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Abstract—Low computation complexity and robustness against
dynamical noise are attributes of the cooperative power spectral
density split cancellation (CPSC) algorithm, developed for cen-
tralized data-fusion cooperative spectrum sensing. Recently, an
improved version of the CPSC was proposed, named circular
folding CPSC (CFCPSC), which outperforms the CPSC while
maintaining low complexity and robustness against dynamical
noise. This correspondence proposes the weighted CFCPSC
(WCFCPSC), which improves the performance of the CFCPSC,
retaining the attributes of its predecessors. Expressions are
derived for the probability of false alarm, and for the proba-
bility density and the cumulative distribution functions of the
main random variables that form the WCFCPSC test statistics.
Simulations results are given to support the theoretical findings
and to demonstrate the superior performance of the WCFCPSC.

Index Terms—CFCPSC, cognitive radio, cooperative spectrum
sensing, CPSC, dynamic spectrum access, WCFCPSC.

I. INTRODUCTION

THE problem of radio-frequency (RF) spectrum shortage
is a consequence of the unprecedented growth in wireless

communications services and the adoption of the fixed spec-
trum allocation policy in which the incumbents, often called
primary users (PUs), are granted exclusive right to use a given
band. This growth will become even more pronounced due
to the deployment of the fifth-generation (5G) of wireless
communication systems and the proliferation of the Internet
of things (IoT), as both will interconnect a massive number of
transceivers.

Nonetheless, researches have revealed that the RF spectrum
is underutilized in certain bands and geographic locations [1].
Hence, a new dynamic spectrum access (DSA) policy has been
considered as a solution to the RF spectrum shortage problem.
In this new policy, secondary users (SUs) can share the RF
spectrum with the PUs, for instance by means of opportunistic
access to vacant bands. This is accomplished by means (or
with the help) of spectrum sensing [2], a technique that renders
the SUs the capability of searching for idle bands.

Challenges, opportunities and applications of the spectrum
sensing in the context of vehicular networks is given for
instance in [3, Chap. 8].
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Cooperative spectrum sensing (CSS), which makes use
of multiple SUs that collaborate in the PU signal detection
process, offers better detection performances than its non-
cooperative counterpart, while mitigating multipath fading,
shadowing, and the hidden terminal problem [2].

In centralized CSS, which is the focus of this correspon-
dence, the SUs in cooperation collect samples of the received
signal and forward them, or some quantity derived from them,
to a fusion center (FC) via a report control channel. The
FC then combines the received information and makes the
decision upon the occupation state of the sensed band.

Among the CSS schemes, the cooperative power spectral
density split cancellation (CPSC) [4] has become attractive
due to its low computation complexity and robustness against
dynamical noise, a situation in which the noise powers at the
SUs receivers may be different from each other and time-
varying. An improved version of the CPSC called circular
folding CPSC (CFCPSC) was recently proposed [5], yielding
higher statistical power than its predecessor, while keeping low
complexity and robustness against dynamical noise.

The CPSC, the CFCPSC and other related algorithms have
been addressed by other research initiatives [6]–[9]. The
cumulative distribution functions (CDFs) of the main random
variables that form the CPSC test statistics were derived
in [6], along with an accurate expression for the probability
of false alarm. In [7], the CFCPSC was modified to operate
with SUs having multiple antennas. A soft-decision CFCPSC-
based algorithm was proposed in [8], and evaluated under
quantization errors in the report control channel. In [9], two
CFCPSC-based hard decision algorithms were proposed to
reduce the report channel data traffic.

This correspondence proposes a modified CFCPSC algo-
rithm in which the test statistics are weighted to form the
final statistics. The new algorithm is named weighted CFCPSC
(WCFCPSC). Near-optimal and suboptimal weights are pro-
posed and compared. Results show that the WCFCPSC yields
a remarkable performance gain over the pure CFCPSC algo-
rithm, maintaining the other attributes of the basis algorithm.
An expression for the probability of false alarm is also derived
and verified by computer simulations.

