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GLRT Based Spectrum Sensing
Techniques for Pulse Radar Signals

Chang Heon Lim, and Dayan Adionel Guimaraes

Abstract—Radar frequency bands are known to be relatively
wide and underutilized, potentially allowing for higher spectral
usage by means of the cognitive radio technology. One of the
most crucial functionalities in cognitive radio is spectrum sensing,
which aims at detecting the presence of a primary user signal in
the band of interest. Based on the fact that pulse radar signals can
be modeled as a train of rectangular pulses with two amplitude
levels, we develop a generalized likelihood ratio test spectrum
sensing scheme, as well as its less complex sub-optimal variations,
to detect the presence of such signals. The performances of the
developed schemes are compared in terms of the probabilities of
detection and false alarm via computer simulation.

Index Terms—Cognitive radio, generalized likelihood ratio test,
pulse radar, spectrum sensing.

I. INTRODUCTION

ATELY, many research efforts have been directed at
L enhancing the radio-frequency (RF) spectrum utilization.
A promising alternative is the cognitive radio (CR) tech-
nology [1], which enables opportunistic dynamic spectrum
access by allowing a secondary user to use a frequency band
temporarily, whenever it is found to be vacant.

Radar bands have recently emerged as potential candidates
for CR, since they are relatively wide and turn out to be
underutilized [2]. Therefore, several initiatives for introducing
spectrum sharing in radar bands have been reported in the
literature. These include evaluating the interference between
radio and radar systems [3], realizing spectrum sharing of
radar bands by means of spectrum sensing [4], and minimizing
the effects of radar systems on secondary networks [5]. A pop-
ular realization of spectrum sharing in radar bands allows the
access of the 5 GHz band by a wireless local area network
(WLAN). The dynamic frequency selection (DFS) [6] strategy
allows the WLAN terminals detect the presence of the radar
signal and access vacant bands without interfering the radar
system operation.

A crucial functionality of a CR is the capability of spectrum
sensing to detect the primary user (PU) signal. Spectrum sens-
ing techniques can be categorized as a matched filter, energy
detection, feature based, and eigenvalue based schemes [7].
A matched filter provides optimal sensing performance, but
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requires the prior knowledge of the exact form of the received
signal, which renders it impractical. Energy detection decides
on the presence of the PU signal by comparing the received
signal energy with a threshold, yielding optimal performance
for independent and identically distributed signals. However,
its performance severely degrades in the presence of noise
power uncertainty. Feature based detection exploits intrinsic
characteristics of the PU signal such as preamble, pilot, and
cyclostationarity. Eigenvalue based detection applies a test
statistic made from the eigenvalues of the received signal
sample covariance matrix, and is known to perform well for
time-correlated signals.

A pulse radar system, which is the PU in radar bands,
usually emits a train of pulses periodically and extracts infor-
mation about targets by examining the characteristics of the
signal reflecting off them. Here we consider the problem of
detecting radar signals for the purpose of spectrum sharing
with secondary networks. In this case, a simple detection
strategy compares the received power with a predetermined
threshold, which can be categorized as an energy detection.
Multiple pulse energy detection [8]-[10] can also be applied
for improved performance. Since these strategies are based on
the energy of the received signal, they are susceptible to noise
power uncertainty, which is unavoidable in practice.

In order to solve the noise power uncertainty problem, the
inherent characteristics of the PU signal can be explored. This
strategy has been adopted in [11], where a generalized likeli-
hood ratio test (GLRT) detection scheme has been devised for
the case of a single radar pulse partially or fully contained in
an observation window. However, this single pulse constraint is
too restrictive to apply in practice. In this letter we generalize
the GLRT to the case of multiple radar pulses in an observation
window. Given the high computational complexity of this
optimal GLRT, we also devise sub-optimal, lower complexity
detectors. Performance comparisons among these detector and
other competing ones are also provided.

