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Abstract—The Gershgorin radii and centers ratio (GRCR) and
the Gini index detector (GID) have been recently proposed as
robust solutions with low computation complexity for centralized
cooperative spectrum sensing. Subsequently, the sliding-window
based versions of them, named SGRCR and SGID, have been
devised for spectrum sensing in radar bands. While the SGID
has superior performance in the specific scenario of dominant
propagation path, i.e, high Rice factor K , the SGRCR exhibits rel-
atively small performance variations with K , but is outperformed
by the SGID when K is high. In this paper, motivated by the
complementary behaviors of the GRCR and the GID, a hybrid
sliding-window based GRCR-GID (HSGG) detection strategy is
proposed. The new test statistic is formed by the weighted sum
of the GRCR and GID test statistics for each sliding sensing
window. Numerical results demonstrate that the hybrid detector
combines the best attributes of the base detectors, achieving high
performances under any Rice factor. Specifically, it performs a
little worse than the SGRCR and much better than the SGID
when K = 0, and as good as the SGID for mild-to-high values of
K . Moreover, there are cases in which the HSGG can beat the
SGRCR and the SGID.

Index Terms—Cognitive radio, dynamic spectrum access, GID,
GRCR, HSGG, SGID, SGRCR, radar, spectrum sensing.

I. INTRODUCTION

DURING the last few years, we are witnessing an un-
precedented growth of telecommunication services, es-

pecially with regard to wireless communication systems. As a
consequence, the radio-frequency spectrum has become an in-
creasingly congested or even scarce resource in certain bands,
mainly due to the traditional static spectral allocation policy,
which does not take into account the variability of utilization
of some spectrum assigned to the primary networks. The
problem tends to become more serious with the massification
of the Internet of Things (IoT) and the deployment of the fifth
generation (5G) of wireless communication networks.

The concept of cognitive radio (CR) has emerged as a
promising solution to the above problem [1]. It can implement
a dynamic spectrum allocation policy in which idle frequency
bands can be opportunistically occupied by secondary user
(SU) terminals.
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For the successful access to a vacant frequency band,
cognitive SU terminals must be able to detect the presence
of the primary user (PU) signal in the band of interest, by
means of a process known as spectrum sensing [2], [3].

Spectrum sensing can be realized independently by each
cognitive SU, or it can be cooperative. In the latter case, the
accuracy of the decisions upon the occupancy of the sensed
band may be improved compared to the non-cooperative sens-
ing, owed to the spatial diversity produced by SUs separated
in space in a fading channel environment.

In centralized cooperative spectrum sensing with data fu-
sion, which is the object of the present work, a soft decision or
hard decision from a received signal at each SU are conveyed
to a fusion center (FC), where the global decision is made. This
decision is subsequently informed to the SUs, allowing them
to access the band if it is found to be vacant, through some
multiple access technique. The transmissions of the spectrum
sensing data from the SUs to the FC, and the broadcast
transmission of the global decision from the FC to the SUs
are made via dedicated or shared control channels.

Recently, it has been realized that radar bands are po-
tential candidates for cognitive secondary networks, since
these bands are wide and are considerably underutilized [4].
In consonance with this fact, the Federal Communications
Commission (FCC) has already regulated wireless local area
network (WLAN) devices to detect radar signals [5] in the
5 GHz band. Thus, the successful operation of these devices
in radar bands requires the spectrum sensing functionality.

A pulse radar refers to a radar system that applies short du-
ration radio-frequency (RF) pulses as probe signals. Typically,
a sequence of such pulses carrying high energy are radiated
periodically and sparsely in time, meaning that a pulse radar
signal has a low duty-cycle. Motivated by these characteristics,
the authors of [6] devised an spectrum sensing technique
in which the conventional single detection event carried out
during a sensing interval is replaced by multiple short-time
intermediate detections made in a sliding-window fashion, thus
exploiting the sparsity of the signal to be detected. After the
sliding-window reaches the end of the sensing interval, the
multiple intermediate sensing results are combined to yield
the global decision upon the occupation of the sensed band.