II. SYSTEM MODEL AND THE CFCPSC ALGORITHM

The CSS is made by U SUs, each one collecting N
samples of the signal received during a sensing interval. These
samples are represented by xu(n), for n = 1, 2, . . . , N and
u = 1, 2, . . . , U . The decision is usually modeled as a binary
hypothesis test in which the presence and the absence of
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the PU signal are respectively represented by the hypotheses
H1 and H0. Mathematically, xu(n) = ηu(n) under H0 and
xu(n) = s(n) + ηu(n) under H1, where ηu(n) represents
the n-th sample of a zero-mean additive white Gaussian noise
(AWGN) with variance σ2, and s(n) denotes the PU signal.

The steps of the CFCPSC algorithm [5] are, in summary:

1) Estimate the power spectral density (PSD) of xu(n)
via the discrete Fourier transform (DFT) according to
F ′u(n) = 1

N |DFT{xu(n)}|2;
2) Compute the modified circular-even component of

F ′u(n) as Fu(n) = (F ′u(1) + F ′u(N/2 + 1))/2 for n =
1, and as Fu(n) = (F ′u(n) + F ′u(N − n+ 2))/2 for
n = 2, 3, . . . , N ;

3) Split Fu(n) into 2L sub-bands, each having V =
N/(2L) samples, and then compute the quantity Fu,` =∑V
n=1 Fu ((`− 1)V + n) for the `-th sub-band, ` =

1, 2, . . . , L;
4) Compute the total signal power received by the u-th SU

via F full
u =

∑N/2
n=1 Fu(n);

5) Compute the quantity ru,` = Fu,`/F
full
u for the `-th sub-

band monitored by the u-th SU;
6) At the FC, average ru,` over all SUs in the `-th sub-

band, yielding the test statistics ravg
` = 1

U

∑U
u=1 ru,`;

7) Compare ravg
` with a decision threshold γ and make a

decision regarding the `-th sub-band as H0 if ravg
` < γ,

or H1 otherwise;
8) Make the decision on the occupation state of the sensed

band as H0 if all sub-bands were decided as H0; or as
H1 if one or more sub-bands were decided as H1.

III. THE WEIGHTED CFCPSC ALGORITHM

In the WCFCPSC algorithm, the Steps 1, 2, 3, 4, 5 and 8
of the basis CFCPSC algorithm are kept unchanged, whereas
the Step 6 is modified such that a weight w` is applied to the
`-th statistic ravg

` , yielding

ravg-w
` = w`r

avg
` , (1)

from where the factor 1/U used in the computation of ravg
` can

be removed or incorporated into w`, as it does not influence
performance. In the Step 7, ravg

` is replaced by ravg-w
` .

A. Near-optimal weights

A suitable procedure for determining the optimal weights
would be, for example, by maximizing the probability of
detection, Pd, for a fixed probability of false alarm, Pfa, in
the optimization variables w`. However, this is not possible
because an expression for Pd is unknown. Even if such an
expression were known, there would be no guarantee that the
optimization problem instance could be solved via traditional
analytical methods or numerically.

Evidences based on observations of the WCFCPSC perfor-
mance showed that higher weights must be given to the por-
tions of the received signal plus noise PSD having higher lev-
els. This is an intuitively-satisfying rule, because, in essence,
the CPSC-based algorithms detect the PU signal based on the

power concentration difference between the noise-only and
the signal plus noise PSDs. Thus, it is claimed that the near-
optimal weights are those that follow the shape of the signal
plus noise PSD, taking into consideration the circular folding
operation in Step 2 of the WCFCPSC algorithm.

