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Simple SNR Wall Calculation by Equating
the Medians of the Detector’s Test Statistic

Dayan Adionel Guimarães

Abstract— An apparently definitive conclusion that can be
drawn from the literature is that the calculation of the signal-to-
noise ratio wall (SNRw) of detectors for spectrum sensing is not
trivial. Conventionally, to make this calculation one has to find the
expressions of the probabilities of detection and false alarm, and
of the required number of samples to achieve target probabilities
under worst-case noise uncertainty. However, a simple calculation
of the SNRw can be devised based on a theorem stating that
the existence of an SNRw requires that the test statistics have
overlapping medians under the two test hypotheses. Grounded on
this theorem, in this paper it is devised such a simple calculation
method, which is applied to find the SNRw of the absolute value
cumulating (AVC) detector and the energy detector (ED) under
Gaussian and Laplacian noise. Simulation results are presented
to support and complement the analytical findings.

Keywords— Absolute value cumulating detector, energy detec-
tor, Gaussian noise, Laplacian noise, signal-to-noise ratio wall.

I. INTRODUCTION

The increased demand for wireless communication services
nowadays has become the main driver of new technologies, as
exemplified by the recent advances on the fifth generation (5G)
of communication networks and the Internet of things (IoT),
and by the research initiatives on the sixth generation (6G)
of these networks [1], [2]. As a consequence of this demand,
radio-frequency (RF) spectrum scarcity has arisen, owed to the
fact that current fixed spectrum allocation polices grant to the
incumbent (primary user, PU) network the exclusive right to
use certain RF portions.

The potential solution to the RF spectrum scarcity is to
adopt a dynamic spectrum access (DSA) policy, in which
PU and secondary user (SU) networks are allowed to share
frequency bands, as long as no harm are caused to the primary
network operation.

The cognitive radio (CR) paradigm [3] arose in this DSA
context. Among a multitude of cognition-related attributes of
a CR, it is also capable of identifying unoccupied primary
RF bands for opportunistic access by secondary terminals,
applying the technique known as spectrum sensing [1], [4].

Spectrum sensing is a binary hypothesis test in which H0

denotes the absence of the PU signal in the sensed band,
whereas H1 denotes the presence of the PU signal. The test
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is made by forming a test statistic T from the received signal
samples and comparing it with a decision threshold γ to decide
in favor of H1 if T > γ or H0 if T < γ.

The performance of spectrum sensing is commonly mea-
sured by means of the probability of detection Pd = Pr{T >
γ|H1}, and the probability of false alarm Pfa = Pr{T >
γ|H0}. The former is the probability of declaring the PU signal
present in the sensed band, when it is indeed present. The
latter is the probability of declaring the PU signal present in
the sensed band, given that it is in fact absent.

The SU terminals must be able to detect very weak PU
signals, but there is a fundamental limit to the detection at low
signal-to-noise ratio (SNR), meaning that accurate detection is
impossible below a certain level of SNR called SNR wall [5].
Simply stating, the SNR wall, which is hereafter denoted
by SNRw, is the upper limit below or equal to which it is
impossible to control Pd and Pfa to achieve target values.

The SNRw is an important metric mainly when the detector
is semi-blind, that is, when it does not need any knowledge
about the PU signal, but it makes use of the noise variance in-
formation in the computation of the test statistic or the decision
threshold. This is the case of the well-known energy detector
(ED), and the recently proposed absolute value cumulating
(AVC) detector [6], [7].

The SNRw does not depend only on the detector type and
on the noise uncertainty level, but also on the characteristics
of the noise impairing the received signal.

Hence, the analysis of the SNR wall of semi-blind detectors
under different types of sensing channel noise is of practical
and theoretical interest.

A. Related work
In [7], the performances of the ED and the AVC are

assessed when impaired by Laplacian noise. The SNRw of both
detectors is computed under the conventional way, making use
of the Gaussian approximation of the test statistics in the large
number of samples regime, and making use of an approximate
computation of the mean and variance of the test statistics in
the Laplacian noise case, assuming that the PU signal is a
baseband binary phase-shift keying (BPSK) signal.