The single specific requirement for the choice of the detector
to be adopted in the sliding-window approach is a low compu-
tational complexity. This is because the multiple intermediate
detections must be accomplished during the regular sensing
interval, which is small compared to the communication
interval [7]. In [6], the Gerschgorin radii and centers ratio
(GRCR) detector proposed in [8] has been chosen. Another



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 193

detector exhibiting an implementation complexity very close
to the GRCR is the Gini index detector (GID) [9], which makes
it also attractive to the sliding-window approach. The GRCR
and the GID share the following important attributes:

1) They are completely blind, i.e., they do not demand knowl-
edge of any characteristic of the signal to be detected,
and do not use the noise variance information in their test
statistics;

2) They carry one of the lowest computational complexities
known so far, overcame only by the well-known energy
detector (which is semi-blind due to the need of the noise
variance information);

3) They exhibit the constant false alarm rate (CFAR) property,
which means that the false alarm rate is maintained at a
target level, no matter the noise variance;

4) They are robust, meaning that their performances are mildly
affected in the scenario of noise and received signal powers
that may not be the same over the SUs receivers, and may
vary over time.

In [6], the application of the GRCR to the sliding-window
spectrum sensing approach coined the term sliding GRCR
(SGRCR). Similarly, the application of the GID to this ap-
proach has been named sliding GID (SGID) in [10].

It has been found in [10] that the SGID can outperform
the SGRCR in the majority of system parameterizations and
scenarios, but its robustness is somewhat affected when the
radar signal duty-cycle is high, and its performance is penal-
ized in the absence of dominant path in the sensing channel
(this last flaw is inherited from the GID). The performance
of the sliding-window based energy detector (SED) has also
been assessed in [10], serving as a benchmark for quantifying
the performances of the SGRCR and the SGID.

In this paper, the SGRCR and the SGID are combined,
via a weighted sum1, into a single test statistic. The resul-
tant detector is named hybrid sliding-window based GRCR-
GID (HSGG). It is demonstrated that the HSGG achieves
a combination of the merits of the SGRCR and the SGID,
being capable of overcoming these base detectors in some
system paramerizations and scenarios. It is emphasized that
the HSGG attains improved performances in the absence of
dominant propagation path with respect to the SGID, and has
its robustness restored when the radar duty-cycle is high.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model, and the GRCR and the
GID detectors. Section III is devoted to the proposed HSGG
detector. A large set of numerical results are presented in
Section IV. Section V concludes the paper and gives some
directions for further related research.

II. SYSTEM MODEL

It is known that the adherence of system simulation out-
comes to the ones obtained from real-life experiments strongly
depends on the accuracy and completeness of the system
model. Likewise in [6], [10], here it is adopted a very close-to-
real simulation model that considers the sensing channel (the

1The weighted sum of test statistics has been also investigated in [11], not
in the context of the sliding-window based radar signal detection problem.

one between the radar transmitter to the spectrum sensors) as
a combination of an additive white Gaussian noise (AWGN)
channel with multipath fading, also taking into account dif-
ferent degrees of dominance of signal propagation paths or,
equivalently, different levels of line-of-sight (LoS). Moreover,
considering that the SUs’ terminals are mobile devices, and
that the SUs’ front-ends are not perfectly equal to one another
and may be subjected to different environmental temperatures,
the thermal noise powers affecting the SUs will be different
with probability one, as well as time-varying. Yet, owing to
the fact that the SUs’ positions are mobile and random, it is
expected that the received signal powers across the SUs will
not be uniform (equal to one another), and will vary over
time. These unequal and time-varying quantities are hereafter
referred to as nonuniform-dynamical noise and signal powers.

A. Signal model

A cooperative spectrum sensing (CSS) scheme is consid-
ered, with m cognitive SUs collecting mn samples (n samples
per SU) of the radar signal received during a given sensing
interval. At the fusion center (FC) of the secondary cognitive
network, the received signal matrix Y ∈ Cm×n is given by

Y = hxT + V, (1)

where the superscript T denotes transposition, and
h = [h1, h2, . . . , hm]T is the channel vector with hi

representing the complex channel gains between the
radar transmitter and the i-th SU receiver, for i = 1, . . . ,m.
These gains are assumed to be constant during the sensing
interval, and independent and identically distributed (i.i.d.)
between consecutive sensing rounds. The assumption of
constant channel gain means that the sensing interval is
smaller than the coherence time of the fading channel. The
independence comes from the assumption that the time
between two consecutive sensing rounds is larger than the
coherence time of the channel. The equal distribution for the
fading in all sensing rounds means that the fading statistics
do not change over time, i.e. the fading process is stationary.
Moreover, the multiplicative channel model in Equation (1)
subsumes a frequency flat fading channel, meaning that the
sensing channel delay spread is small and, as a consequence,
the signal bandwidth is smaller than the channel coherence
bandwidth.