Aiming at illustrating the calculation of such near-optimal
weights, Fig. 1 shows the PSD of a baseband quaternary phase-
shift keying (QPSK) signal, the PSD of the QPSK signal plus
noise, and the weights, using hypothetical frequency and PSD
values without loss of generality. The weights shown are for
L = 10, with w1 shifted away from the theoretical QPSK plus
noise PSD due to the circular folding operation in Step 2 of
the algorithm for n = 1. Notice that the role of the weights
is to favor higher values of ravg

` , which carry higher signal-to-
noise ratios (SNRs), while attenuating the ones corresponding
to the tail of the PSD, which are subjected to lower SNRs.
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Fig. 1: Illustration of near-optimal weights for the WCFCPSC algorithm.

Since the mathematical proof of the strict optimality or even
the near-optimality of the weights is not possible due to the
reasons already mentioned, an empirical proof [10] was carried
out, from which it can be demonstrated that the PSD-shaped
weights can be considered near-optimal if: i) only a few sets
of weights can yield better spectrum sensing performances,
and ii) when such better performances are attained, they carry
small advantages with respect to the one achieved with the
claimed near-optimal weights.

To conduct such an empirical proof, 100,000 Monte Carlo
simulation trials were executed, each one generating L in-
dependent and uniformly distributed values of w` in the
interval [0, 1], yielding the associated spectrum sensing per-
formance in terms of the area under the receiver operating
characteristic (ROC) curve, the AUC, obtained from 100,000
spectrum sensing events.

A baseband QPSK PU signal with S equally-spaced samples
per symbol was adopted as the primary user signal. Different
values of S have been tested to simulate different degrees
of PSD concentration. A larger S means a higher PSD
concentration.

The number of SUs was set to U = 5, adopting twelve
pairs of L and S values: S = 4 with L = 10, 20, 40, 80;
S = 5 with L = 10, 20; S = 8 with L = 40, 80; S = 10 with
L = 10, 20; and S = 16 with L = 40, 80. Since the number
of samples N = 2L has a large influence on the spectrum
sensing performance, the average SNRs across the SUs were
set to Γ = −6.46,−8.93,−11.74,−13.4 dB, respectively for
L = 10, 20, 40, 80, yielding approximately the same maximum
AUC of ≈ 0.95 for any N , which happens in the situation of
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maximum PSD concentration, i.e., when the largest value of
S is adopted.

A set having 100,000 AUCs obtained in the above way
was generated, for each (L, S) pair. Each AUC under test
was compared with the average of the 50,000 near-optimal
AUCs, i.e., those achieved with the PSD-shaped weights, each
obtained from 100,000 sensing events. The average has been
used to reduce the intrinsic random variations of the AUCs due
to the random variables involved in the Monte Carlo simulation
of each sensing round, even if the weights are fixed.

Table I shows the percentages (with respect to 100,000
trials) of sensing events in which the AUC with random-
ized weights surpassed the claimed near-optimal ones. These
percentages correspond to the upper values in each cell of
the table. The table also shows the AUCs achieved with the
near-optimal weights and the maximum AUCs obtained with
the random weights, which are respectively the middle and
the lower values in each cell of the table. Notice that the
percentages are zero or very small. Not coincidentally, the
occurrences of nonzero percentages are associated to smaller
values of L, which can be credited to the poor resolution of
the weights with regard to represent the true noisy signal PSD.
Nonzero values are also influenced by the already-mentioned
random fluctuations of the estimated AUCs.
TABLE I: Percentages of events in which the performance with randomized weights
surpassed the near-optimal ones. The near-optimal AUCs and the maximum AUCs
produced by randomized weights are also given.

L
S 4 5 8 10 16

10
%

near-optimal
maximum

0.042
0.862
0.867

0.059
0.900
0.907

–
0.225
0.947
0.950

–

20
%

near-optimal
maximum

0
0.824
0.814

0
0.869
0.866

–
0.008
0.947
0.951

–

40
%

near-optimal
maximum

0.001
0.711
0.715

–
0

0.869
0.856

–
0

0.948
0.942

80
%

near-optimal
maximum

0
0.655
0.653

–
0

0.829
0.797

–
0

0.947
0.909

Based on Table I, one can conclude that the PSD-shaped
weights are indeed not optimal, since better performances were
found in some trials. Nonetheless, the PSD-shaped weights can
be considered near-optimal due to the small number of times
that better results were attained, and due to the fact that the
maximum AUCs obtained with random weights surpassed the
near-optimal ones in a very small amount.

