sensed band is
exchanged among the CRs in cooperation, and the global deci-
sion is made according to the cooperation rule, for example by
means of consensus. In centralized CSS, the CRs’ decisions,
the received signal samples or some quantity derived from
these samples are sent via low-bandwidth control channels
to a central element of the secondary network, called fusion
center (FC), where the global decision about the occupation
state of the sensed band is made. When the CRs’ decisions
are the spectrum sensing information transmitted to the FC,
a decision-fusion centralized CSS takes place. If the received
samples or other related data are the information transmitted
to the FC, we have a data-fusion centralized CSS.

Many spectrum sensing techniques have already been de-
veloped, for instance the energy detection, the matched fil-
ter detection, the cyclostationary feature detection and the
eigenvalue-based detection [3]–[5]. Among these techniques,
a great interest has been directed to the eigenvalue-based CSS.
In this CSS technique, the test statistics are based on the
eigenvalues of the received signal covariance matrix.

The main advantages of eigenvalue-based detection are the
high statistical power and the needlessness of knowledge of
the sensed signal characteristics. In some eigenvalue-based
strategies, the thermal noise power at the receiver is not needed
as well [6], meaning that such strategies are considered blind.

The most known eigenvalue-based detection test statis-
tics are the generalized likelihood ratio test (GLRT), the
maximum-minimum eigenvalue detection (MMED), also
known as eigenvalue ratio detection (ERD), and the maximum
eigenvalue detection (MED), also known as Roy’s largest
root test (RLRT) [6], [7]. These test statistics are typically
computed at the FC, under the data-fusion centralized CSS
approach.

The GLRT and the MMED do not need knowledge about
the primary signal characteristics and about the noise that
impairs the sensed signal; therefore, they are blind. The MED
is considered semi-blind since it does not need to know the
primary signal characteristics, but it needs the thermal noise
variance information to form the test statistic.
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A. Motivation

In any eigenvalue-based detection technique, it is reasonable
to believe that the spectrum sensing performance are influ-
enced by the accuracy of the eigenvalue estimates. However,
the literature always considers perfect eigenvalue estimates
when reporting results on the performance of such techniques.
To the best of the authors’ knowledge, no publication has
focused on proposing approximate solution methods for com-
puting eigenvalues in the context of spectrum sensing. Conse-
quently, no analysis of the influence of eigenvalue estimation
errors on the performance of eigenvalue-based spectrum sens-
ing, when it is implemented from different test statistics, has
been reported so far. It is added to this context the fact that the
computational complexity of traditional numerical methods for
eigenvalue computation is high, motivating the search for sim-
pler ones that, additionally, deliver just the enough precision
to reach target spectrum sensing performances. Hence, it is of
relevant importance to address these research gaps.

B. Contributions and Structure of the Article

Aiming at filling the above-mentioned gaps, this paper
presents a performance analysis of the eigenvalue-based co-
operative spectrum sensing under the GLRT, the MMED and
the MED test statistics, applying three methods of approximate
eigenvalue estimation: the Cholesky iterations algorithm, the
Gershgorin theorem with transformed covariance matrix, and
the conventional Gershgorin theorem. The performance results
achieved with these techniques are compared with those ob-
tained with an almost exact eigenvalue computation using the
Matlab eig function1, which makes use of well-established,
reliable and numerically stable methods. A computational run-
time measurement of each method is also provided, establish-
ing a basis for choosing the one that yields the best trade-off
between performance and computational burden.

The analysis reported herein can be used for choosing and
implementing eigenvalue-based spectrum sensing techniques
in real hardware, since it provides the basic building blocks
of suitable algorithms for solving the eigenvalue problem in a
way that is appropriately fitted to the spectrum sensing context.

The remainder of the paper is organized as follows: Sec-
tion II presents the system model and the test statistics
chosen for analysis, and formulates the problem to be tackled.
The approximate eigenvalue estimation methods are described
in Section III. Section IV is devoted to the numerical results
and interpretations. The conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

The spectrum sensing process can be seen as a binary
hypothesis test for which are defined the null hypothesis H0

(primary transmitter disabled) and the alternative hypothesis
H1 (primary transmitter enabled). The spectrum sensing per-
formance is commonly measured by means of the probability

1The Matlab eig function also makes use of iterative computation methods
and, thus, it is not exact by definition. Nonetheless, its accuracy in terms of
numerical Linear Algebra is high, allowing it to be considered a very precise
solution in the context of eigenvalue-based spectrum sensing. Thus, hereafter
the results provided by the Matlab eig function are referred to as exact ones.

