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Abstract

The Gini index detector (GID) was recently proposed for cooperative spectrum

sensing (CSS) in cognitive radio networks. It has low computational complexity,

robustness against unequal and time-varying noise and received signal powers,

and can outperform state-of-the-art detectors. In this article, artificial neural

networks (ANNs) are applied to map the CSS system variables into those that

parameterize the probability distributions of the GID test statistic under the

hypotheses of absence (H0) and presence (H1) of the primary sensed signal.

The results concerning the goodness-of-fit of the GID test statistic to candidate

probability distributions demonstrate that the Stable distribution adequately

characterizes the statistic under H0, whereas the Generalized Extreme Value

distribution best applies to H1. Two ANNs are developed to establish the

system-to-distribution parameter mapping, allowing theoretical calculations of

the CSS performance metrics and the decision threshold via closed-form expres-

sions. The theoretical results are verified by computer simulations.
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1. Introduction

The demand for free bands in the radio-frequency (RF) spectrum has in-

creased with the deployment of existing wireless communication services and

technologies, as well as the development of new ones, owed mainly to the fixed

allocation policy in which the various services use the spectrum on a primary5

or licensed basis. This situation may be aggravated by the massive deploy-

ment of the Internet of Things (IoT) and the fifth generation (5G) of wireless

communication networks.

Despite the apparent RF spectrum scarcity, a study conducted by the Federal

Communications Commission (FCC) concluded that a large amount of bands10

has different degrees of idleness, depending on the time and the geographical

location, being considerably underutilized [1].

The concept of cognitive radio (CR) has emerged as a promising solution to

the RF spectrum shortage [2], allowing the shared spectrum access between pri-

mary users (PUs), those who hold the right to use a certain band, and cognitive15

secondary users (SUs), improving the efficiency of the spectrum usage [2]. The

technique used by the CRs to help the secondary network identify idle bands is

called spectrum sensing [3].

Spectrum sensing can be performed independently by each SU or coopera-

tively, the latter being the most used to overcome the degrading effects of fading,20

shadowing and hidden terminals, taking advantage of the spatial diversity pro-

duced by the different locations of the SUs in cooperation. As a consequence of

adopting a cooperative spectrum sensing (CSS) approach, the decisions made on

the occupation state of the sensed band become more reliable [4] in comparison

with the non-cooperative approach.25

In centralized cooperative spectrum sensing with data fusion [4], which is the

one adopted herein, the samples collected by the SUs are sent to a fusion center

(FC) thorough a control channel. At the FC, the final decision (also called
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global decision) is made on the occupancy of the sensed band, and informed to

the SUs using broadcast transmissions also via a control channel.30

1.1. Problem description

The performance of the spectrum sensing is commonly measured by the

probability of false alarm, Pfa, and the probability of detection, Pd. The former

is the probability of making a decision in favor of the presence of the primary

signal in the sensed band, given that the band is vacant (hypothesis H0). The

latter is the probability of deciding in favor of the presence of the primary

signal given that, in fact, the sensed band is occupied (hypothesis H1) [4].

Mathematically,

Pfa = Pr[T > λ|H0] =

∫ ∞
λ

f(t|H0)dt = 1− F (λ|H0), (1)

Pd = Pr[T > λ|H1] =

∫ ∞
λ

f(t|H1)dt = 1− F (λ|H1), (2)

where Pr[·] denotes the probability of occurrence of the underlying event, T is the

test statistic computed according to the spectrum sensing technique adopted, λ

is the decision threshold, f(t|H0) and F (t|H0) are, respectively, the probability

density function (PDF) and the cumulative distribution function (CDF) of T35

under the hypothesisH0, and f(t|H1) and F (t|H1) are respectively the PDF and

the CDF of T under H1. A high Pd is aimed at, in order to protect the primary

network from interferences that may be caused by secondary transmissions in

bands mistakenly considered to be unoccupied. It is also desired that Pfa is

low in order to increase the probability of opportunistic use of the spectrum,40

consequently raising the data throughput of the secondary network.

From (1) and (2) it can be noticed that Pfa and Pd can be computed ana-

lytically only if f(t|H0) and f(t|H1) or, equivalently, F (t|H0) and F (t|H1) are

known. The knowledge of these functions is also necessary to calculate the de-

cision threshold λ, which is typically set to achieve a given constant false alarm

rate (CFAR) of the spectrum sensing process. In other words, λ is calculated
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to attain the target Pfa, while Pd is governed by the signal-to-noise ratio (SNR)

across the SUs receivers. The threshold λ is given by

λ = F−1(1− Pfa|H0), (3)

where F−1 is the inverse function of F (λ|H0), that is, λ is the value of t that

makes F (t|H0) = 1− Pfa.