In the following, Section II describes the system model.
Section III introduces the GLRT based spectrum sensing and
its sub-optimal variations. Section IV gives simulation results
and discussions, and Section V concludes the work.

II. SYSTEM MODEL

The pulse radar signal without pulse compression can be
described by periodic rectangular pulses. The received signal
can be seen as a faded pulse train and approximated by a
two-level signal under the assumption that the channel fading
is static over the observation window. Let the hypotheses H;
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and Hy denote the presence and absence of the radar signal,
respectively. Under Hj, the received baseband signal sample
r(n) in the discrete-time instant n is given by

r(n)=w(m), n=1---,N, (D)

where w(n) is the n-th zero-mean and circularly symmetric
complex additive white Gaussian noise sample with unknown
variance o2, and N is the length of the observation window,
in samples.

Under H;, assuming P pulses contained in the observation
window, the received signal sample r(n) can be written as

Ag+w(n), n=1,---,ng
Ar+w(n), n=nyp+1,---,n
Ag+w(n), n=n+1,---,ny
r(n) =4 Ai+wn), n=ny+1,---,n3 , 2)
Ag+w(n), n=n3+1,---,ng
Ag+w(n), n=mp_1+1,---,N

where Ap and A; are unknown pulse levels that include the
fading effect; the instants n;, i = 0,1,---,2P — 1 are also
unknown, with 1 < ng < ny; <--- <nyp_1 < N. For example,
Fig. 1 illustrates the received signal during an observation
window under H;, with P = 1 and w(n) = 0, assuming a
partial received pulse in the upper two sub-figures, and an
entire received pulse in the bottom.

i

1 ng

n,=N time

1 ng+1 ny=N time

1 ng+1 n N

time

Fig. 1. Three possible cases for a pulse radar signal contained in an
observation window for P = 1.

III. GLRT BASED DETECTION OF PULSE RADAR SIGNALS

For convenience in notation, define n = [ng,ny ..., np_1]
and r=1[r(1),7(2),---,r(N)]. When n is assumed to be
known, the GLRT based test statistic L(r) for estimated Ao,
Ay, and o2 can be expressed as [12]

f(rIn, Hy)
f(xn, Ho)’
where f(r|n, H;) and f(r|n, Hy) are the joint probability
density functions (PDFs) of r under H; and H, respectively,
with f(r|n, Hy) determined according to [12, Ch. 6] as

L(r[n) = 3)

2N

P i _
f(r|n, H]) = ;A 1_[ ﬁ exp| - ‘r(n) AZAO‘
ﬂO’% i=0 n=ny;_;+1 o
P-1 iv 2 2
X 1—[ nlz_ll exp _M , (4)
i=0 n=ny;+1 o

where n_; =0, nop = N, and A, A; and a:% are the maximum
likelihood (ML) estimates of Ag, A;, and o2, respectively,
which in light of [12, Ch. 6] are given by

P 1 ny;
Ay=) —— r(n), 5)
IZ:(; nzj —n2i-1 n:r;1+l
P-1 1 N+
A=) ——— r(n), (6)
; N2i+1 — N2j nemyr+1
R 1 P na;i P-1 nq
ot=512, 2, rm=AP+ ) Y irm - AP

i=0 n=ny;_1+1 i=0 n=ny;+1

(7
Similarly, also based on [12, Ch. 6], f(r|n, Hy) is given by

2N N
2
ﬂexp(—'r('fj' ) ®)

no} n=1 9

f(rln, Hp) =

~

where 0'(2) is the ML estimate of o2, which is

»n_ 1 > 2 9
o5 = 5 D, IrmP. ©)
n=1

Inserting (4) and (8) into (3) yields the test statistic

AN

7
L(rn)=|—1| .

o

Moreover, if we take into account the fact that n and P are
unknown, the GLRT based test statistic can be expressed as

AN
7

L(r) = max —_ .
no,ni, - ,nap-1, P 0.2

The computational complexity of (11) grows exponentially
with the observation window length N, since P is likely to in-
crease with N. Moreover, the number of possible combinations
of {ng,n1,---,npp_1} increases exponentially with P. Thus,
the above GLRT based approach may not be a feasible solution
in practice. In the following we suggest two approximate, less
complex versions of the GLRT.