of detection, Pd = Pr{T > γ|H1}, and the probability of
false alarm, Pfa = Pr{T > γ|H0}, where Pr{·} denotes the
probability of the underlying event, T is the test statistic
associated to the detection technique (GLRT, MMED and
MED in this paper) and γ is the decision threshold. Pd is the
probability of making a global decision in favor of the presence
of the primary signal in the sensed band, given that the band
is indeed occupied. Pfa is the probability of deciding in favor
of the presence of the primary signal given that, in fact, the
sensed band is vacant. A high Pd is desirable to reduce the
interference caused by the secondary network in the primary
network due to missed detections. On the other hand, Pfa
needs to be small for more opportunistic transmissions in the
secondary network. However, if Pd is increased, so does Pfa.

These conflicting probabilities are typically expressed by
means of a ROC (receiver operating characteristic) curve,
which establishes a trade-off between them as the decision
threshold is varied. A performance metric that is also often
used is the area under the ROC curve, the AUC. The worst
performance corresponds to a ROC curve with Pd = Pfa,
which yields AUC = 0.5. In this case it is said that the
operating points are on the no-discrimination line. The best
performance corresponds to a ROC curve passing through the
points Pd = 1 and Pfa = 0, yielding AUC = 1. Thus, the AUC
of a given detector lies in between 0.5 and 1.

A. Eigenvalue-based Cooperative Spectrum Sensing Model

Assume that there are m sensors (CRs) or one sensor with
m antennas, each one collecting n samples of the received
signal from p primary transmitters during a given sensing
interval. These samples are transmitted to the FC, where they
are arranged in the matrix Y ∈ Cm×n, which, under the
hypotheses H0 and H1, is given by

Y =

{
V : H0

HX + V : H1

, (1)

where the matrix X ∈ Cp×n contains the samples of the
transmitted signals, assumed to be zero-mean unit-variance
Gaussian random variables that represent the envelope fluctua-
tions of typical digital-modulated and filtered signals [6]. The
matrix V ∈ Cm×n contains the samples of the additive white
Gaussian noise (AWGN) with zero mean and variance σ2. The
channel matrix H ∈ Cm×n is formed elements {hij} that rep-
resent the channel gains between the j-th primary transmitter
and the i-th CR, for j = 1, 2, . . . , p, and i = 1, 2, . . . ,m.
These elements can be complex random variables to model
time-varying fading channels, or can be constants to represent
pure AWGN channels.

Without loss of generality, the average power gain of the
channel is assumed to be unitary, that is, E{h2

ij} = 1, where E
is the expectation operator. Hence, the average signal-to-noise
ratio (SNR) over all CRs is simply SNR = 1/σ2.

In data-fusion eigenvalue-based spectrum sensing [5], [6],
the spectrum holes are detected by means of test statistics
formed from the eigenvalues of the received signal sample
covariance matrix, which is computed at the FC as

RY = 1
nYY† , (2)
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where † denotes the conjugate transpose operation. Matrix RY
is Hermitian positive definite [8] and has a real main diagonal,
meaning that all its eigenvalues are positive and real2.

Subsequently to the computation of RY, its ordered eigen-
values {λ1 ≥ λ1 ≥ · · · ≥ λm} are estimated by the FC and
the test statistics GLRT, MMED and MED are respectively
calculated according to [6]

TGLRT =
λ1

1
m

∑m
i=1 λi

, (3)

TMMED =
λ1

λm
, (4)

TMED =
λ1

σ2
. (5)

Notice that, as already mentioned, the GLRT and the
MMED are completely blind, whereas the MED is semi-blind
due to the need of the noise variance information.

B. Problem Description

From (3), (4) and (5), it is clear that the computation of
the eigenvalue-based test statistics in practice subsumes the
use of sufficiently accurate estimates of the eigenvalues of
the sample covariance matrix RY defined in (2). From the
Linear Algebra theory, these eigenvalues are the roots of the
characteristic equation [10]

det(RY − λI) = 0 , (6)

where det(·) is the determinant of the underlying matrix and
I is the identity matrix of order m. Although Equation (6)
has great importance in theoretical analysis, it is not used to
compute the eigenvalues of a matrix in practice [11]. Efficient
numerical methods are commonly used instead, which are part
of the broad family of eigenvalue problem solution algorithms.
All these algorithms are iterative in nature, and what is sought
in their implementations is a high convergence rate coupled
with accurate eigenvalue (and eigenvector) estimates [11].