The knowledge of PDFs and CDFs of a test statistic carries practical signifi-

cance only if these functions can be parameterized according to the CSS system45

variables. This is the condition for allowing the assessment of the CSS perfor-

mance during the project phase, checking in advance the situations or combi-

nations of system parameters under which the test statistic will be effective in

accomplishing the spectrum sensing task as desired. However, it is not always a

trivial task to establish the relationship between the CSS system variables and50

the parameters of the distributions of a test statistic, which often requires very

complex analytical methods. There are also cases in which the test statistic is

formed in such a way that the mathematical analysis of its distributions under

H1, primarily, and sometimes even under H0, become intractable.

1.2. Contributions55

The mathematical intractability while seeking for the PDFs or CDFs of a

test statistic applies to the Gini index detector (GID) [5]. This fact motivated

the authors of the present article to apply artificial neural networks (ANNs)

specifically designed and trained to establish the system-to-distribution param-

eter mapping for the GID test statistic. With such mapping it is possible to60

apply the closed-form expressions also derived herein to compute Pfa, Pd and λ

for a wide range of system parameters of practical relevance. Numerical results

are also reported to validate the theoretical findings.

The choice of the GID among many other test statistics carrying such math-

ematical intractability is owed to the fact that it proved to be quite robust in65

the scenarios of unequal and possibly time-varying noise and received signal

powers across the SUs, a situation that is common in practice. Besides, the
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GID exhibits the important property of CFAR and has low complexity, since

it only requires the computation of the received signal sample covariance ma-

trix (SCM) and a few more operations to form its test statistic. These features70

make the GID an option for devices that have low processing power and require

high energy efficiency, such as IoT devices and certain mobile communication

terminals. Moreover, the GID is blind, meaning that no prior knowledge about

the primary signal and the noise variance is required. In spite of the choice by

the GID, the methodology adopted herein can be adapted to any test statistic75

that poses difficulties on finding its distribution under H0, H1 or both.

1.3. Related work

Among the spectrum sensing techniques, the mostly known are the energy

detection, the matched filter, the cyclostationary feature detection [4], and those

techniques based on the eigenvalues of the received signal SCM [6].80

As far as the distributions of test statistics and corresponding expressions for

computing performance metrics are concerned, one could mention, as extreme

cases, the energy detector and some eigenvalue-based test statistics. The for-

mer carries a relatively simple analytic development [7], whereas the later may

typically resort to extremely complex random matrix analysis. For instance, in85

[8], the moment-matching method is used to parameterize the Beta distribution

for the Hadamard ratio test, under the hypothesis H1. The same approach is

applied in [9] to characterize the Beta distribution of the sphericity test. In [10]

it is demonstrated that the Gamma distribution can be used to evaluate the

performance of volume-based spectrum sensing techniques.90

Regarding the use of ANNs in the wide context of telecommunications, in

[11] an ANN is trained to find system parameters that optimize the performance

of a communication system. In [12], ANNs are applied to solve the transmitter

identification problem. A review about several research papers that deal with

the use of ANNs in the context of cognitive radio is presented in [13], where95

they are explored to assist the choice of modulation, in modulation identification

and signal detection, and to improve the performance of spectrum sensing. The
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implementation of spectrum sensing assisted by ANNs is also addressed in [14]

and [15]. The broader approach of artificial intelligence (AI) is being recently

applied to allow radios to learn how spectrum can be shared among competitors,100

aiming at increasing the overall data throughput [16].

In none of the above-mentioned research the use of the goodness-of-fit (GoF)

process has been identified as an alternative for determining the distributions

of the test statistics, probably because of the subsequent difficulty on mapping

the parameters of the distributions found into the spectrum sensing system105

parameters. Additionally, the application of ANNs as an alternative to the

parameterization of the distributions of test statistics as functions of the system

variables has not been found in the literature. Thus, the authors believe that the

proposals in this article, as summarized in Section 1.2, can serve as reference to

readers for solving similar problems, as an alternative to analytical approaches110

that can often be highly complex or even mathematically intractable.