(10)

(an

A. Simplifications of the GLRT by Ordering

Equation (7) has two terms: one is related to the set of
received samples with amplitude Ao and the other refers to
the set of samples with amplitude A;. The high computational
complexity of the GLRT (11) is due to the process of clas-
sifying the received samples according to each of these two
sets [13]. Motivated by the fact that A is different from A;
in magnitude under H;, we can simplify the categorization
by arranging the received samples in ascending order of
magnitude and finding a level changing instant to classify
them into the above sets. The exact joint PDF of the ordered
noise samples may not be Gaussian, being very complicated
in some cases. For simplification, we approximate the ordered
noise samples to follow a Gaussian distribution. Then we
apply the GLRT to this simplified formulation and obtain
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the corresponding feasible spectrum sensing method, which
is called ordering based GLRT (OGLRT).

Let the ascending ordered received samples be denoted
by £ = [#(1),---,7#(N)]. Then, using (11), the corresponding
GLRT test statistic L reduces to

2\
L(#) =max|=2] . (12)

no 0_%

One can see that (12) performs the maximization over
a single parameter ng, yielding a computational complexity
significantly small compared to the original GLRT based
statistic given in (11).

In order to reduce the computational complexity of (12), we
devise a simple procedure for determining ng (see Fig. 1) by
calculating the magnitude differences between every adjacent
ordered samples and determining the discrete-time instant
corresponding to the maximum difference as ng. This is an
intuitively satisfying approach, since it is very likely that the
magnitude of the ordered sample jumps at the optimal ny,
especially at high SNR. The procedure to find ng is given by
the pseudo-code in the Algorithm 1. The resultant test statistic
is referred to as simplified ordering based GLRT (SOGLRT).

Algorithm 1 Simple method to determine g
1: Generate {7(i)},i =1,---, N, as the samples {r(i)} placed
in ascending order of magnitude

2: ng«— 0

3: max « 0

4: fori=2to N

5: if ()| — |F( — 1)] > max
6: max « |[F(Q)| — |F(I —1)]
7: ng«—i—1

8: end if

9: end for

B. Simplification of the GLRT by Observation Window Seg-
mentation

As already mentioned, the major cause of the high com-
putational complexity of (11) is the fact that the possible
combinations of {ng,ny,---,nyp_1} may be prohibitive, es-
pecially for large P. Similarly to [14], if an observation
window is divided into non overlapping smaller segments
such that the length of each segment contains a single radar
pulse, partially or entirely, the GLRT detection strategy can be
applied to the segments individually. Then, the corresponding
intermediate test statistics or decisions can be combined into
a single test statistic or decision. Owing to this process, the
computational burden can be reduced, yet exploiting the fact
that a pulse radar signal is sparse in the time domain, which
results in higher SNRs when small windows are adopted.
Here we consider two combining rules: One is a soft-decision
combining that sums the intermediate test statistics from each
segment, and the other is a hard decision combining to fuse the
intermediate decisions from the multiple segments by means
of the OR rule. The former is named sliding window GLRT
with soft-decision combining (SWGLRT+SC), and the latter

is called sliding window GLRT with hard decision combining
(SWGLRT+HC). These sliding window strategies can be also
applied to the ordering based GLRT, yielding the techniques
SWOGLRT+SC and SWOGLRT+HC.