For Hermitian matrices, which is the case of RY, algorithms
that are mostly used are the QR algorithm (for matrices
with order m ≤ 25) [12], and the Lanczos algorithm (for
moderated-to-high values of m, less than a few thousands)
[11], [13]. The Jacobi algorithm is another well-known alter-
native; it has been considered in microchip implementations
[14] in the context of eigenvalue-based spectrum sensing [15].

In terms of computational tools, it is worth mentioning
the EISPACK routine and its successor LAPACK [16], both
present in the eig and other Matlab functions, in which the
QR algorithm is embedded, along with other ones specific
to each function and to the particular structure of the input
matrix. These and other related routines have been considered
standard when dealing with numerical methods for solving
the eigenvalue problem [11]. In this paper, the eigenvalues
estimated by the Matlab eig function (see footnote 1) are used

2A Hermitian matrix A of order m × m is a complex square matrix
that is equal to its own conjugate transpose, i.e. A = A†. A Hermitian
matrix A is positive definite if the scalar z†Az is strictly positive for every
non-zero vector z of dimension m. A positive definite matrix has positive
eigenvalues [9, Appendix C].

as a benchmark for evaluating the accuracy of other methods,
which are described in the next section.

III. APPROXIMATE EIGENVALUE ESTIMATION METHODS

It is noteworthy that the implementation of any of the
widespread algorithms discussed in the literature for esti-
mating the eigenvalues of RY will produce accurate enough
outcomes, such that the spectrum sensing performance degra-
dation resultant from any residual estimation errors (from
the point of view of numerical Linear Algebra) will be
practically insignificant. In this section we describe methods
for approximate computation of the eigenvalues of RY, aiming
at a reduced computational burden with respect to the more
accurate ones. Subsequently, in Section IV, the impact of
the approximations on the probabilities of detection and false
alarm of the GLRT, the MMED and the MED are assessed.

A. Cholesky Iterations

The Cholesky iterations method [17] for Hermitian matrices
is presented in Algorithm 1, where diag(J) returns a vector
formed by the elements of the main diagonal of J, and chol(J)
denotes the Cholesky decomposition (or Cholesky factoriza-
tion) [10] of J. The Cholesky decomposition of a positive
definite Hermitian matrix is given by the product between a
lower triangular3 matrix L and its conjugate transpose. In the
Algorithm 1, it means that J = LL†.

Algorithm 1 - Cholesky Iterations Algorithm
Require: Define the number of iterations K
Require: Set matrix J = RY
1: for k = 1, . . . ,K do
2: Compute L = chol(J)
3: Update J according to J← LL†

4: end for
5: The estimated eigenvalues are λ̂ = diag(J)

The operation chol(J) returns the matrix L, and in this
paper it has been computed by the Matlab function chol. This
function assumes that J is a positive definite matrix with real
main diagonal, as is the case of RY. However, due to numerical
rounding errors it is possible that the main diagonal of RY
have almost-zero imaginary residual values that can hinder
the use the chol function. To solve this potential problem
it is suggested eliminating the residues using the command
J = J - diag(diag(J))+real(diag(diag(J)))
in the Matlab, soon after the matrix J is created in
Algorithm 1.

It is informative to mention that the Cholesky iterations
algorithm can produce very accurate eigenvalue estimates if
the number of iterations K is large enough. Thus, here K
is made the control variable that will determine the trade-
off between the computational burden and the degree of
accuracy of the method for comparisons with the built-in
Matlab function eig.

3A square matrix is called lower triangular if the entries above the main
diagonal are zero.
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B. Conventional Gershgorin Theorem
In the Gershgorin (sometimes appearing as “Gersgorin” and

“Gerschgorin” in the literature) theorem method, here denoted
as conventional Gershgorin method, the received signal co-
variance matrix directly provides the information needed to
estimate the eigenvalues, without any further processing.

Let rij denote the element on the i-th row and j-th column
of RY, for i, j = 1, 2, . . . ,m. Define the sum of the absolute
values of the off-diagonal elements in the i-th row of RY
as Ri =

∑
j 6=i |rij |. Define D(rii, Ri) as disks centralized

in rii with radius Ri, which are named Gershgorin disks (or
Gershgorin circles). The Gershgorin circles theorem [12, p. 82]
states that the eigenvalues of RY are located in the union of the
disks D(rii, Ri) in the complex plane. Therefore, the values
of rii can be interpreted as the eigenvalue estimates of RY,
which will be located on the positive side of the real axis due
to the fact that RY is positive definite. The accuracy of the
i-th eigenvalue estimate is associated with the corresponding
radius Ri. This means that the lower the absolute values of
the off-diagonal elements of RY, the more accurate are the
eigenvalue estimates.