The remainder of the article is organized as follows: Section 2 describes

the system model and the GID. Section 3 is devoted to the process of fitting

the GID test statistic to candidate probability distributions. The design of the

neural networks for system-to-distribution mapping is described in Section 4.115

Section 5 presents theoretical expressions for performance analysis of the GID-

based CSS system, and reports numerical results to verify the accuracy of these

expressions. Section 6 summarizes the main findings of the work.

2. System model

It is assumed a centralized CSS with data fusion, in which the cognitive

network applies m SUs for spectrum sensing, each having a single antenna, or

a single SU with m antennas. The number of samples collected per antenna

during each sensing interval is n. The total of mn samples are transmitted to

the FC through an error-free control channel. The samples received by the FC

are arranged in the matrix Y ∈ Cm×n, which is given by

Y = HX+V. (4)
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In this equation, the samples of the signals emitted by p PU transmitters are120

arranged in the matrix X ∈ Cp×n, whose elements have Gaussian distribution

with zero mean and variance dependent on the SNR, modeling the envelope

fluctuations of typical modulated and filtered signals [6].

The channel matrix H ∈ Cm×p has elements hij , i = 1, 2, . . . ,m, j =

1, 2, . . . , p, representing the sensing channel gain between the j-th PU and125

the i-th SU. Aiming at modeling a flat and slow Ricean fading channel, the

channel matrix is given by H = GA, where A ∈ Cm×p is formed by elements

aij ∼ CN [
√
K/(2K + 2), 1/(K + 1)], yielding unitary second moment for the

fading magnitude, where K is the Rice factor [5], [17, pp. 211-219]. The ma-

trix G ∈ Rm×m is defined as G = diag(
√
s/savg), where diag(·) returns a130

diagonal matrix whose main diagonal is formed by the vector in the argument,

s = [s1, s2..., sm]T is the vector with the received signal powers across the SUs,

and savg = (1/m)
∑m
i=1 si is the received signal power averaged over all SUs.

The matrixV ∈ Cm×n in (4) contains additive white Gaussian noise (AWGN)

samples having zero mean and SNR-dependent variance σ2
avg, as follows: given135

that the average transmitted signal power over all PUs is savg, the average

SNR, in decibels, is 10 log10(savg/σ
2
avg), where σ2

avg = (1/m)
∑m
i=1 σ

2
i is the

noise power averaged over all SUs.

Aiming at modeling the scenario in which the noise and the received signal

powers at the SUs may be unequal and time-varying, here it is assumed that140

these powers are uniformly distributed across the SUs, independently varying

between consecutive sensing rounds. Specifically, σ2
i ∼ U [0.05σ2

avg, 1.95σ
2
avg] and

si ∼ U [0.05savg, 1.95savg] in each realization of the spectrum sensing.

From the matrix Y, the received signal SCM is computed at the FC as

R =
1

n
YY†, (5)

where † denotes the Hermitian operation (complex conjugate and transpose).

Subsequently, the FC computes the GID test statistic [5], according to

T =
2(m2 −m)

∑m2

i=1 |ri|∑m2

i=1

∑m2

j=1 |ri − rj |
, (6)
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where ri is the i-th element of the vector r that is formed by stacking all columns

of the matrix R. Originally, the Gini index has been proposed as a measure145

of social inequality, which means that the values in r are interpreted as having

the social parameter measures, for example incomes. In [5], the Gini index

is adapted to the spectrum sensing scenario, where it measures the inequality

between the elements of the SCM when the tested hypotheses change.

The global decision upon the occupation state of the sensed band is finally150

made in favor of H1 if T > λ, recalling that λ is the decision threshold. If

T ≤ λ, the decision is made in favor of H0.

3. Goodness-of-fit to the GID test statistic under H0 and H1

This section describes the process of fitting the GID test statistic distribution

to several candidate probability distributions. Initially, samples containing val-155

ues of the test statistic T were generated under H0 and H1. Such samples were

subjected to the maximum likelihood (ML) parameter estimation of the contin-

uous distributions available to the built-in distribution fitting function fitdist

of the MATLAB software, version 2018a, excluding the Beta and the Kernel

distributions. The Beta distribution has been excluded because it is restricted160

to the range [0, 1], and the GID test statistic may have a different support. The

Kernel distribution has been excluded because it is non-parametric, thus not be-

ing applicable to the problem at hand. The remaining candidate distributions

are listed in Table 1, along with the corresponding number of parameters.