The channel vector in Equation (1) is modeled as h = Ga
where the diagonal gain matrix G ∈ Rm×m is given by
G = diag

(√
p/pavg

)
, with p = [p1, p2, . . . , pm]T being the

vector with the received signal power levels in each SU,
where pavg =

1
m

∑m
i=1 pi is the average received signal power

over all SUs. If the overall channel power gain is unitary
(without loss of generality), the radar signal is transmitted
with a constant power pavg. The vector a ∈ Cm×1 has ele-
ments ai ∼ CN

[√
K/[2(K + 1)], 1/(K + 1)

]
for i = 1, . . . ,m,

guaranteeing unitary second moment of the fading magnitude,
where K is the Rice factor2.

2In a multipath Ricean fading channel, the Rice factor is the ratio between
the dominant and the remaining path powers. A larger K means a stronger
line-of-sight (LoS) received signal. If K = 0, the Ricean fading specializes to
the Rayleigh fading, which corresponds to no LoS.
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The matrix V ∈ Cm×n in Equation (1) contains independent
zero mean complex Gaussian noise samples. To consider the
possibility of nonuniform noise variances across the SUs’
receivers, the elements in the i-th row of V are assumed to
have variance σ2

i , i = 1, . . . ,m.
The vector x ∈ Rn×1 in Equation (1) represents the samples

of the radar signal. In practice, a pulse radar signal is formed
by a series of short-time pulses with duration of about 1-5
microseconds [5]. The time between the start of consecutive
pulses is typically on the order of 1 millisecond, yielding
a low duty-cycle waveform. From the perspective of the
detector, the received signal from a rotating radar is seen
as a series of bursts of pulses. The number of pulses in a
burst depends on the aperture of the antennas and on the
speed of the radar antenna rotation. The time from the start
of one burst to the start of the next one is typically on
the order of 1-10 seconds. Hence, in the lowpass equiva-
lent representation, the radar signal vector can be expressed
by x = [. . . , v, v, . . . , v, 0, 0, . . . , 0, v, v, . . . , v, 0, 0, . . . , 0, . . . ]T,
where the amplitude v is set according to the desired radar
signal power pavg and duty-cycle D, i.e., v =

√
pavg/D. The

number of consecutive vs (i.e., the pulse width Wp expressed
in samples) and consecutive 0s (i.e., the pulse spacing, also
expressed in samples) are set to yield the desired duty-cycle.

The number of pulses within a sensing interval is assumed
to be a uniform random variable U ∼ [1, N] to represent
the asynchronous operation between the radar bursts and the
spectrum sensing interval, where N is the number of pulses
within a burst. Due to this synchronousness, the approximate
received signal-to-noise ratio (SNR), in dB, averaged over all
SUs, is given by [6]

SNR ≈ 10 log10



(N + 1)pavg

2Nσ2
avg


, (2)

where σ2
avg =

1
m

∑m
i=1 σ

2
i is the average noise variance. This

is approximation because the number of radar pulses seen
by the SUs during a sensing interval may be a non integer,
and the expression assumes that this number is an integer, for
simplicity.

B. GRCR and GID test statistics
In the conventional (non sliding-window based) cooperative

spectrum sensing, the FC computes the received signal sample
covariance matrix (SCM) as

R = 1
nYY†, (3)

where † denotes the complex conjugate and transpose.
The GRCR test statistic [8] is calculated according to

TGRCR =

∑m
i=1

∑m
j=1, j,i

���ri j
���∑m

i=1 rii
, (4)

where ri j is the element in the i-th row and j-th column of
R, for i, j = 1, . . . ,m.

The GID test statistic [9], apart from a constant factor that
does not influence performance, is given by

TGID =

∑m2

i=1 |ri |∑m2

i=1
∑m2

j=1
���ri − r j

���
, (5)

where ri is the i-th element of the vector r formed by stacking
all columns of R.