C. Gershgorin Theorem with Transformed Matrix
Due to possibly large radius of the Gershgorin disks and

very close apart centers, the conventional Gershgorin method
may produce rather inaccurate eigenvalue estimates. The Ger-
shgorin method with transformed covariance matrix comes as
an improvement. It applies a unitary transformation to RY,
which maintains its eigenvalues, but reduces the radii of the
Gershgorin discs and, consequently, improves the accuracy of
the eigenvalue estimates [18].

Briefly, in the transformation process of the covariance
matrix, RY is firstly partitioned according to

RY =


r11 r12 · · · r1m

r21 r22 · · · r2m

...
...

. . .
...

rm1 rm2 · · · rmm

 =

[
R1 r
r† rmm

]
, (7)

where R1 is the main sub-matrix of RY, of order
(m− 1)× (m− 1), obtained by removing the last row and
the last column of RY. The vector r, of length (m − 1), is
the last column of RY without the last element rmm. The
sub-matrix R1 can be factorized according to

R1 = U1D1U
†
1 , (8)

where U1 is a unitary matrix of order (m − 1) × (m − 1),
composed of the eigenvectors of R1, and D1 is a diagonal
matrix with the same order, whose main diagonal is formed
by the eigenvalues of R1.

From U1, the unitary transformation matrix is constructed
according to

U =

[
U1 0
0T 1

]
, (9)

where 0 is the all-zero vector of length (m− 1). Finally, the
transformed covariance matrix is given by

S = U†RYU =

[
D1 U†1r
r†U1 rmm

]
, (10)

which in expanded form is given by

S =


λ̂1 0 · · · ρ1

0 λ̂2 · · · ρ2

...
...

. . .
...

ρ∗1 ρ∗2 · · · λ̂m

 . (11)

According to the Gershgorin theorem, the elements on the
main diagonal of S are the estimated eigenvalues of RY.
Notice that most of the off-diagonal elements of S are zero,
meaning that the Gershgorin radii {Ri} are simply the absolute
values of {ρi}. The Gershgorin radius Rm is the sum of the
absolute values of all ρi for i = 1, . . .m− 1.

From the standpoint of practical implementation of the
Gershgorin method with transformed covariance matrix, it is
not necessary to perform all the calculations given in ex-
pressions (7)-(11) to estimate the eigenvalues of RY. Instead,
notice that the first (m − 1) elements of the main diagonal
of S are the eigenvalues of R1 and the last element of this
diagonal is the element rmm of the covariance matrix RY. The
eigenvalues of R1 can be estimated using any method that, in
this case, will process a smaller matrix, since the order of R1

is (m− 1)× (m− 1).

IV. NUMERICAL RESULTS

In this section, the performances of the GLRT, the MMED
and the MED are assessed, under the effect of approximation
errors produced by the eigenvalue estimation methods just
described. Computational run-time measurements are also
presented for these methods, as well as a trade-off analysis
between performance and the accuracy in estimating the
eigenvalues for cooperative spectrum sensing purposes.

A. Performance Analysis

Each point on the ROC curves presented hereafter was gen-
erated from 50,000 Monte Carlo events. The transmitted signal
samples expressed by the elements of X and the elements hij
of the channel matrix H were simulated as complex Gaussian
random variables with zero mean and unitary variance. The
elements hij were kept constant during the sensing interval,
and independently generated across successive intervals. This
type of channel model represents a flat and slow Rayleigh
fading with unitary power gain. When a pure AWGN channel
is considered, hij = 1 for all i and j. The noise samples
in V were simulated by means of complex Gaussian random
variables with zero mean and variance σ2 = 1/10SNR/10, with
the SNR expressed in dB.

Figures 1, 2 and 3 present ROC curves for the MED, the
GLRT and the MMED, respectively, under different methods
of eigenvalue estimation. The systemic parameters were set
to p = 1 primary transmitter, m = 6 CRs in cooperation,
n = 50 samples collected by each CR, signal-to-noise ratio
SNR = −10 dB for the pure AWGN channel, SNR = −6 dB
for the Rayleigh channel, and K = 16 iterations in the
Cholesky algorithm. This number of iterations was chosen
because it has been found sufficient to practically match the
spectrum sensing performance achieved when the eigenvalues
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are estimated exactly (under the inherent numerical preci-
sion) by the Matlab function eig. In these figures, the term
Matlab eig is used to denote the use of the Matlab function
eig; the term Gershgorin denotes the conventional Gershgorin
method; and Gershgorin T denotes the Gershgorin method
with transformed covariance matrix, applying the Cholesky
iterations method for the estimation of the eigenvalues of R1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of false alarm, P
fa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n,