Two metrics have been adopted to assess the degree of adherence between165

each candidate distribution and the empirical distribution generated from the

values of the test statistic T defined in (6): the mean squared error (MSE)

between the distributions, and the average of the Kolmogorov-Smirnov statistic

(KSS) resulting from the Kolmogorov-Smirnov GoF test [18], here named mean

KSS (MKSS). After the GoF test, the candidate distributions were ranked by170

ordering these metrics.

The use of the MSE in conjunction with the MKSS has been adopted due
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Table 1: Selected continuous distributions operated by the MATLAB function fitdist

Distribution Number of parameters

Birnbaum-Saunders 2

Burr 3

Exponential 1

Extreme value 2

Gamma 2

Generalized extreme value 3

Generalized Pareto 3

Half-normal 2

Inverse Gaussian 2

Logistic 2

Log-logistic 2

Log-normal 2

Nakagami 2

Normal 2

Rayleigh 2

Rician 2

Stable 4

t location-scale 3

Weibull 2

to the varying and sometimes small number of occurrences in which each of

the candidate distributions is accepted in the Kolmogorov-Smirnov test, under

the typical significance level of 0.05. In other words, the simple fact that a175

particular distribution is accepted as representative of a given sample is not

sufficient to carry out a classification in terms of GoF. As demonstrated by the

analyzes presented in Sections 3 and 5, this procedure unveiled to be suitable

to the problem at hand and precise enough to determine the distributions of T

under the hypotheses H0 and H1.180

Specifically, a sample with 70000 values of T was generated under each hy-

pothesis, for 70 random combinations of the CSS parameters: p = {1, 2, ..., 4}

PUs; m = {2, 3, ..., 7} SUs; n = {10, 20, ..., 100} samples; Rice factor K =

{2, 3, ..., 12}, and SNR = {−15,−14, ...,−5} dB under H1 (the SNR does not

matter under H0). For each sample, the Kolmogorov-Smirnov GoF test was185

carried out for each of the distributions given in Table 1, using the MATLAB
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function kstest. The MSE and the KSS between each empirical and candidate

distribution were subsequently computed and stored for each sample, at the end

being averaged to yield the global MSE and MKSS. The Algorithm 1 shows

the steps of this process, which has been applied to H0 and H1.190

Algorithm 1 GoF of the GID test statistic using the MSE and the MKSS

Runs ← 70000, Loops ← 70, ΣMSE ← 0, ΣKSS ← 0

for i = 1 : 1 : Loops do
Generate the system parameters

for j = 1 : 1 : Runs do
Generate Ti according to (6), under H0 or H1

end

Generate the empirical CDF (CDFe) of the sample {Tj}

Using {Tj}, estimate the parameters of the CDFs in Table 1

For each CDF in Table 1, compute the theoretical CDF (CDFt)

Compute the KSS related to CDFe and CDFt

Compute the MSE between CDFe and CDFt

ΣMSE ← ΣMSE + MSE for each CDFt

ΣKSS ← ΣKSS + KSS for each CDFt

end

MSE ← ΣMSE/Loops for each CDFt

MKSS ← ΣKSS/Loops for each CDFt

Tables 2 and 3 show the ranks of the distributions that attained the five

smallest MSEs and MKSSs for the hypotheses H0 and H1, respectively. Notice

that the ranks are not the same with respect to both metrics under H0, but are

the same up to the third position. Under H1 the ranks are the same.

Table 2: Top five distributions under H0

Distribution MSE (rank) MKSS (rank)

Stable 6.09× 10−5 (1) 1.24× 10−2 (1)

Burr 1.33× 10−4 (2) 1.86× 10−2 (2)

Log-logistic 1.74× 10−4 (3) 2.26× 10−2 (3)

t location-scale 1.98× 10−4 (4) 2.68× 10−2 (5)

Gen. extreme value 2.23× 10−4 (5) 2.43× 10−2 (4)

Under H0, it can be seen in the Table 2 that the Stable distribution is the195

best-ranked in terms of MSE and MKSS. From Table 3, it can be seen that the
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Table 3: Top five distributions under H1

Distribution MSE (rank) MKSS (rank)

Gen. extreme value 4.38× 10−5 (1) 1.02× 10−2 (1)

Stable 1.37× 10−4 (2) 1.93× 10−2 (2)

Burr 1.73× 10−4 (3) 2.21× 10−2 (3)