The performance of the AVC over Laplacian noise is
also analyzed in [8], where are derived the optimal decision
threshold for minimizing the total error rate, and the exact
mean and variance of the test statistic, which led to accurate
expressions for the probabilities of detection and false alarm
under the Gaussian approximation grounded on the central
limit theorem. A baseband BPSK primary signal has been also
considered in [8]. The SNRw is not addressed.
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In [9], the generalized energy detector (GED) is analytically
studied when impaired by generalized noise with McLeish
distribution. Particular cases of the closed form expressions
and the noise model given in [9] can also be used to address
the performance of the AVC and the ED, which are especial
cases of the GED, over Gaussian and Laplacian noise. The
SNRw is not addressed in [9].

As far as the calculation of the signal-to-noise ratio wall is
concerned, the conventional approach corresponds to finding
the expressions of the probabilities of detection and false
alarm, subsequently finding the required number of samples
n to achieve target probabilities under worst-case noise un-
certainty. The SNRw is then obtained from the expression for
computing the number of samples in the limit of n → ∞.
Many works addressing the SNRw in the conventional way
can be found; see for instance [5], [10]–[16] and references
therein. To the best of the author’s knowledge, no explicit
calculation of the SNRw using the simple approach proposed
in this paper has been put forward in the literature so far.

B. Contribution and organization of the article

This paper proposes a simple method for calculating the
SNRw of detectors under Gaussian and Laplacian noise,
without the need of operating on the expressions of the
probabilities of detection and false alarm, and the number of
samples required to achieve target performances. The method
is applied to find the SNRw of the detectors AVC and ED,
where the approximate theoretical mean of the test statistics
given in [7] is shown to be sufficiently accurate and simple for
the purpose of finding the SNRw in the Laplacian noise case, as
opposed to the intricate exact mean derived in [8], even when
the PU signal is Gaussian distributed. Moreover, the novel
noise uncertainty model proposed in [16] is used instead of
the conventional model often adopted in the literature.

The remainder of this paper is organized as follows: Sec-
tion II presents the signal and noise models, and the test
statistics of the ED and the AVC. Section III describes the
proposed method for SNRw calculation. Numerical results and
discussions are given in Section IV. The conclusions are drawn
in Section V.

II. SIGNAL AND NOISE MODELS AND TEST STATISTICS

It is assumed that the SUs monitor the signal transmitted
by a single PU. The SU collects n samples of the received
signal during the sensing interval. The n-dimensional vector
y of received samples can be written as

y =

{
hx+ v, under H1

v, under H0
, (1)

where x e v are the vectors that contain the samples of the
signal and the noise, respectively, and h is the channel gain
between the PU and the SU.

The elements of x are assumed to be zero-mean Gaussian
random variables with variance σ2

x . Two noise distributions are
considered, that is, v is a vector of independent and identically
distributed Gaussian or Laplacian random variables with zero
mean and variance σ2. Thus, the average signal-to-noise ratio,

in dB, at the SU receiver is SNR = 10 log10(σ
2
x/σ

2), whose
value can be set to the values chosen for σ2

x and /σ2. Hereafter,
it is assumed that h = 1, which models an additive noise
sensing channel without fading.

The Gaussian noise is the common assumption adopted
to represent the receiver front-end additive thermal noise,
whereas the Laplacian noise is adopted to model the thermal
noise added to an impulsive noise component.

The Gaussian and Laplacian probability density functions
(PDFs) of a sample v ≡ vi in v are respectively

f(v) =
1√
2πσ2

exp

(
− v2

2σ2

)
(2)

and

f(v) =
1√
2σ2

exp

(
−
√

2

σ2
|v|

)
, (3)

where | · | denotes the absolute value operation.
From a practical standpoint, the ED and the AVC test

statistics can be respectively written as

TED =
1

nσ̂2

n∑
i=1

y2i (4)

and

TAVC =
1

n
√
σ̂2

n∑
i=1

|yi|, (5)

where yi is the i-th sample in y, and σ̂2 is the estimated noise
variance that takes into account any noise uncertainty that may
arise. Here, it is considered that this uncertainty is owed to the
fact that, when the noise variance is unknown, it is estimated
on-the-run and, hence, carries the inherent estimation error. An
alternative approach considers that, even if σ̂2 is accurately
determined during the detector design phase, variations in
the actual σ2 may occur due to imperfect calibration of the
receiver’s front-end, or due to unwanted signals entering the
receiver as if they were noise.