 P
d

SNR = -10 dB
AWGN channel
MED

Matlab eig
Cholesky
Gershgorin T
Gershgorin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of false alarm, P
fa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n,

 P
d

SNR = -6 dB
Rayleigh channel
MED

Matlab eig
Cholesky
Gershgorin T
Gershgorin

Fig. 1. Performance of the MED for p = 1, m = 6, n = 50 and K = 16
iterations in the Cholesky algorithm: AWGN channel @ SNR = −10 dB
(top), Rayleigh channel @ SNR = −6 dB (bottom).

A first observation that can be made regarding Figures 1, 2
and 3, either when the Rayleigh or the AWGN sensing channel
is concerned, refers to the performance rank of the analyzed
sensing techniques, with the MED in the best position, the
GLRT in the second and the MMED in the third, for the eigen-
value estimation methods using the Matlab eig function, the
Cholesky iterations and the Gershgorin with transformed co-
variance matrix; this classification is consistent with the results
reported in [6]. However, when the conventional Gershgorin
method was applied, the MED achieved the best rank position,
and the GLRT and the MMED exhibited approximately the

same performance, with a slight, but practically negligible
advantage of the MMED (except when the GLRT and the
MMED performances are on the no-discrimination line, which
corresponds to Pd = Pfa). The performance ranking is best
identified by means of the areas under the ROC curves listed
in Table I, where the values in boldface are the smallest for
each method.
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Fig. 2. Performance of the GLRT for p = 1, m = 6, n = 50 and K = 16
iterations in the Cholesky algorithm: AWGN channel @ SNR = −10 dB
(top), Rayleigh channel @ SNR = −6 dB (bottom).

In the specific case of the AWGN sensing channel, the
results shown in the graphs on the upper part of Figures 1,
2 and 3, when the Matlab eig function is used, are in close
agreement with the corresponding ones in [6, Figure 1], a fact
that can be used to certify the simulations used to generate
the results presented in this section.

One should be aware that the SNRs applied to the AWGN
and the Rayleigh fading channel are different from each other;
the remaining system parameters are the same. If the SNRs
were equal to one another, all performances regarding the
AWGN channel would overcome the respective ones in the
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Rayleigh channel situation, as expected.

TABLE I
AREAS UNDER THE ROC CURVES SHOWN IN FIGURES 1, 2 AND 3. THE

VALUES IN BOLDFACE ARE THE SMALLEST FOR EACH METHOD.

Eigenvalue estimation method
Detector / channel Matlab eig Cholesky Gershgorin T Gershgorin
MED / AWGN 0.9180 0.9133 0.8843 0.7835
GLRT / AWGN 0.8126 0.8097 0.7483 0.5000
MMED / AWGN 0.7537 0.7518 0.7184 0.5000
MED / Rayleigh 0.9884 0.9877 0.9807 0.9638
GLRT / Rayleigh 0.9721 0.9705 0.9366 0.7949
MMED / Rayleigh 0.9493 0.9478 0.9268 0.8052

From Figures 1, 2 and 3 it can be also noticed that the
conventional Gershgorin method, which is very simple, does
not provide performances as good as the ones attained by
the other methods. Nonetheless, when the MED detector is
applied and the target4 ROC lies around or above the pair
(Pfa = 0.1, Pd = 0.9), the performance achieved with
conventional Gershgorin method stays not too far from the
best ones. This can be observed in the graph on the bottom of
Figure 1. It has been observed via other results (not presented
here for conciseness) that the same behavior applies to the
AWGN sensing channel. This is credited to the use of a
single eigenvalue in the MED test statistic, which makes it
less sensitive to eigenvalue estimation errors. An evidence
that supports this argument is the similar performances of
the GLRT and the MMED when the conventional Gershgorin
method is applied (recall that the GLRT operates on m
eigenvalues, whereas the MMED operates on two). Hence,
it can be concluded that the conventional Gershgorin method
can be considered attractive when the MED is applied to meet
standard performance metrics, like those regulated by the IEEE
802.22 standard [19].