Log-logistic 4.16× 10−4 (4) 3.41× 10−2 (4)

t location-scale 6.96× 10−4 (5) 4.80× 10−2 (5)

Generalized extreme value (GEV) distribution occupies the top rank position

in terms of both metrics. Hence, from this point onward the Stable distribution

is adopted to characterize the GID test statistic T defined in (6) under H0,

whereas the GEV is the selected distribution to characterize T under H1.200

The parameters of the Stable distribution and their roles are: α (0 < α ≤ 2)

and β (−1 ≤ β ≤ 1) determine the shape of the distribution, γ (0 < γ <

∞) is the scale, and δ (−∞ < δ < ∞) determines the location. The Stable

PDF and CDF cannot be expressed analytically, except for certain values of its

parameters [19]. The parameters of the GEV distribution and their roles are:205

µ (−∞ < µ < ∞) is the location parameter, σ (σ > 0) is the scale, and k

(−∞ k <∞) governs the shape of the distribution. The GEV distribution has

a considerably simple mathematical representation [20].

The Stable and the GEV distributions are included in the list of functions

whose computations have become numerically stable, sufficiently mature and210

well accepted, to the point that expressions containing these functions can be

considered closed-form. For example, the PDF, the CDF and the inverse CDF

of the Stable and the GEV distributions are embedded into the MATLAB envi-

ronment, allowing for calculations as easily as happens with the complementary

error function and other similar functions that can only be operated numerically.215

Figures 1 and 2 respectively illustrate the adherence of the Stable and the

GEV distributions to empirical CDFs of the GID test statistic generated from

three different sets of the CSS system parameters. It can be seen that the theo-

retical and the empirical CDFs are practically overlapped in all cases. Additional
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validation results are presented in Section 5.220
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4. Parameter mapping via artificial neural networks

4.1. Data set generation

In order to generate the whole data set, which has been subsequently divided

into subsets for training, validation and testing the ANNs, a routine has been

developed in the MATLAB software, according to Algorithm 2. The CSS225

system parameters were formed by all combinations of: p = {1, 2, 3, 4} PUs,

m = {2, 3, 4, 5, 6, 7} SUs, n = {10, 20, ..., 100} samples per SU, Rice factor K =

{2, 3, ..., 12}, and SNR = {−15,−14, ...,−5} dB, yielding 29040 combinations.

For each combination, the parameters of the CDFs under H0 and H1 were

estimated under the ML criterion, applying the MATLAB function fitdist230

to 50000 samples of the GID test statistic T defined in (6). Recall that the

actual CDF parameters under H0 do not change with the SNR, but have been

estimated anyway, given the time-domain variations of the noise powers across

the SUs, and the noise waveform itself.

Algorithm 2 Generation of the data set

Loop← 1 ; Runs← 50000

for p = 1 : 1 : 4 do

for m = 2 : 1 : 7 do

for SNR = −15 : 1 : −5 do

for n = 10 : 10 : 100 do

for K = 2 : 1 : 12 do

for i = 1 : 1 : Runs do
Generate Ti according to (6), under H0 and H1

end

Estimate α, β, γ and δ of Stable PDF under H0

Estimate µ, σ and k of GEV PDF under H1

Save: Inputs(loop, :)← [p m n K SNR]

Save: Outputs(loop, :)← [α β γ δ µ σ k]

Loop← Loop+ 1

end

end

end

end

end

Table 4 shows some statistics of the estimates of the distribution parameters235
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associated to the complete data set. Later on in this article, such statistics will

allow the assessment of the ANN accuracy in the task of mapping the system

variables into the parameters of the Stable and GEV distributions.

Table 4: Statistics of the parameters of the Stable and GEV distributions

Maximum Minimum Mean Std. deviation

α 1.9741 1.2832 1.8374 0.1251

β 1 1 1 0

γ 0.0975 0.0188 0.0415 0.0217

δ 1.1461 0.8881 1.0118 0.0689

k 0.3448 -0.1253 -0.0101 0.0737

σ 0.2499 0.0311 0.0990 0.0431

µ 1.6603 0.8718 1.1175 0.1390

It is interesting to notice in Table 4 that the parameter β of the Stable

distribution is always 1. Besides, it can be observed that the values of α are240

high on average, which means that β does not significantly influence the shape

of the PDF [19]. As a consequence, β = 1 can be safely adopted hereafter,

regardless the system parameters.

