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Pietra-Ricci Index Detector for Centralized
Data Fusion Cooperative Spectrum Sensing

Dayan Adionel Guimarães

Abstract—The Pietra-Ricci index is often used in economic and
social sciences as a measure of inequality. In this Correspondence,
the index is adapted to the cooperative spectrum sensing scenario,
yielding the Pietra-Ricci index detector (PRIDe). The PRIDe
applies the index to distinguish the shapes of the received signal
sample covariance matrices in the situations of presence and
absence of the primary sensed signal. It is shown that the PRIDe
is very simple, is robust against time-varying noise and received
signal powers, exhibits the constant false alarm rate property,
and outperforms state-of-the-art detectors in many situations.

Index Terms—Cognitive radio, Gini index, cooperative spec-
trum sensing, Pietra-Ricci index.

I. INTRODUCTION

THE radio-frequency (RF) spectrum is currently crowded
due to the large amount of wireless communication

systems in operation, and due to the adoption of a fixed
allocation policy in which a primary user (PU) network is
granted exclusive use of a given RF band. The situation
tends to worsen with the massive deployment of the Internet
of Things (IoT) and the fifth generation (5G) of wireless
communication networks, mainly due to the expected large
number of terminals and the demand for higher bandwidths.

The cognitive radio (CR) concept has emerged as a potential
solution to the RF spectrum shortage [1], [2], exploring the
varying nature of the spectrum occupation in time and space.
A CR network can adopt a dynamic spectrum access policy
in which unoccupied frequency bands can be opportunistically
used by cognitive secondary user (SU) terminals. In order to
detect the presence of the PU signals in the band of interest, the
SUs apply a process called spectrum sensing [2], [3], possibly
assisted by an RF spectrum occupancy database [4].

Spectrum sensing can be made independently by each SU,
or can resort to cooperation. The former is subjected to
problems that reduce the PU signal detection power, like
multipath fading, shadowing and hidden terminals [2]. Cooper-
ation improves the accuracy of the decisions on the spectrum
occupation, thanks to the spatial diversity promoted by the
different locations of the SUs in cooperation.

In centralized cooperative spectrum sensing (CSS) with data
fusion, which is considered herein, samples of the received

Copyright (c) 2020 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
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signal, or quantities derived therefrom, are transmitted to a
fusion center (FC) where a test statistic is formed and the
global decision is made. This decision is informed to the SUs,
which will compete for the band if it is vacant, by means of
some multiple access protocol.

A. Related research

Many of the test statistics developed so far for spectrum
sensing are formed by processing the received signal sample
covariance matrix (SCM). This processing often involves
matrix computations like the determinant, the trace, as well
as eigenvalues and eigenvectors. Examples of detectors that
process the SCM are the Hadamard ratio (HR) detector [5],
[6], the arithmetic to geometric mean (AGM) detector [7],
the volume-based detectors (VD) [8], [9], the maximum-
minimum eigenvalue detector (MMED), the eigenvalue-based
generalized likelihood ratio test (GLRT) [10], and the Gini
index detector (GID) [11]. These detectors are blind in the
sense that they do not demand the knowledge of the noise
variance, neither the characteristics of the signal to be detected.

Among the above detectors, the GID deserves especial at-
tention for exhibiting computational complexity much smaller
than the other ones, robustness against variations in the re-
ceived signal and noise powers, and high detection power
when the signal has a dominant propagation path component,
either line-of-sight or specular.

B. Contribution and structure of the paper

This Correspondence proposes the Pietra-Ricci index detec-
tor (PRIDe) for centralized data fusion CSS. The PRIDe test
statistic is easily computed from the elements of the received
signal SCM, which makes it much less complex than the
detectors HR, AGM, VD, MMED, and the eigenvalue-based
GLRT, and even a little less complex than the GID. In fact,
to the best of the authors knowledge, the PRIDe is the less
complex blind detector available so far. It is also robust against
nonuniform and time-varying received signal and noise levels,
attains the constant false alarm rate (CFAR) property, and
outperforms the above detectors in several circumstances.

The remainder of the article is organized as follows. Sec-
tion II describes the system model. The PRIDe is proposed
in Section III. Numerical results and analyses are given in
Section IV. The main conclusions are drawn in Section V.