C. Performance metrics

The metrics often used to assess the spectrum sens-
ing performance are the probability of detection and
the probability of false alarm, respectively denoted as
Pd = Pr(decision = H1 |H1) and Pfa = Pr(decision = H1 |H0),
where H1 and H0 are the hypotheses of the presence (i.e.
Y = hxT + V) and absence (i.e. Y = V) of the radar signal,
respectively, and Pr(E) is the probability of the underlying
event E. A higher value of Pd is desirable to reduce the
interference caused by the secondary network to the primary
network due to missed detections. On the other hand, Pfa
needs to be small for more opportunistic transmissions by the
secondary network.

A typical tool for analyzing these metrics simultaneously is
the receiver operating characteristic (ROC) curve, which trades
Pfa versus Pd as the decision threshold of the corresponding
detector is varied. A condensed metric also often used is the
area under the ROC curve, which is called the AUC. The
worst detection performance, which corresponds to a ROC
curve with Pd = Pfa, gives AUC = 0.5. The possibly best
detection performance corresponds to a ROC curve attaining
Pd = 1 and Pfa = 0, yielding AUC = 1. Hence, we can say
that the AUC of a general detector has a range over between
0.5 and 1.

III. SLIDING-WINDOW BASED HYBRID GRCR-GID

A. The HSGG test statistic

The sliding-window detection technique works by succes-
sively shifting a small sensing window through the whole
sensing interval [6]. An intermediate decision on the presence
or absence of the radar signal is made for each step of
the sliding-window. When the window reaches the end of
the sensing interval, a logic operation is made among the
intermediate decisions to yield the final global decision.

The technique works under the divide-and-conquer prin-
ciple: it exchanges the reduced performance of individual
smaller sensing windows by an increase of the captured
energy of a radar pulse that by chance falls into one or more
intermediate sensing windows. Moreover, the noise energy
during such small sensing windows is smaller than the one
present in the whole sensing interval, potentially resulting in
performance improvements of the radar signal detection.

Figure 1 illustrates the operation of the sliding-window
based spectrum sensing approach, assuming some hypothetical
quantities [6]. In this figure, a single radar signal burst with
N pulses (3 in this example) during the sensing interval is
shown.

The beginning of the first pulse is a random variable, since,
as already mentioned, the radar burst and the sensing interval
are not synchronous to each other. Each pulse lasts an interval
corresponding to Wp samples (20 in this example). The sliding-
window has a size of Sw samples and moves through the
sensing interval (600 samples in this example) in Sn steps
of size Ss samples. The number of steps is the total number
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Fig. 1. Radar burst with N = 3 pulses, pulse width Wp = 20 samples, and
duty-cycle D = 10%. The step size is Ss, and the window size is Sw. The
whole sensing interval corresponds to n samples. c©IEEE [6].

of intermediate sensing rounds made during the entire sensing
interval. It is given by [6]

Sn = (n − Sw)/Ss + 1. (6)

Moreover, if n samples are collected by each SU during the
sensing interval, from Figure 1 the radar signal duty-cycle is
easily found to be D = NWp/n, yielding

n = WpN/D. (7)

In each intermediate sensing round number k, with
k = 1, . . . , Sn, the proposed HSGG test statistic is formed from
the weighted sum of TGRCR and TGID, that is,

THSGG(k) = TGRCR(k) + w f (m)TGID(k), (8)

where TGRCR(k) and TGID(k) respectively denote the GRCR
and GID test statistics for the k-th intermediate sensing round,
and w f (m) is the overall weighting function with an adjustable
weight parameter 0 ≤ w ≤ 1.

Given the test statistics THSGG(k) computed in the
k-th intermediate sensing round, the global decision at
the FC is made after the OR-logic operation among
them. This is equivalent to say that the decision is
made in favor of the presence of the radar signal
if max{THSGG(1),THSGG(2), . . . ,THSGG(Sn)} > γHSGG, where
γHSGG is the decision threshold for the HSGG detector.

When the SGRCR or the SGID is implemented alone,
a similar procedure applies, that is, given the test statistics
TGRCR(k) or TGID(k) computed in the k-th intermediate sens-
ing round according to (4) and (5), the global decision at
the FC is made in favor of the presence of the radar sig-
nal if max{TGRCR(1),TGRCR(2), . . . ,TGRCR(Sn)} > γGRCR, or
max{TGID(1),TGID(2), . . . ,TGID(Sn)} > γGID, where γGRCR and
γGID are the decision thresholds for the GRCR and GID
detectors, respectively.