In summary, there will be one ANN with five inputs and three outputs to

map the system variables {p,m, n,K,SNR} into the parameters {k, σ, µ} of the245

GEV distribution, and another ANN with four inputs and three outputs to map

the system variables {p,m, n,K} into the parameters {α, γ, δ} of the Stable

distribution. Since β = 1, it is obviously not necessary to set this parameter as

an output of the second ANN.

4.2. Artificial neural network training250

Multilayer perceptron (MLP) [21] ANNs have been adopted in this work. For

these ANNs, the input-output equation is the general formula of linear interpo-

lation [22]. Hence, after trained such ANNs are capable of approximating any

continuous non-linear function under certain precision. Owed to this character-

istic, the ANNs of type MLP are suitable for the GID system-to-distribution255

parameter mapping, additionally allowing, due to their interpolation ability, the
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estimation of distribution parameters associated to system variables intermedi-

ate to those used in the training phase. Moreover, it will be demonstrated that

the extrapolation ability is also possible in specific cases.

The ANNs were simulated using the MATLAB deep learning toolbox (for-260

merly neural network toolbox), using 70% of the data set for for training, 20%

for validation, and 10% for testing. The activation function used in the ANN

neurons was the hyperbolic tangent, and the Levenberg Marquardt algorithm

was used during the training phase by the gradient-descent optimization.

The number of training epochs was defined according to a large number of265

preliminary tests with large numbers of epochs. It has been observed that, above

2000 epochs, the mean squared error between actual and estimated parameters

did not reduce significantly. Thus, in order to avoid over-fitting, the maximum

number of epochs was limited to 2000. This relatively small number enables

ANN retraining, if necessary, within a very short time.270

The learning procedure was terminated whenever the validation error mono-

tonically increased for 15 epochs, after reaching a local (possibly global) min-

imum. The set of synaptic weights producing the minimum error just before

these 15 epochs was defined as the optimal. A zero target MSE and a learning

rate of 0.05 were also adopted.275

Tables 5 and 6 report the average of the MSEs between the ANNs’ out-

put parameters and the actual ones (i.e., those estimated from the data under

the ML criterion), respectively for the Stable and the GEV distributions, as a

function of the number of neurons in the hidden layer. These MSEs were aver-

aged over all combinations of system parameters used for training. The actual280

number of training epochs is also given in these tables for reference.

It can be seen that the increase in the number of neurons causes a reduction

in the MSE, as expected. However, under the hypothesis H0 it can be seen

that there is no significant reduction of the MSE above 15 neurons. Under H1,

the same happens when the number of neurons approaches 30. Therefore, these285

were the numbers of neurons adopted in the hidden layers of the ANNs that

map the parameters of the Stable and GEV distributions, respectively.
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The ANNs were translated into the MATLAB functions1 NnH0([p m n K])

and NnH1([p m SNR n K]). The former returns a vector containing the param-

eters α, γ and δ, in this order, of the Stable distribution that characterizes the290

GID test statistic T under H0 (recall that β = 1, always), as a function of the

CSS system parameters p, m, n and K. The latter returns a vector with the

parameters k, σ and µ, in this order, of the GEV distribution that characterizes

T under H1, as a function of the system parameters p, m, SNR, n and K.

Aiming at assessing the performances of the designed ANNs, the set of sys-295

tem variables used to generate the training data was applied as input to the

above functions. After obtaining ANN responses for each of the 29040 combi-

nations of input parameters, the errors between such responses and the param-

eters obtained by ML estimation were calculated. Figures 3 and 4 depict the

histograms of the mapping errors for the hypotheses H0 and H1, respectively.300

Comparing the dispersion of these histograms, measured by the standard de-

viation (SD), with the corresponding standard deviations given in Table 4, it

is concluded that the estimation errors produced by the ANNs are quite small.

Besides, it is observed that the errors are symmetric about zero, which means

that the mappings performed by the ANNs are unbiased. These conclusions305

are strengthened in the next section, where the performances of the CSS sys-

tem obtained from Monte Carlo simulations are compared with those obtained

1The source codes for these functions (NnH0.m and NnH1.m) can be accessed in [23]. These

codes must be in the same directory of the main routine that uses them, and do not depend

on the MATLAB machine learning toolbox to run.