II. SYSTEM MODEL

The centralized CSS with data fusion is accomplished by m
cognitive SUs, each one collecting n samples of the signal
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received from a single PU transmitter during each sensing
interval. At the FC, these samples form the matrix Y ∈ Cm×n
given by

Y = hxT + V. (1)

In this equation, the samples associated to the signal trans-
mitted by the PU form the vector x ∈ Cn×1. These samples
are zero-mean complex Gaussian random variables whose
variance is set according to the average signal-to-noise ratio
(SNR) across the SUs. The Gaussian distribution is adopted
due to the fact the it appropriately describes the envelope
fluctuations of typical modulated and filtered digital commu-
nication signals [10].

The channel vector h ∈ Cm×1 in (1) has elements hi ,
i = 1, 2, . . . ,m, representing the flat channel gains between
the PU and the i-th SU. These gains are constant during the
sensing interval and independent and identically distributed
(i.i.d.) between consecutive sensing rounds. The channel vec-
tor is given by h = Ga, where G is a gain matrix to
be defined latter, and the vector a ∈ Cm×1 has elements
ai ∼ CN [

√
κi/(2κi + 2), 1/(κi + 1)], yielding E{|ai |

2} = 1,
with κi being the Rice factor1 of the channel between the
PU and the i-th SU. To model extremes of realistic scenarios,
κi = 10Ki /10, where Ki ∼ N [µK , σK ], with µK = 1.88 dB
and σK = 4.13 dB for urban areas, and µK = 2.63 dB and
σK = 3.82 dB for rural and open areas [12].

In practice, the SNR across the SUs is time-varying and
dependent of the SUs’ locations. This is owed to the main
reasons: i) time-varying received signal levels are produced
by different distance-dependent path losses between the PU
and the potentially moving SUs, and ii) receiver calibration
errors, as well as changes in low noise amplifier (LNA) gains
and environmental temperature cause variations in the thermal
noise level generated in the receiver circuitry.

Different (i.e., nonuniform) received signal levels across the
SUs may be considered in the present model by setting the gain
matrix G ∈ Rm×m as G = diag(

√
p/pavg), where the vector p =

[p1, p2, . . . , pm] contains the received signal powers across the
SUs, and pavg = (1/m)

∑m
i=1 pi is the average received signal

power over all SUs. Since the average channel power gain is
unitary, without loss of generality, the PU transmits with a con-
stant power pavg. If nonuniform and time-varying received sig-
nal powers are assumed, then pi ∼ U[(1 − ρ)pavg, (1 + ρ)pavg]
in each sensing round, where ρ is the fractional variation
about the average. In the case of nonuniform and time-varying
noise, the elements in the i-th row of the matrix V ∈ Cm×n
in (1) are i.i.d. Gaussian noise samples with zero mean
and variance σ2

i ∼ U[(1 − ρ/2)σ2
avg, (1 + ρ/2)σ2

avg] in each
sensing round, where σ2

avg = (1/m)
∑m

i=1 σ
2
i is the average

noise variance across the SUs. Thus, the fraction of noise
power variation is arbitrarily set as half the fraction of signal
power variation. The received SNR, in dB, averaged over all
SUs, is SNR = 10 log10(pavg/σ

2
avg).

1In a multipath fading channel, the Rice factor is the ratio between the
power in the dominant multipath component and the power of the remaining
ones. If κi = 0, the Ricean fading specializes to the Rayleigh fading. If
κi → ∞, a pure additive white Gaussian noise (AWGN) channel results. For
practical purposes, an almost-pure AWGN channel is observed if κi > 10.

It is worth noting that the CSS with multiple SUs in
cooperation is equivalent to the spectrum sensing made by a
single SU with multiple antennas, in terms of the model given
in (1). However, the channel vector h preferably must take
into account the particularities of a CSS with single-antenna
SUs or a single SU with multiple antennas. Here, the channel
model has been chosen to fit the CSS scenario.

Given Y at the FC, the SCM of order m is computed as

R = 1
nYY†, (2)

where † denotes the complex conjugate and transpose opera-
tion. Under the hypothesis H0, the primary signal is absent in
the band of interest, that is Y = V. Under the hypothesis H1,
the primary signal is present, that is, Y = hxT + V.

The metrics often used to assess the spectrum sensing
performance are the probability of detection, Pd, and the
probability of false alarm, Pfa. The former is the probability
of deciding in favor of an occupied band, given that it is really
occupied. The latter is the probability of deciding in favor of
an occupied band, given that it is in fact vacant.