Still referring to Figures 1, 2 and 3, it can be seen that
the eigenvalue estimation via the Gershgorin theorem with
transformed covariance matrix is quite attractive, since it
provides performances very close to those obtained with exact
estimation. However, this method requires the decomposition
of R1 given in Equation (8), whose complexity may be smaller
than the corresponding operation with RY because the order
of R1 is (m− 1)× (m− 1) and the order of RY is m×m.
Instead, referring to the end of Section III-C, one could think
of using an approximate method to compute the eigenvalues of
R1, for instance the Cholesky iterations, aiming at a reduced
complexity at the cost of less accurate (but perhaps accurate
enough) estimates. These comments are further explored in
the following subsection.

B. Run-time Comparison

The effectiveness of an algorithm is commonly measured
by the computational complexity of its solution, aiming at
unveiling the asymptotic processing time growth as a function
of the size of vector or matrix variables operated by such

4The IEEE 802.22, which is the first released standard regarding the CR
technology [19], regulates that the spectrum sensing of TV signals must
comply with Pfa ≤ 0.1 and Pd ≥ 0.9. If the ROC passes through the points
(Pfa = 0.1, Pd = 0.9), the associated AUC is around 0.96; the exact AUC
depends on the specific shape of the ROC.
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Fig. 3. Performance of the MMED for p = 1, m = 6, n = 50 and K = 16
iterations in the Cholesky algorithm: AWGN channel @ SNR = −10 dB
(bottom), Rayleigh channel @ SNR = −6 dB (bottom).

algorithm. This processing time depends on the number of
floating point operations (FLOPs) that must be performed to
come up with the results.

The theoretical analysis of the computational complexity of
an algorithm can be simple, such as the QR and the Cholesky
decomposition [12], but the actual computational processing
time will depend on the choice of the programming language,
the hardware and software platforms that will execute the
algorithm, the values and particularities of the parameters and
variables operated, and the implementation structure of the
algorithm itself.

Instead of a theoretical complexity analysis, computation
run-time measurements are provided herein. The eigenvalue
estimation methods were implemented via the Matlab soft-
ware, which has been considered the standard tool for testing
algorithms [11]. The tic and toc Matlab functions were
used to measure the run-times. In order to reduce the effects
of randomness, an average of 100,000 run-times of each
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eigenvalue estimation method was computed, one for each
random realization of the covariance matrix RY, under the
hypotheses H0 and H1, for each value of m. Aiming at
measuring the run-times associated only to the execution of the
estimation methods, the tic command was placed just after
the generation of RY, and the toc command was placed just
after the estimated eigenvalues were sorted to subsequently
be used in (3), (4) or (5). The run-time of each method was
measured with the other methods disabled, with the computer
making no other task and disconnected from any network. The
measurements were made using an HP computer with an Intel
Core i7-7700 CPU @ 3.6 GHz, 16 GBytes RAM, running the
Matlab R2018a 64-bits, under the Windows 10 Professional.

For the system parameters, it has been chosen p = 1 primary
transmitter, n = 50 samples per CR, SNR = −6 dB over
the Rayleigh sensing channel, and K = 16 iterations in the
Cholesky algorithm. The number m of CRs in cooperation5,
which is the order of the sample covariance matrix RY defined
in (2), was varied from 3 to 42 in steps of 3.

Since the absolute processing times depend on the computer
hardware, run-times normalized with respect to the maximum
are reported. The reference was taken as the run-time spent by
the QR algorithm, which is, as already mentioned, one of the
most used approaches for eigenvalue estimation. Its structure
is presented in the Algorithm 2. This algorithm attains the
same numerical precision of the Cholesky iterations, with half
of the iterations [21]. In the Algorithm 2, the Matlab function
qr has been used to compute the QR decomposition of the
matrix J, that is, qr(J) returns the matrices Q and R such
that J = QR, where Q is an orthogonal matrix and R is an
upper triangular matrix [10].

The results are shown in Figure 4, from where it can be
seen that the processing time spent by the QR algorithm was
the highest, in spite of being configured with half (K = 8) of
the number of iterations of the Cholesky iterations method
(K = 16). This result is consistent with the fact that the
theoretical computational complexity of the QR decomposition
embedded in the QR algorithm is larger than the Cholesky de-
composition embedded in the Cholesky iterations method [12].

Algorithm 2 - QR Algorithm
Require: Define the number of iterations K
Require: Set matrix J = RY
1: for k = 1, . . . ,K do
2: Do the QR decomposition of J, obtaining Q and R.
3: Update J according to J← QR
4: end for
5: The estimated eigenvalues are λ̂ = diag(J)

The Cholesky iterations method exhibited approximately the
same run-time of the Gershgorin method with transformed
matrix. It could be expected a higher run-time of the Cholesky
iterations method at lower values of m, since it operates

5The upper limit m = 42 for the number of CRs in cooperation has been
considered enough for the purpose at hand, since in practice it is expected that
this number shall not be large. In fact, m should be as small as possible to
save energy in the secondary network, and avoid the increase of the bandwidth
of the control channel used to convey the spectrum sensing information to the
fusion center [20]. Moreover, the cooperation gain acts in a diminishing-return
fashion, meaning that small improvements are achieved with large m.