Table 5: MSE provided by the ANN under H0

Nº of neurons MSE Nº of Epochs

5 9.95× 10−6 331

10 6.40× 10−6 672

15 6.38× 10−6 206

20 6.37× 10−6 119

25 6.32× 10−6 167
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Table 6: MSE provided by the ANN under H1

Nº of neurons MSE Nº of Epochs

5 1.10× 10−4 615

10 2.63× 10−5 1338

15 1.14× 10−5 687

20 8.08× 10−6 898

25 6.12× 10−6 878

30 4.65× 10−6 711

35 4.18× 10−6 1087

theoretically, using the parameters mapped by the designed ANNs.
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Figure 3: Histograms of mapping errors under H0
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5. Spectrum sensing performance

The probability of detection, Pd, and the probability of false alarm, Pfa, of a310

spectrum sensing technique are commonly evaluated using the receiver operating

characteristic (ROC) curve, where Pd is traded off against Pfa as the decision

threshold λ is varied. For the simulation results presented subsequently, each

point on a ROC curve was determined from 50000 Monte Carlo events in which

the GID test statistic was generated for a given system setting, as described in315

Section 2.

In terms of theoretical performance analysis, taking as references the Equa-

tions (1), (2) and (3), it follows that

Pfa = 1− FS(λ, α, 1, γ, δ), (7)

where FS(λ, α, 1, γ, δ) is the value of the Stable CDF parameterized by α, β = 1,

γ and δ, at the point t = λ, and

Pd = 1− FG(λ, k, σ, µ), (8)

where FG(λ, k, σ, µ) is the value of the GEV CDF parameterized by λ, k, σ and

µ, at the point t = λ, with the decision threshold determined according to the

target probability of false alarm, Pfa, using

λ = FS
−1(1− Pfa, α, 1, γ, δ), (9)

where FS
−1(1−Pfa, α, 1, γ, δ) is the value of the inverse Stable CDF at 1−Pfa.

It is important to stress that (7), (8) and (9) can be considered closed-

form expressions, since they have numerically stable computations algorithms

available in several modern mathematical software tools. In the MATLAB en-

vironment, these expressions are respectively written as

Pfa = 1-cdf('Stable', λ, α, 1, γ, δ), (10)

Pd = 1-cdf('GeneralizedExtremeValue', λ, k, σ, µ), (11)

18



λ = icdf('Stable', 1− Pfa, α, 1, γ, δ). (12)

In order to verify the accuracy of the system-to-distribution parameter map-

ping carried out by the ANNs, Figure 5 shows theoretical and simulated per-

formances of the GID for three sets of arbitrarily chosen CSS system variables:320

{p = 4, m = 3, n = 50, K = 12, SNR = −5 dB}, {p = 3, m = 5, n = 80,

K = 3, SNR = −11 dB}, and {p = 1, m = 4, n = 20, K = 7, SNR = −10 dB}.

The corresponding parameters of the distributions mapped by the ANNs were:

{α ≈ 1.8011, β = 1, γ ≈ 0.0487, δ ≈ 0.9637, k ≈ −0.0466, σ ≈ 0.1888,

µ ≈ 1.2856}, {α ≈ 1.9166, β = 1, γ ≈ 0.0262, δ ≈ 1.0242, k ≈ −0.0420,325

σ ≈ 0.0573, µ ≈ 1.0825} and {α ≈ 1.7426, β = 1, γ ≈ 0.0425, δ ≈ 1.0344,

k ≈ 0.0710, σ ≈ 0.0844, µ ≈ 1.0864}. It can be seen in Figure 5 that empirical

and theoretical ROCs are practically overlapped, again demonstrating that the

Stable and the GEV distributions satisfactorily represent the GID test statistic

under the hypotheses H0 and H1, respectively. Moreover, it can be concluded330

that the ANNs developed herein are capable of estimating the parameters of

such distributions with accuracy, allowing equally accurate theoretical perfor-

mance calculations.

With the purpose of exemplifying the calculations, consider the upper curve

in Figure 5, for Pfa = 0.1. It follows that λ = icdf('Stable', 0.9, 1.8011, 1,335

0.0487, 0.9637)≈ 1.0719, and Pd = 1-cdf('GeneralizedExtremeValue', 1.0719,

-0.0466, 0.1888, 1.2856) ≈ 0.9509. For the bottom curve, also for Pfa = 0.1,

it can be obtained λ = icdf('Stable', 0.9, 1.7426, 1, 0.0425, 1.0344) ≈

1.1351, and Pd = 1-cdf('GeneralizedExtremeValue', 1.1351, 0.0710, 0.0844,

1.0864) ≈ 0.4414. It can be noticed that these values are in agreement with340

those read from the corresponding ROC curves in Figure 5.