III. THE PIETRA-RICCI INDEX DETECTOR

When the signal detection theory is applied to the spectrum
sensing binary hypothesis test problem, it quite often yields
elegant developments of detectors, but in most cases the
assumptions made to allow for a mathematically tractable
solution do not guarantee satisfactory operation in all scenarios
of practical interest. Here, instead of applying such theory,
the detector is devised based on an existing statistical metric,
specifically an index used in economic and social sciences as a
measure of inequalities, which is the Pietra-Ricci index [13],
also known as Hoover index, Robin Hood index or Schutz
index. The Pietra-Ricci index is given by

P =
∑

i |xi − x̄ |
2
∑

i xi
, (3)

where |·| denotes the absolute value operation, xi is the income
of the i-th person and x̄ is the mean income. The index P
measures the portion of income that would be taken from the
privileged (richer) half of the population in analysis and given
to the less privileged (poorer) half in order to achieve equality.

To adapt the Pietra-Ricci index to the spectrum sensing
scenario, the incomes operated in (3) need to be translated
into a quantity obtained from the spectrum sensing process.
Here, the index is used to measure the inequality level between
the received signal SCM elements when the PU signal state
changes. To illustrate this concept, Fig. 1 depicts the mesh
surface plot of the absolute values of the elements of an SCM
under the hypotheses of absence (left) and presence (right)
of the PU signal. If these values are viewed as incomes,
the Pietra-Ricci index can be used to distinguish the SCMs
and, thus, can be applied as a binary hypothesis test statistic
for spectrum sensing. A similar reasoning has been followed
in [11] to adapt the Gini index to the binary hypothesis test
associated to the spectrum sensing problem.

Let ri denote the i-th element of the vector formed by
stacking all columns of R, and let r̄ = (1/m2)

∑
i ri . The

Pietra-Ricci index detector (PRIDe) test statistic is defined as
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Fig. 1. Mesh surface plot of an SCM under H0 (left) and H1 (right), for
m = 40, n = 10000, SNR = −5 dB, and κi = 10 for i = 1, . . . , 40.

TPRIDe =

∑m2

i=1 |ri |∑m2

i=1 |ri − r̄ |
. (4)

The factor 2 in (3) is not being used in (4), since it does
not affect performance. The reciprocal of (3) has been adopted
in (4) for convenience, such that, given a decision threshold γ,
if TPRIDe > γ the decision is made in favor of H1; otherwise
the decision is in favor of H0. Additionally, the absolute value
of ri is used in (4) since this quantity can be complex.

Clearly, the computation of (4) is quite simple, which is a
desirable attribute. Moreover, (4) is formed by a ratio of two
quantities that, by construction, are affected in the same pro-
portion by the noise variance, conferring the CFAR property
to the PRIDe. This property allows for the configuration of
γ to yield a target Pfa, independent of the noise variance. To
demonstrate this property, Fig. 2 shows empirical probability
density functions (PDFs) obtained from 50000 values of (4)
under H0 and H1, for σ2

avg = 1 (left) and σ2
avg = 10 (right),

m = 5 SUs, n = 150 samples per SU, ρ = 0.95, and a rural
area. The PU transmit power was set to keep the SNR fixed
in −12 dB for both values of σ2

avg. It can be seen that the PDFs
under H0 are identical in shape and support, meaning that the
area on the right of any γ, which corresponds to Pfa, will
be the same no matter the value of σ2

avg. Hence, the PRIDe
detector indeed attains the CFAR property.
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Fig. 2. Empirical PDFs of (4) for σ2
avg = 1 (left) and σ2

avg = 10 (right), with
m = 5, n = 150, ρ = 0.95, rural area and SNR = −12 dB.

IV. COMPARATIVE ANALYSES

In this section, the PRIDe is compared with the detec-
tors GID, HR, AGM, VD number 1 (VD1), MMED, and
GLRT, in terms of complexity and performance, the latter
obtained by computer simulations using the MATLAB soft-
ware. The competing test statistics are given in Table I,
where λ1 ≥ λ2 ≥ · · · ≥ λm are the eigenvalues of R, det(R)

is the determinant of R, ri j is the element in the i-th row
and j-th column of R, and E = diag(d), where diag(d) is
the diagonal matrix whose main diagonal forms the vector
d = [d1, d2, · · · , dm], with di = ‖R(i, :)‖2, being ‖ · ‖2 the
Euclidean norm.