RY of order m, whereas the Cholesky iterations used in the
Gershgorin method with transformed matrix operates R1 of
order (m−1). The disadvantage of Cholesky iterations would
be reduced with an increase in m, since m and (m − 1)
get close to each other. However, after RY is generated, the
additional step of extracting R1 from RY is implemented in
the Gershgorin method with transformed matrix, penalizing its
processing time and approximating the run-times of the two
methods.
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Fig. 4. Normalized run-times of the eigenvalue estimation methods.

It can also be observed from Figure 4 that the run-time
of the conventional Gershgorin method increases in a very
small pace as m is increased, owed to the single operation of
sorting the elements of the main diagonal of RY. However, one
must recall that the performance of this method may be not
attractive, except in situations of high SNR or in the specific
case of the MED at high performance regions of the ROC
curve (revisit the graph on the bottom of Figure 1).

It is worth noting that the number of iterations in the
Algorithm 1 (K = 16) and in the Algorithm 2 (K = 8) were
chosen as those sufficient to approximate the spectrum sensing
performances provided by these algorithms to the one achieved
with the exact estimation of the eigenvalues. Higher numbers
of iterations increase the processing time of both, which also
happens with the Gershgorin method with transformed matrix
when implemented using the Cholesky iterations algorithm to
estimate the eigenvalues of R1.

C. Performance versus Eigenvalue Estimation Errors

At this point, it becomes relevant to establish accuracy
metrics of the eigenvalues estimated through the approximate
solution methods with respect to the exact one, coupling such
metrics with the spectrum sensing performances.

If λi is the i-th exact eigenvalue computed by the Matlab
eig function, and λ̂i is the corresponding approximate eigen-
value estimate, the i-th relative error between λi and λ̂i can
be defined as

εi =
|λi − λ̂i|
|λi|

. (12)
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Tables II and III present the average relative errors, ε̄, and
the corresponding standard deviations, σε̄, computed from sets
of eigenvalue estimates made by the three methods considered
herein, assuming, as before, p = 1 primary transmitter, m = 6
CRs, n = 50 samples, SNR = −6 dB for the Rayleigh
channel, and K = 16 iterations in the Cholesky algorithm.
Each set with m = 6 eigenvalues was obtained from 50,000
simulation runs in which the covariance matrix RY was gener-
ated under the hypotheses H0 (Table II) and H1 (Table III). In
these tables, Cholesky denotes the Cholesky iterations method,
Gershgorin refers to the conventional Gershgorin method, and
Gershgorin T denotes the Gershgorin method with transformed
covariance matrix, in which the Cholesky iterations method
was also applied with K = 16 iterations.

TABLE II
AVERAGE RELATIVE ERRORS, ε̄, AND THEIR STANDARD DEVIATIONS, σε̄ ,

FOR EIGENVALUE ESTIMATES UNDER THE H0 HYPOTHESIS.

Cholesky Gershgorin Gershgorin T
ε̄ σε̄ ε̄ σε̄ ε̄ σε̄

λ1 0.0187 0.0214 0.2306 0.0565 0.0676 0.0476
λ2 0.0244 0.0243 0.1390 0.0537 0.0606 0.0457
λ3 0.0263 0.0258 0.0553 0.0401 0.0533 0.0433
λ4 0.0269 0.0270 0.1127 0.0731 0.0763 0.0638
λ5 0.0247 0.0267 0.2828 0.1083 0.1069 0.0840
λ6 0.0178 0.0257 0.5234 0.1780 0.1177 0.0979

TABLE III
AVERAGE RELATIVE ERRORS, ε̄, AND THEIR STANDARD DEVIATIONS, σε̄ ,

FOR EIGENVALUE ESTIMATES UNDER THE H1 HYPOTHESIS.