As already mentioned, it is possible to map CSS system parameters different

from those used during the training phase, owed to the fact that an ANN of type

MLP is an interpolator by construction. To illustrate this possibility, Figure 6

presents theoretical and simulated ROC curves considering the following combi-345
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Figure 5: Theoretical and simulated GID performances for parameters present in the ANNs

training data

nations of system variables: {p = 2,m = 4, n = 25,K = 7.7, SNR = −10.3 dB}

and {p = 3,m = 6, n = 64,K = 4.8, SNR = −12, 5 dB}. These variables were

mapped by the ANNs onto the following parameters of the Stable and GEV

distributions: {α ≈ 1.9804, β = 1, γ ≈ 0.0175, δ ≈ 1.0486, k ≈ −0, 1046, σ ≈

0.0577, µ ≈ 1.1591}, and {α ≈ 1.7679, β = 1, γ ≈ 0.0407, δ ≈ 1.0276, k ≈350

0.0479, σ ≈ 0.0838, µ ≈ 1.0811}, respectively. From this figure it can be seen

that theoretical and simulation results are in close agreement.

It was also verified that it is possible to use the ANNs developed to extrap-

olate results in situations of good performance of the CSS scheme, for instance

Pd > 0.8 and Pfa < 0.2. This possibility is confirmed in Figure 6, where theoret-355

ical and simulated performances are very close to each other. The system vari-

ables considered in this case were {p = 4,m = 7, n = 150,K = 8, SNR = −11.5

dB}, which were mapped into the following parameters of the Stable and GEV

distributions: {α ≈ 1.9264, β = 1, γ ≈ 0.0234, δ ≈ 1.0553, k ≈ −0.0493, σ ≈

0.0467, µ ≈ 1.0965}.360

The probabilities Pd and Pfa can be merged into a single quantity, the area

under the ROC curve (AUC), which can be used as an alternative spectrum
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Figure 6: Theoretical and simulated GID performances for parameters not present in the

ANNs training data

sensing performance metric. When AUC = 0.5, the worst performance is un-

veiled, corresponding to a useless detector with Pd = Pfa, which is equivalent

to deciding arbitrarily for H0 or H1. When AUC = 1, the best performance365

is attained, corresponding to an ideal detector for which the ROC curve passes

through the points (Pd = 1, Pfa = 1), (Pd = 1, Pfa = 0), and (Pd = 0, Pfa = 0).

Thus, a nontrivial detector has 0.5 < AUC ≤ 1.

With the objective of identifying unsatisfactory system-to-distribution pa-

rameter mapping results, if any, the 29040 combinations of system variables370

used to train the ANNs were used to generate parameters of the Stable and the

GEV distributions estimated by the ML criterion, as well as the ones mapped

by the developed ANNs. Each pair of estimated and mapped parameters was

used in a Monte Carlo simulation, generating the corresponding pair of ROC

curves. The histogram of the difference (or error) between AUCs of all ROC375

pairs is shown in Figure 7. This histogram has a mean ≈ 3.39 × 10−5 and

a standard deviation ≈ 0.0028. Taking into account the limits of an AUC, it

is concluded that the mapping errors produced by the ANNs are quite small,

yielding practically imperceptible differences between two ROC curves.
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6. Conclusions380

This paper addressed the problem of mapping the cooperative spectrum

sensing system variables into those that parameterize the probability distribu-

tions of the Gini index detector (GID) test statistic, under the null (H0) and

the alternative (H1) hypotheses of absence and presence of the primary signal

in the sensed band, respectively. A goodness-of-fit analysis unveiled the Stable385

and the Generalized Extreme Value distributions as representative of the GID

test statistic under H0 and H1, respectively. Two artificial neural networks were

developed to establish the system-to-distribution parameter mapping, allowing

theoretical calculations of the spectrum sensing performance and the decision

threshold via numerically-computable closed-form expressions.390

Our findings can aid GID-related research, and also as support for the pa-

rameterization of this detector in practical applications, without the need for

time-consuming computational simulations or field trials with real hardware.

Additionally, it is possible to translate the functions that describe the devel-

oped neural networks into more comprehensive language environments like C,395

Java or Python, or even implement them in hardware.

The results presented may encourage the application of the method described

herein to other test statistics whose analytical development to obtain their dis-

tributions under H0 and H1 is very complex or even mathematically intractable.
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