TABLE I
COMPETING TEST STATISTICS

TGID =

∑m2

i=1 |ri |∑m2

i=1
∑m2

j=1
���ri − r j

���
TAGM =

1
m

∑m
i=1 λi(∏m

i=1 λi
)1/m

THR =
det(R)∏m
i=1 rii

TGLRT =
λ1∑m
i=1 λi

TVD1 = log
[
det(E−1R)

]
TMMED =

λ1
λm

A. Computational complexity

The computational complexity of the GID is dominated by
the cost of calculating the SCM, which is O(nm2) [14]. The
other test statistics shown in Table I have similar complexities,
around O(nm2) for computing the SCM, plus the complexity
related to calculating eigenvalues and determinants, which
costs around O(m3) [11], [14]. Hence, the complexities of
computing TPRIDe and TGID are similar and by far smaller
than the other ones. In detail, the complexity of the PRIDe
is even smaller than the complexity of the GID, since the
former executes m2 − 1 times less additions than the latter in
the denominator of the test statistic.

B. Simulated performance results

The performance results shown hereafter give Pd as a
function of the most relevant system parameters, for a constant
Pfa = 0.1 [4]. Each point on all curves was determined from
50000 Monte Carlo computer simulation runs, corresponding
to the generation of the same number of each test statistic
under H0 and H1, for the same amount of transmitted signal,
noise and channel realizations. The MATLAB simulation code
is available at [15]. The average SNR or the number of samples
n was adjusted in some cases to guarantee that the Pd attained
by the best detector became close to 0.9, which is a reference
target in the IEEE 802.22 standard [4], around the mid-value
of the parameter varied, so that values of Pd below and above
this reference may be seen throughout the whole best result.

Fig. 3 gives Pd versus the fraction ρ that governs the noise
and signal power variations, for an urban area and SNR = −10
dB (left), and for a rural area and SNR = −10.4 dB (right). It
is clear that the detectors PRIDe, GID, HR and VD1 are very
robust against these variations. The GLRT, the MMED and the
AGM are not robust at all. Moreover, it can be seen that the
PRIDe is considerably superior to the GID and a little superior
to the HR and the VD1 for any ρ. Recall that the GID is the
only detector whose complexity approximates the complexity
of the PRIDe; the other ones are much more complex.

Hereafter, only nonuniform and time-varying noise and
signal powers with ρ = 0.95 are assumed, since uniform and
fixed levels for these quantities are unrealistic.
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Fig. 3. Pd versus ρ for m = 5, n = 200, and Pfa = 0.1: urban area and
SNR = −10 dB (left); rural area and SNR = −10.4 dB (right).

Fig. 3 shows results of Pd versus the average SNR across
the SUs, for an urban area and n = 200 (left), and for a rural
area and n = 160 (right). The PRIDe achieves comparable or
the best performance for any SNR, outperforming the GID in
most of the analyzed SNRs. The detectors GLRT, MMED and
AGM unveiled poor performances due to their non robustness
to signal and noise power variations, except at very high SNRs.
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Fig. 4. Pd versus SNR for m = 5, ρ = 0.95, and Pfa = 0.1: urban area and
n = 200 (left); rural area and n = 160 (right).

Fig. 5 gives Pd versus the number of samples n, for an
urban area and SNR = −11.5 dB (left), and for a rural area and
SNR = −12 dB (right). The influence of the number of SUs m
on Pd is depicted in Fig. 6 for an urban area and SNR = −11
dB (left), and for a rural area and SNR = −11.5 dB (right).
From these figures it can be seen that the PRIDe is capable of
outperforming the other detectors for any n and m. The GLRT,
MMED and AGM are useless in the setup of Fig. 5, yielding
poor performances in the case of Fig. 6, owed to their poor
robustness against signal and noise power variations.

In general, it can be noticed in Figs. 3-6 that the perfor-
mances of the GID and the PRIDe have become closer to each
other when the environment changed from urban to rural. This
is owed to the facts that rural areas are subjected to larger Rice
factors than urban areas, on average, and that the GID achieves
very good performances when the Rice factor is large [11].

0 200 400 600 800 1000

Number of samples, n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n,

 P
d

PRIDe
GID
HR
VD1
GLRT
MMED
AGM

0 200 400 600 800 1000

Number of samples, n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n,

 P
d

Fig. 5. Pd versus n for m = 5, ρ = 0.95, and Pfa = 0.1: urban area and
SNR = −11.5 dB (left); rural area and SNR = −12 dB (right).
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Fig. 6. Pd versus m for n = 200, ρ = 0.95, and Pfa = 0.1: urban area and
SNR = −11 dB (left); rural area and SNR = −11.5 dB (right).

Interesting enough, the gaps between the performances of the
PRIDe and the other detectors analyzed have increased when
the environment changed from urban to rural.