It can be seen in (4) and (5) that TGRCR and TGID depend
explicitly on m, but also depend implicitly on other system
parameters that influence the entries of R, for example the
SNR, the number of samples and the sensing channel Rice
factor. Nonetheless, it has been found empirically that the
dependence of TGRCR and TGID on m dominates the other
ones, and this is the reason for defining the weighting function
f (m) as a function of m solely. The role of this function is to

guarantee that different values of m do not change the chosen
value of the weight w; otherwise, a new w would have to be
determined for each m. The performance results in Section IV
will confirm that this is an adequate simplification. The next
subsection is devoted on determining w f (m).

B. Determining the weighting function w f (m)

If a closed-form expression for some performance metric
of the proposed HSGG detector were available, the optimal
weighting function w f (m) could be determined analytically or
numerically. Since the parametric probability density functions
(PDFs) of TGRCR and TGID are unknown, the PDF of THSGG
cannot be determined analytically. Thus, it is not possible
to find the optimum w f (m) analytically. Even though all
involved PDFs were known, the optimum w f (m) would not be
a single value for a given w and m, since the weighted sum (8)
implicitly calls for a trade-off between the performances of
the base test statistics, and, as already mentioned, the actual
weighting function does not depend solely on m.

The empirical procedure for determining f (m) was accom-
plished as follows:

1) Some spectrum sensing performance results in terms of
AUC, obtained from computer simulations, were generated
for several representative values of m. Since the perfor-
mance changes with m, different values of SNR were
chosen to yield the best AUC close to 0.9 (which represents
a satisfactory performance) for all pairs of m and SNR;

2) For each pair of m and SNR, the sub-optimum overall
weight w f (m) was determined as the one beyond which the
AUC produced by the HSGG is little affected (almost sat-
urated) in the situation of strong path dominance (K = 10,
i.e. almost pure-AWGN channel). The results are presented
in Figure 2, where the AUCs for no path dominance (Rice
factor K = 0, i.e. Rayleigh fading channel) are also given.
For example, notice that the AUCs of the HSGG for K = 10
do not improve significantly beyond w f (m) = 18 for m = 4
and beyond w f (m) = 700 for m = 8, staying very close
to the AUCs of the SGID. Additionally, notice that, at
these values of w f (m), the corresponding AUCs of the
HSGG for K = 0 have decreased by less than half of its
maximum difference from that of the SGRCR. Following
this procedure, other values of m and SNR where analyzed,
yielding the sub-optimum w f (m) values listed in Table I;

3) The pairs m and w f (m) were then applied to a least-
squares3 power curve fit to the model function amb ,
yielding a ≈ 0.025 and b ≈ 4.84. The coefficient of
determination [13] related to the curve fit result was found
to be R2 ≈ 0.997, meaning that the model function
accurately describes the data given in Table I. Thus, taking
into account that the adjustable weight parameter w conve-

3The power fit can be made via any nonlinear curve fitting toll, adopt-
ing any error fit minimization method. As a simple alternative, it can be
made via the command line power fit {{3, 3},{4, 18},{5, 50},{6,
120},{7, 300},{8, 700},{9, 1000},{10, 1800}} in the WolframAl-
pha public website [12], which is based on the software Mathematica.
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Fig. 2. AUCs versus w f (m) for n = 1200, D = 0.05, Wp = Ss = Sw = 15, N = 4, Sn = 80, nonuniform-dynamical signal and noise: K = 0, m = 4
and SNR = −14 dB (left); K = 10, m = 4 and SNR = −18 dB (middle-left); K = 0, m = 8 and SNR = −18 dB (middle-right); K = 10, m = 8 and
SNR = −22 dB (right).

TABLE I
SUB-OPTIMUM VALUES OF w f (m) FOR DIFFERENT PAIRS OF m AND
SNR, ASSUMING K = 10, n = 1200, D = 0.05, WP = SS = SW = 15,
N = 4, SN = 80, NONUNIFORM-DYNAMICAL SIGNAL AND NOISE.

m SNR, dB w f (m)

3 −17 3
4 −18 18
5 −19 50
6 −20 120
7 −21 300
8 −22 700
9 −23 1000

10 −24 1800

niently lies in the interval [0, 1] by definition, an appropriate
overall weight function is

w f (m) = w0.05m4.84. (9)

4) The adjustable weight that yields a good balance between
the performance loss with respect to the SGRCR when
K = 0, and the proximity to the SGID when K = 10 is
w = 0.3, which corresponds one third of the ranges of
w f (m) shown in Figure 2.