IV. NUMERICAL RESULTS

In order to assess the sensing performances of the proposed
schemes, we assume that the radar pulse width is 1 us, the
pulse repetition frequency (PRF) is 10 kHz or 100 kHz, and the
radar signal is sampled at 5 MHz [6, Annex D]. The relatively
high PRFs were chosen to reduce the simulation time, without
loss of generality. The transmitted radar signal is assumed to
go through a Rayleigh fading channel with Doppler frequency
of 10 Hz. For the SWGLRT, the smaller sensing window
length, that is, the segment length is set to 5 us. Furthermore,
since the whole observation window is not synchronized with
the radar pulses, the starting instant of a pulse is supposed to
be random over the pulse repetition interval (PRI), following
a uniform distribution.

The results shown hereafter are given in terms of receiver
operating characteristic (ROC) curves, truncated to show only
the most relevant region of low false alarm probabilities, with
the target false alarm rates of {0.01,0.05,0.1}. Since the noise
power uncertainty (NPU) is not avoidable in practice, it is also
taken into account in the results.

Fig. 2 shows the performances of the GLRT and the OGLRT
schemes, along with the performances of the well-known
energy detection (ED), the matched filter (MF), and the max-
min eigenvalue ratio detection (EIG) with a smoothing factor
of 10. The PRF and the observation window length were
respectively set to 100 kHz and 9 us, such that the observation
window contains a partial or an entire single radar pulse. This
figure demonstrates that the GLRT based schemes suffer from
a relatively small performance degradation in the presence
of NPU, when compared with the ED. Both the GLRT and
the OGLRT outperform the ED when the NPU is 2 dB. The
robustness of the GLRT based schemes to the noise power
uncertainty is due to the fact that they do not depend on the
prior knowledge of the exact noise power level.

Fig. 3 and Fig. 4 show the performances of the proposed
schemes for PRFs of 100 kHz and 10 kHz, and SNRs
of —10 dB and 0 dB. These figures illustrate that the SOGLRT
is a good approximation of the OGLRT for high SNR.
Additionally, a comparison between these two figures unveils
that the performance gain of the SWGLRT with soft-decision
combining (SWGLRT+SC) over the SWGLRT with hard-
decision combining (SWGLRT+HC) is reduced as the PRF
decreases. This is owed to the fact that a lower PRF causes the
number of segments with no radar pulses to increase, resulting
in a higher number of noise only segments contributing to
the combined test statistic value. Therefore, for the case of
high duty cycle, the SWGLRT with soft-decision combining
performs better than the one with hard-decision combining.

Back to Fig. 2, it can be noticed that the performance of
the OGLRT is worse than the one attained by the GLRT. This
is due to the sub-optimality of the OGLRT, which is owed to
the ordering process. Fig. 3 and Fig. 4 show that this behavior
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Fig. 2. Comparison of spectrum sensing performances of MF, ED, GLRT,
OGLRT, and EIG, for SNR = —10 dB (left) and SNR = 0 dB (right).
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segmentation strategy to the ordering based GLRT.

V. CONCLUSIONS

0.1

Comparison of spectrum sensing performance of ED, OGLRT,
SOGLRT, and variations of SWGLRT, for SNR
SNR = 0 dB (right) when PRF = 100 kHz.

—10 dB (left) and

is maintained in the case of applying the observation window

In this letter we have modeled the pulse radar signal as a

two-level signal, derived a GLRT based detector and its sub-
optimal, less complex variants, and compared their spectrum

sensing performances in a variety of situations and with well-

known competing detectors. The sub-optimal versions were
obtained by ordering the received signal samples according
to their magnitudes, and by replacing the whole observation
window by multiple small sliding windows. Since the pro-
posed schemes do not depend on the knowledge of the exact
noise power, it turns out that their performances are robust

Fig.

SOGLRT, and variations of SWGLRT, for SNR

SNR

False alarm probability False alarm probability

4. Comparison of spectrum sensing performance of ED, OGLRT,

—10 dB (left) and

=0 dB (right) when PRF = 10 kHz.

against noise power uncertainty, unlike the energy detection.
Simulation results showed that some sub-optimal detectors can
achieve better sensing performances than the energy detector,
regardless of the noise power uncertainty.
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