Cholesky Gershgorin Gershgorin T
ε̄ σε̄ ε̄ σε̄ ε̄ σε̄

λ1 0.0027 0.0102 0.3603 0.0873 0.0972 0.0796
λ2 0.0185 0.0228 0.1098 0.0931 0.0892 0.1025
λ3 0.0236 0.0245 0.1255 0.1097 0.0798 0.0752
λ4 0.0251 0.0262 0.2397 0.1328 0.1014 0.0850
λ5 0.0235 0.0264 0.4102 0.1600 0.1180 0.0936
λ6 0.0171 0.0257 0.6494 0.2312 0.1240 0.1032

Tables II and III show that the average relative errors
associated to the Cholesky iterations method are mostly around
≈ 0.02, or 2%. Since such method is able to yield practically
the same performance achieved with the exact eigenvalues, it
is concluded that estimation errors of up to 2% are not enough
to affect the performances of the eigenvalue-based spectrum
sensing techniques considered herein.

In the case of the Gershgorin method with transformed
matrix, errors of ≈ 5% to 11% were obtained, but these values
were not enough to produce a large performance variation with
respect to the case in which the estimates are exact.

The conventional Gershgorin method did not achieve satis-
factory performance, which is justified by the high estimation
errors shown in Tables II and III, with values of ≈ 5% to 60%.
It is interesting to notice that, under the hypothesis H1, the
estimation of the maximum eigenvalue, λ1, by the Cholesky
iterations method has produced an average error smaller than
≈ 0.3%, meaning that if the Cholesky iterations method is
coupled with the MED detector, a smaller number of iterations
can be used, reducing the computational run-time.

V. CONCLUSIONS

This paper carried out a performance analysis of cooperative
spectrum sensing techniques based on the eigenvalues of the
received signal sample covariance matrix, subjected to eigen-
value estimation errors. Three different estimation methods
were investigated: i) the Cholesky iterations algorithm, ii)
the Gershgorin theorem with transformed covariance matrix,
and iii) the conventional Gershgorin theorem. Three widely
known eigenvalue-based test statistics were analyzed: i) the
generalized likelihood ratio test (GLRT), ii) the maximum-
minimum eigenvalue detector (MMED), and iii) the maximum
eigenvalue detector (MED). Simulation results have demon-
strated that the Cholesky iterations and the Gershgorin theorem
with transformed covariance matrix can provide satisfactory
performances, while the conventional Gershgorin method is
attractive only in situations of high signal-to-noise ratios, and
when applied to the MED in high performance situations.

An analysis of computational run-time has been also pre-
sented, unveiling that the Cholesky iterations method is more
attractive, because it is faster than the traditional QR algorithm
and its accuracy is sufficiently enough to, with a few iterations,
achieve a spectrum sensing performance almost identical to
that obtained with the exact estimation of the eigenvalues. The
Gershgorin method with transformed matrix has also shown
to be attractive, because the performance penalty caused by
its inherent inaccuracy is not high. In addition, the implemen-
tation complexity of the Gershgorin method with transformed
matrix can be smaller than the one yielded by the Cholesky
iterations method, since the factorization that is part of the
former operates a matrix with a reduced-order with respect
to that operated by the Cholesky iterations. However, this
advantage only occurs when the order of the covariance matrix
(which corresponds to the number of CRs in cooperation) is
not too high, which is the typical setting in practice.

It has been also demonstrated that the test statistics are
not equally sensitive to the eigenvalue estimation errors. The
GLRT is the most sensitive because is operates all eigen-
values. The MMED, which operates two eigenvalues, comes
subsequently in terms of robustness to estimation errors. The
MED is the most robust, which is credited to the fact that
it operates a single eigenvalue. However, it has been verified
that the eigenvalue-based spectrum sensing is quite robust with
respect to eigenvalue estimation errors, yielding practically no
performance degradation for errors less than or equal to 2%;
little performance variations are observed for estimation errors
up to around 5%.

From above, it can be concluded that the present research
can support the choice and implementation of eigenvalue-
based spectrum sensing techniques in real hardware, since it
provides the basic building blocks of suitable algorithms for
solving the eigenvalue problem in a way appropriately suited
to the spectrum sensing context.

As a natural deployment of the research, it is intended to
implement an eigenvalue-based spectrum sensing system for
digital TV signals using the universal software radio periph-
eral (USRP) [22] board, with the estimation of eigenvalues
performed by the Cholesky iterations method. Other methods
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can also be tested, aiming at validating the results presented
in this paper and obtaining new ones.

Another possible extension is the development of a model
for generating eigenvalue estimation errors, thus allowing such
errors to be incorporated into the performance analysis of
any eigenvalue-based spectrum sensing technique, without the
need of actually implementing any approximate eigenvalue
estimation method. The starting point for devising such a
model is the statistical analysis of the errors produced by the
methods discussed herein.

The addition of quantization errors and channel errors in
the approximate eigenvalues transmitted to the fusion center
is also worth investigating.
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