5) Finally, the proposed HSGG test statistics that is applied
hereafter in the k-th intermediate sensing round, for any w,
becomes

THSGG(k) = TGRCR(k) + w0.05m4.84TGID(k). (10)

C. Computational complexity

As reported in [8], [9], the computational complexity of the
GRCR is O(nm2). This complexity is owed to the fact that
the computation of each element of the matrix R requires n
complex multiplications plus (n − 1) complex additions over
the elements of Y. Since a complex multiplication requires 4
real multiplications plus 2 real additions, it follows that the
computation of R requires a total of 4nm2 real multiplications

plus 2m2(2n − 1) real additions. Thus, the computational
complexity in the big-O notation can be determined by the
computational time growth rate, which is dominated by nm2.

The complexity O(nm2) is m times larger than the complex-
ity of the well-known energy detector, which is the smallest
one (one must recall that the energy detector is not fully
blind). Hence, taking into account that the number m of SUs
in cooperation is not large in practice, the complexity of
the GRCR shall not be much larger than that of the energy
detector. The GID has roughly the same complexity of the
GRCR, also due to the burden of computing the matrix R.
Hence, the GRCR and the GID are the least complex blind
detectors available in the literature, making them attractive to
the sliding-window approach.

Regarding the sliding-window technique, the additional
complexity of making the weighted sum of TGRCR(k) and
TGID(k) to form THSGG(k) is small compared to the complexity
of computing the SCM that is used to calculate TGRCR(k) and
TGID(k). Moreover, as demonstrated in [6], the computational
complexity for obtaining Sn SCMs in terms of complex multi-
plications is SnSwm2, which turns out to be nm2 when Sw = Ss;
see (6). Thus, when Sw = Ss the computational complexity of
the HSGG does not vary with the sliding window size Sw.

It is worth emphasizing that the sliding-window approach
has its parameters fully configurable to allow for a trade-off
between the spectrum sensing performance and the overall
sensing speed. For instance, if the window size Sw fits the pulse
width Wp, the maximum radar pulse energy can be captured,
improving the sensing performance. If the step size is Ss = 1,
the chance of hitting a radar pulse is maximized at the expense
of a large number of intermediate sensing rounds, yielding a
large processing time [6].

IV. PERFORMANCE RESULTS

In this section we present results in terms of AUCs, as
determined by different values of the main system parameters
that are relevant to the spectrum sensing performance. These
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results were produced by computer simulations using the
MATLAB version R2018a, from 30000 Monte Carlo events
in which the received signal matrix Y was generated under
the hypothesis H1 (to estimate Pd) and H0 (to estimate
Pfa). The AUCs were computed using the MATLAB function
−trapz(Pfa, Pd), from ROC curves containing 200 pairs of
(Pfa, Pd). The MATLAB source code is available in [14].

When a given parameter is not the one that is varied, its
value was set to: m = 4 SUs; radar signal with duty-cycle
D = 5%; maximum of N = 4 pulses per burst during the
sensing interval under the H1 hypothesis; n = 1200 samples
collected by each SU; Wp = 15 samples per radar pulse;
sensing window size Sw equal to Wp and equal to the step
size Ss of the sliding-window; average SNR = −15 dB; sensing
channel Rice factor K = 10; and weight factor w = 0.3 in
Equation (10).

When noise and signal powers are uniform (i.e., the same
across the SUs and constant over time), σ2

i = σ
2
avg = 1, and

pi = pavg according to the desired SNR; see (2). In the
more realistic scenario in which noise and signal powers are
nonuniform-dynamical (i.e., different across the SUs and time-
varying), σ2

i and pi are respectively assumed to have a uniform
distribution over [0.05σ2

avg, 1.95σ2
avg] and [0.05pavg, 1.95pavg]

in each spectrum sensing event.
The beginning of the first radar pulse with respect to the

beginning of the sensing interval is supposed to be uniformly
distributed over [0, n −Wp − 1]. By adopting such random
delay, it is guaranteed that at least a single entire pulse is
present during a whole sensing interval, under H1.