In a statistical sense, it can be stated that the near-optimal
PSD-shaped weights are better, on average, than any other ran-
domly chosen set of weights, thus being optimal on average.
To support this statement, the following hypothesis test has
been formulated and tested:

Hnull : µr ≥ µo
Halt : µr < µo

, (2)

where the alternative hypothesis, Halt, states that the mean
of the AUCs obtained with random weights, µr, does not
surpass the mean of the near-optimal AUCs, µo. The null
hypothesis, Hnull, states the opposite. This test was performed
with Minitab, which is a software tool for statistical computing
and visualization, applying the one-tailed unequal-variance

two-sample Student’s t-test [11], at the significance level of
0.01, from 100,000 values of the AUCs under test for each
of the twelve CSS configurations, and 50,000 values of the
corresponding near-optimal AUCs. Table II gives p-values and
absolute t-values obtained from the test. Since all p-values are
zero, the null hypothesis is rejected, i.e., there is sufficient
statistical evidence that µr < µo. The very high t-values
reinforce this evidence, since they indicate that the differences
between the means are much larger than the variability of the
samples. Notice also that smaller t-values correspond to higher
percentages in Table I, as expected.

TABLE II: p-values and t-values, (p, t), associated to the hypothesis test (2).

L
S 4 5 8 10 16

10 (0, 631) (0, 595) – (0, 516) –
20 (0, 861) (0, 815) – (0, 637) –
40 (0, 1064) – (0, 1048) – (0, 783)
80 (0, 1259) – (0, 1418) – (0, 1036)

B. Heuristic suboptimal weights

In order to determine the near-optimal weights, one must
know the received signal plus noise PSD, which in practice
is difficult due to the main reasons: i) the modulation and
symbol rate adopted by the primary network are usually
unknown, possibly changing over time due to the use of
adaptive modulation; ii) the noise variance at the SUs receivers
is unknown and should be estimated, or the composite received
signal plus noise PSD should be estimated. Given the short
time-frame of the spectrum sensing, any estimation process
would suffer from accuracy degradation and increase the
receiver complexity. Notably, these obstacles are in conflict
with secondary network premises, since this network should be
able to operate autonomously with no PU signal information
and, preferably, having low complexity terminals.

Given the above difficulty, alternative near-optimal or sub-
optimal weights must be sought. A simple heuristic way of
favoring the higher values of ravg

` while attenuating the values
corresponding to the PSD tail is to adopt linearly decaying
suboptimal weights, that is,

w` =
L− `+ 1

L
. (3)

The numerical results given in Section V show that these
suboptimal weights yield performances very close to the ones
achieved with the near-optimal PSD-shaped weights.

IV. ANALYTICAL RESULTS

Expressions for the probability density functions (PDFs) and
the CDFs of ravg

` , conditioned on H0, were derived in [5],
where it is shown that this variable closely follows a Beta
distribution with parameters α = 2V U and β = (N − 2V )U .

Specifically, the conditional CDF of ravg
` , removing the H0

conditioning for notational simplicity, is Fravg
`

(x) = Pr[ravg
` <

x] = Ix(α, β), for 0 < x < 1, where Ix(α, β) is the
incomplete regularized Beta function [12, Eq. (8.392)]. The
conditional PDF of ravg

` is fravg
`

(x) = xα−1(1−x)β−1/B(α, β),
where B(α, β) denotes the Beta function [12, p. 908].
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Consider the random vector ravg = [ravg
1 , . . . , ravg

L ]T,
where [·]T denotes transposition. Assuming uncorrelated vari-
ables, the joint PDF and the joint CDF can be written as
fravg(x1, . . . , xL) =

∏L
`=1 fravg

`
(x`) and Fravg(x1, . . . , xL) =∏L

`=1 Fravg
`

(x`), respectively. Thus, the probability of false
alarm is Pfa = 1 − Fravg(γ, . . . , γ) , 1 − Fravg(γ), with
x1, . . . , xL being the decision threshold γ, i.e. x` = γ.