C. Theoretical performance considerations and SNR walls

Up to the moment of preparation of this Correspon-
dence, the expressions for the PDFs or the cumulative dis-
tribution functions (CDFs) of TPRIDe under H0, respectively
f (t |H0) and F (t |H0), and under H1, respectively f (t |H1)
and F (t |H1), are unknown. These expressions are hard or in-
tractable to derive analytically, thus preventing the theoretical
computation of Pd, Pfa and γ.

In order to circumvent the problem of unknown theoretical
distributions, one may resort to a semi-analytical approach in
which they are found via a goodness-of-fit method, with distri-
bution parameters obtained through an appropriate method for
mapping them into the CSS parameters, for instance using
simple artificial neural networks. Such approach has been
successfully applied in [16] in the case of the GID detector,
and can be adapted to the PRIDe with minor effort.

Another performance metric is the SNR wall, which is the
SNR value below which it is not possible to achieve an unlim-
ited reliability in terms of Pd and Pfa, no matter the number of
collected samples, n [17]. This classical definition applies to
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detectors that make use of the noise variance information, thus
being dependent of the uncertainty on this information. In [18],
the SNR wall is alternatively defined as the SNR value below
which the medians of the test statistic distributions under the
two hypotheses overlap, for a sufficiently large n, which means
that either Pfa or 1−Pd becomes larger than 0.5. This definition
is applicable to all test statistics in analysis herein, since they
do not make use of the noise variance, as already demonstrated
in [18] for the MMED. Moreover, the SNR wall defined in this
way is relatively easy to compute, yielding results that closely
approximate known theoretical ones [18].

The SNR walls associated with the detectors considered in
this Correspondence are shown in Table II, for urban and rural
environments, assuming m = 5, n = 10000, ρ = 0.95, and
50000 values of each test statistic, for each hypothesis. For
each detector, the average SNR was decremented in steps of
0.5 dB, departing from a value surely above the SNR wall,
until the median of the test statistic associated to H1 crossed
the median associated to H0. The SNR at this point was
recorded as the SNR wall.

TABLE II
EMPIRICAL SNR WALLS, IN DECIBELS

PRIDe GID AGM HR GLRT VD1 MMED
Urban −38.5 −40.5 −15.5 −36.0 −18.5 −32.0 −17.0
Rural −40.0 −42.0 −15.5 −34.0 −18.5 −31.5 −17.0

Table II demonstrates that SNR walls exist even when the
detector does not use the noise variance information, as also
noted in [18]. The table also unveils results in agreement
with those in Figs. 3–6 for all detectors, that is, an increase
(resp. decrease) in the SNR wall from the urban to the rural
environment is consistent with a performance degradation
(resp. improvement). When checking this behavior, one must
be aware of changes in the number of samples, n, or in
the average SNR, from one environment to the other. Notice
also that the SNR walls of the GID are smaller than in the
case of the PRIDe, meaning that the former is capable of
outperforming the latter in very small SNR regimes, as can
be confirmed from Fig. 4. Moreover, the performance ranking
observed in Figs. 3–6 closely matches the ordering of the SNR
walls, except in the case of the PRIDe and the GID due to the
low SRN regime, as already explained. The close proximity of
the results attained by the HR and the VD1 detectors in Fig. 4
at low SNRs prevent accurate comparisons in this regard.

V. CONCLUSIONS

This Correspondence proposed the Pietra-Ricci index de-
tector (PRIDe) for centralized cooperative spectrum sens-
ing with data fusion. The computational complexity of the
PRIDe test statistic is the smallest among all bling detectors
identified in the literature. Moreover, the PRIDe is robust
against time-varying nonuniform received signal and noise
powers, attains the constant false alarm rate property, and
outperforms state-of-the-art detectors in many circumstances.
The reported simulation results were supported by an empirical
SNR wall analysis, and by a system model that takes into
account typical sensing channel characteristics found in the

real world, namely: the combination of fading and thermal
noise, the variation of received signal and noise powers across
the spectrum sensors, and the dynamics of the line-of-sight
condition between the transmitter and the sensors over time.

Since there is no analytical expression for the probability
density functions of the PRIDe test statistic, it was not possible
to make a theoretical analysis of the detector’s performance.
The use of goodness-of-fit testes combined with artificial neu-
ral networks for the system-to-distribution parameter mapping
problem, targeting numerically-computable expressions, is a
promising semi-analytical solution to be investigated.
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