Figure 3 gives AUCs versus the sliding window size Sw, as-
suming uniform (U) and nonuniform-dynamical (NUD) noise
and received signal powers for two values of the Rice factor,
K = 0 and K = 10. Since Wp = 15, N = 4 and D = 0.05, it
follows from (7) that n = 1200 samples. Additionally, given
that Sw = Ss = 15, 30, 60, 120, 240, 600, and 1200 samples,
from (6) it follows that Sn = 80, 40, 20, 10, 5, 2, and 1
intermediate sensing rounds per sensing interval, respectively.
The following can be concluded from Figure 3:

1) The detection of a radar signal using the SGRCR and the
HSGG benefits from the sliding-window approach for any
K , meaning that the spectrum sensing performance can be
improved for small window sizes (recall that a conventional
non-sliding-window based detection results if Sw = n);

2) If K = 0, the SGID does not benefit from the sliding-
window approach at all. In general, as Sw decreases, the
SNR for a sensing round gets higher and the GRCR detec-
tor benefits from it. However, the enhancement of the SNR
does not mean to decrease the variation of the elements
of an SCM and, as a consequence, the performance of the
SGID does not improve as Sw is reduced;

3) The SGRCR is little affected by the nonuniform-dynamical
noise and received signal powers, i.e., its robustness has
been inherited from the GRCR detector proposed in [8];

4) The SGID inherited the robustness of the GID proposed
in [9] only for very small window sizes;

5) The proposed HSGG is roughly as robust as the GRCR for
any window size;

6) In the case of small window sizes, which is the target in the
sliding-window technique, the performance of the HSGG
is far above the SGID when K = 0, and is close to the
SGID when K = 10. The HSGG performs closely to the
SGRCR when K = 0, beating this detector when K = 10.

Since the robustness of the HSGG has been illustrated
by Figure 3, hereafter only the more practical-appealing
nonuniform-dynamical noise and received signal power is
considered.

The AUCs versus the sensing channel Rice factor K are
presented in Figure 4 for some different values of SNR. The
following conclusions can be drawn from this figure:

1) All detectors improve their performances as K increases,
which is an expected result, but in different amounts;

2) All graphs in this figure make it evident that the per-
formance of the SGID gets worse than the SGRCR and
the HSGG when K is close to zero. Nonetheless, its
performance gets better rapidly with increasing K , which
stems from the fact that higher K enhances the GID test
statistic for the case of H1 [9];

3) The GRCR and GID hybridization proved to yield the
desired outcome: the HSGG attains approximately the same
performance of the SGRCR when K = 0, significantly
outperforming the SGID in this situation. Moreover, the
HSGG performs closely to the SGID when K is large,
producing better performance than the SGRCR at smaller
SNRs.

Figures 5 and 6 depict AUCs versus the average SNR across
the SUs, and versus the number m of SUs, respectively. We
can obtain the following conclusions from these figures:

1) As expected, larger values of SNR or m yield better
spectrum sensing performances for all detectors, but in a
diminishing-return fashion and in different amounts;

2) The HSGG and the SGRCR have approximately the same
performances for all SNRs and m when K is small,
significantly outperforming the SGID;

3) As expected, the SGID recovers its attractive performance
for large values of K , independent of the values of SNR
and m.

4) The HSGG closely follows the SGID when K is large,
being capable of beating the SGRCR;

5) The relatively low value of K = 1 is enough for the HSGG
to outperform the SGRCR for any SNR and m, which
remains the case if K is increased further;

6) At larger SNRs, the HSGG is even capable of outperform-
ing the SGID, as also noticed from Figure 4.

The AUCs as functions of the radar signal duty-cycle D,
and of the radar pulse width Wp are shown in Figures 7 and
8, respectively. The following conclusions apply:

1) In the case of Figure 7, since Wp = 15, N = 4, and D =
0.01, 0.02, 0.05, 0.1, 0.2, it follows from (7) that n = 6000,
3000, 1200, 600, and 300, respectively. Similarly, applying
Sw = Ss = Wp = 15 in Equation (6) results in Sn = 400,
200, 80, 40, and 20, respectively;
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Fig. 3. AUCs versus window size (Sw) for m = 4, n = 1200, D = 0.05, Wp = 15, Ss = Sw, N = 4, w = 0.3, and SNR = −16 dB: K = 0, U (left); K = 0,
NUD (middle-left); K = 10, U (middle-right); K = 10, NUD (right), where U (resp. NUD) denote uniform (resp. nonuniform-dynamical) signal and noise.
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Fig. 4. AUCs versus K for m = 4, n = 1200, D = 0.05, Wp = Ss = Sw = 15, N = 4, Sn = 80, w = 0.3, nonuniform-dynamical signal and noise:
SNR = −12 dB (left); SNR = −14 dB (middle-left); SNR = −16 dB (middle-right); SNR = −18 dB (right).
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Fig. 5. AUCs versus average SNR for nonuniform noise and signal powers, m = 4, n = 1200, D = 0.05, Wp = Ss = Sw = 15, w = 0.3, and N = 4: K = 0
(left); K = 1 (middle); K = 10 (right).
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Fig. 6. AUCs versus the number of SUs (m) for nonuniform noise and signal powers, SNR = −16 dB, n = 1200, D = 0.05, Wp = Ss = Sw = 15, w = 0.3,
and N = 4: K = 0 (left); K = 1 (middle); K = 10 (right).
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Fig. 7. AUCs versus the radar signal duty-cycle (D) for nonuniform noise and signal powers, m = 4, SNR = −16 dB, Wp = Ss = Sw = 15, w = 0.3, and
N = 4: K = 0 (left); K = 1 (middle); K = 10 (right).
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Fig. 8. AUCs versus the radar pulse width (Wp) for nonuniform noise and signal powers, D = 0.05, m = 4, SNR = −16 dB, Wp = Ss = Sw, w = 0.3, and
N = 4: K = 0 (left); K = 1 (middle); K = 10 (right).
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2) In the case of Figure 8, since Wp = Ss = Sw = 2, 3, 5,
10, 20, and 30, N = 4, D = 0.05, and Sn = 80, it follows
from (7) that n = 160, 240, 400, 800, 1600 and 2400;

3) From the above two items, it can be seen that the variation
of D and Wp are accompanied by the variation of other
performance-relevant parameter, the number of samples n,
as determined from (7) and (6). Thus, Figure 7 and Figure
8 must be interpreted in terms of relative performance
measures instead of absolute ones.

4) The SGID consistently remains with poor performances
when K = 0, achieving results comparable with the SGRCR
and the HSGG only at higher values of K ;

5) With a mild dominant propagation path, represented by K =
1, the performance difference between the HSGG and the
SGRGR increases softly as D increases, which can be also
seen at higher values of K .

6) The performance of the SGRCR at different values of
D practically does not vary significantly with K . The
relatively smaller dependency of the SGRCR on K has been
also observed in Figure 4.

7) Recalling that a typical pulse radar signal has a small duty-
cycle, Figure 7 indicates that the hybrid detector performs
as almost good as the SGRCR when K = 0, exhibiting a
little higher performance than the SGID when K is high;

8) The difference between the performances of the HSGG
and the SGRCR practically does not depend on Wp, but
increases as K increases beyond 1.

V. CONCLUSIONS

In this paper we proposed the hybrid sliding-window
based GRCR-GID (HSGG) test statistic, which employs the
weighted sum of the GRCR and GID test statistics in each
intermediate sensing round of the sliding-window technique
for its test statistic. Through a large set of numerical results, we
have demonstrated that the hybrid detector combines the good
attributes of the base detectors, achieving high performances
in the Ricean fading channel with any level of the Rice factor.
In the majority of situations and scenarios, the performance
of the HSGG is slightly worse than that of the SGRCR and
by far better than that of the SGID when K = 0, and very
close to the SGID for mild-to-higher values of K , specifically
just above K = 1. In a few cases, the HSGG demonstrated
its performance better than both the SGRCR and the SGID.
The comprehensive comparisons of the HSGG with the two
base detectors can serve as references to parameterize the
HSGG detector, when seeking for system configurations that
can extract the maximum of its capabilities.

As opportunities for future related research, other combina-
tions of the GRCR and GID test statistics, or even of the
intermediate decisions from both detectors could be inves-
tigated. The sensing channel model could be also extended
to include shadowing and frequency selectivity. Specifically
regarding the latter one, it is conjectured that the sliding-
window based detector could exploit the multipath propagation
over a frequency-selective fading channel, if most of the
received pulse replicas could be resolved by the channel and
could be efficiently caught by the sliding window, similarly

to what happens in the rake receiver in the context of direct-
sequence spread spectrum communications.
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