It is worth mentioning that the exact probability of false
alarm derived in [5] is given in an (L − 1)-fold integral
of the multivariate generalization of the Beta distribution,
which makes the numerical computations of Pfa extremely
cumbersome, if not impossible, specially for high values of L.
This fact is, in itself, a motivation to seek for new expressions
or new computational techniques, particularly those that are
independent of the value of L.

In the CPSC and CFCPSC algorithms, the correlation coef-
ficient between any pair (ravg

i , ravg
k ), i, k = 1, 2, . . . , L, i 6= k,

is ρi,k = −1/(L − 1) [5], [6], which is the same for any
pair (ravg-w

i , ravg-w
k ) for the WCFCPSC, since the deterministic

weights do not affect correlation. Although zero correlation
does not necessarily imply independence, whereas the con-
verse is true, it is assumed that ravg

i and ravg
k are independent

for i 6= k and sufficiently large L. As a consequence, the
decisions made in the Step 7 of the CFCPSC algorithm are
independent of each other, and the decision threshold set
to yield a target Pfa becomes γ = I−1

(1−Pfa)1/L
(α, β), where

I−1x (α, β) is the inverse regularized incomplete Beta function.
In the proposed WCFCPSC algorithm, the conditional CDF

of ravg-w
` = w`r

avg
` , that is, Fravg-w

`
(y) = Pr[ravg-w

` < y], can be
found applying a simple transformation of variables, yielding

Fravg-w
`

(y) = Iy/w`
(α, β), (4)

for 0 < y < w`. Analogously, the conditional PDF of ravg-w
` is

fravg-w
`

(y) =
(y/w`)

α−1
(1− y/w`)β−1

B(α, β)w`
. (5)

Let the random vector ravg-w = [ravg-w
1 , . . . , ravg-w

L ]T. Under
the same independence assumption for sufficiently large L, the
joint PDF is given by fravg-w(y1, . . . , yL) =

∏L
`=1 fravg-w

`
(y`),

and the joint CDF is Fravg-w(y1, . . . , yL) =
∏L
`=1 Fravg-w

`
(y`).

Hence, the probability of false alarm of the WCFCPSC
algorithm for a given decision threshold γ becomes Pfa ≈
1−

∏L
`=1 Fravg-w

`
(γ), yielding

Pfa ≈ 1−
L∏
`=1

Iγ/w`
(2V U,NU − 2V U). (6)

Figs. 2 and 3 show theoretical and simulated Pfa versus γ for
the WCFCPSC with weights given by (3) (hereafter referred
to as the suboptimal WCFCPSC), and the CFCPSC, for L =
10, 20, 40, 80, and for U = 5 (Fig. 2) and U = 10 (Fig. 3). The
theoretical results were obtained from (6) for the WCFCPSC,
and from the same equation with γ/w` replaced by γ in the
case of the CFCPSC, using the built-in MATLAB function
betainc. Notice that theoretical and simulated curves are
very close to each other, better matching for larger values of
L, since ρi,k → 0 as L increases, for i 6= k. Notice also that

the gaps between theoretical and simulated results are smaller
in the case of the WCFCPSC. The effect of a larger U is to
reduce Pfa for a given γ, as expected.
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Fig. 2: Simulated and theoretical Pfa versus γ for the CFCPSC and the suboptimal
WCFCPSC. This figure is better viewed in color.
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Fig. 3: Simulated and theoretical Pfa versus γ for the CFCPSC and the suboptimal
WCFCPSC. This figure is better viewed in color.

V. PERFORMANCE RESULTS

This section presents computer simulation results in terms of
AUCs, comparing the performances of the CFCPSC, the near-
optimal WCFCPSC (using the PSD-shaped weights) and the
suboptimal WCFCPSC (using the linearly-decaying weights
given in (3)). Each AUC value was generated from 100,000
simulation runs, using the MATLAB software. The PU signal
was a baseband QPSK signal with S samples per symbol. Each
SU, from a total of five or ten, collects N = 2L samples of
the received signal during each sensing event. The collected
samples are assumed to be transmitted to the FC via error-free
orthogonal control channels. The scenarios analyzed are the
same considered in Tables I and II. The average SNRs across
the SUs were set to Γ = −6.46,−8.93,−11.74,−13.4 dB
for U = 5, and Γ = −8.37,−10.77,−13.57,−15.17 dB for
U = 10, respectively for N = 20, 40, 80, 160. As before, these
SNRs guarantee approximately the same best performance for
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TABLE III: Performances of the CFCPSC, the near-optimal WCFCPSC and the suboptimal WCFCPSC in terms of AUC, for U = 5 and U = 10 primary users. The gray-shaded
values are the largest in each category.

L
S 4 5 8 10 16

10
CFCPSC

near-optimal WCFCPSC
suboptimal WCFCPSC

0.739; 0.738
0.862; 0.859
0.842; 0.827

0.787; 0.789
0.900; 0.898
0.890; 0.881

–
–
–

0.846; 0.847
0.947; 0.947
0.942; 0.942

–
–
–

20
CFCPSC

near-optimal WCFCPSC
suboptimal WCFCPSC

0.683; 0.683
0.824; 0.817
0.818; 0.806

0.722; 0.724
0.867; 0.864
0.861; 0.853

–
–
–

0.836; 0.840
0.947; 0.947
0.943; 0.944

–
–
–

40
CFCPSC

near-optimal WCFCPSC
suboptimal WCFCPSC

0.600; 0.590
0.713; 0.694
0.747; 0.734

–
–
–

0.700; 0.695
0.869; 0.861
0.866; 0.866

–
–
–

0.805; 0.804
0.949; 0.947
0.936; 0.939

80
CFCPSC

near-optimal WCFCPSC
suboptimal WCFCPSC

0.566; 0.563
0.655; 0.640
0.716; 0.706

–
–
–

0.654; 0.651
0.827; 0.815
0.840; 0.842

–
–
–

0.785; 0.786
0.947; 0.946
0.931; 0.937

U 5; 10 5; 10 5; 10 5; 10 5; 10

all N , which is ≈ 0.95 for L = 10, 20, S = 10, and L =
40, 80, S = 16, considering the near-optimal weights.

Table III presents the performance results, evidencing the
superiority of the WCFCPSC scheme over the CFCPSC.
Moreover, it can be seen that the suboptimal WCFCPSC
performs quite close to the near-optimal one, meaning that the
weights as given by (3), which are very simple to compute, are
strongly recommended due to the high complexity of finding
the near-optimal weights.

The performances achieved with the suboptimal weights
slightly overcame those attained with the near-optimal weights
in some cases corresponding to very low SNRs. This fact gives
even more value to the choice of linearly-decaying weights,
at the same time not contradicting the near-optimalily of the
PSD-shaped weights. Hence, from another point of view, the
linearly-decaying weights can be also considered near-optimal.

Now, the performance improvement effect of a larger U can
be observed by noticing in Table III that the close values of
AUCs for U = 5 and U = 10 were attained with SNR values
in the case of U = 10 approximately 2 dB smaller than in the
case of U = 5.

VI. CONCLUSIONS

This correspondence proposed the weighted CFCPSC al-
gorithm, aiming at superior spectrum sensing performances
when compared with the original CFCPSC algorithm. Near-
optimal and suboptimal versions of the weights were analyzed,
unveiling that the suboptimal ones are preferred, since they
are capable of achieving performances very close to those
attained with the near-optimal weights, with practically no
complexity increase with respect to the original CFCPSC
algorithm. Expressions for the distributions of the test statistics
and for the probability of false alarm were also derived and
validated by simulation results.
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