III. SIGNAL-TO-NOISE RATIO WALL

Formally stating, the SNRw is the upper limit below or equal
to which it is impossible to control the probability of detection,
Pd, and the probability of false alarm, Pfa, to yield Pfa ≈ 0 and
Pd ≈ 1, or at least to attain desired values of these probabilities
within their useful limits, which are 0 ≤ Pfa ≤ 0.5 and 0.5 ≤
Pd ≤ 1. Given an SNR of operation, such control is performed
through the number of samples, n, meaning that, if SNR ≤
SNRw, the increase of n does not bring improvement of the
spectrum sensing performance [17].

A. Preliminaries

Fig. 1 illustrates the PDFs of a test statistic T ≡ TED ≡
TAVC under H0 and H1, for arbitrary high values of n and
SNR. Notice that it is possible to set the decision threshold
somewhere in-between the PDFs so as to result in Pfa ≈ 0
and Pd ≈ 1, because µ0 is easily distinguishable from µ1.
The reduction of the SNR corresponds to the approximation of
the means of the two PDFs. However, (4) and (5) incorporate
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samples means, meaning that the variances of both PDFs tend
to zero in the limit of n→∞, still allowing to find a correct
place for the threshold even if SNRw → 0, that is, σ2

x/σ
2 → 0.

The SNRw arises when noise uncertainty takes place, mak-
ing the PDFs to overlap no matter how large n is. In this
situation, there is no threshold capable of allowing control of
the probabilities of detection and false alarm.

Fig. 1. Distributions of the test statistic for a large n and a large SNR.

The reasoning behind the method proposed herein is based
on the above explanation, and is formally grounded on a
theorem from [5], stating that the existence of an SNR
wall below which every detector is not capable of meeting
useful performance metrics requires the test statistics to have
overlapping medians under the two hypotheses. In the cases
of TED and TAVC, the medians are equal to the corresponding
means, due to the Gaussian approximation of the distributions
of their test statistics for sufficiently large n.

Hence, the SNRw calculation method works by equating the
means of the test statistic under H0 and H1, for the worst-
case noise uncertainty, subsequently determining the SNR
σ2

x/σ
2, which is the SNRw. To exemplify the application of

the method, the ED and the AVC test statistics are considered
as case studies in the remainder of this section.

B. Means of TED and TAVC

The mean of the ED test statistic TED given in (4) under
H0, for Gaussian (G) and Laplacian (L) noise types, is
E[TED|H0] = µ0 = (1/σ̂2)(1/n)nE[y2i ] = (1/σ̂2)E[v2i ],
which yields

µED,G,L
0 =

σ2

σ̂2
. (6)

Analogously, the mean of TED for Gaussian
and Laplacian noise types under H1 is given by
µ1 = (1/σ̂2)E[(xi + vi)

2] = (1/σ̂2)E[x2i + 2xivi + v2i ].
Taking into account the independence between xi and vi,
then it follows that

µED,G,L
1 =

σ2
x + σ2

σ̂2
. (7)

The mean of the AVC test statistic TAVC given in (5)
under H0 and Gaussian noise is determined from the mean
of a folded Gaussian distribution [18, Eqn. (7)]. Hence,
E[TAVC|H0] = µ0 = (1/σ̂)(1/n)nE[|yi|] = (1/σ̂)E[|vi|],
which yields

µAVC,G
0 =

√
2σ2

πσ̂2
. (8)

Analogously, the mean of TAVC for Gaussian noise underH1

is E[TAVC|H1] = µ1 = (1/σ̂)(1/n)nE[|xi+vi|]. Recalling that
the sum of independent zero-mean Gaussian random variables

is another zero-mean Gaussian random variable having vari-
ance equal to the sum of the variances of the added variables,
then it immediately follows that

µAVC,G
1 =

√
2(σ2

x + σ2)

πσ̂2
. (9)

In the case of Laplacian noise, the mean of TAVC under H0

can be obtained based on a result in [7], yielding

µAVC,L
0 =

√
σ2

2σ̂2
. (10)

Also based on [7], where an approximate mean of TAVC
under H1 and Laplacian noise is given, it follows that

µAVC,L
1 =

√
σ2

x + σ2/2

σ̂2
. (11)

Fig. 2 shows approximate values of µ1 obtained from (11),
and the true µ1, as functions of the SNR, assuming σ2

x = 1
and σ̂2 = σ2 without loss of generality. It can be seen that
(11) produces accurate results for SNRs below −5 dB, which
suffices for the present analysis since the SNRw is often below
this value.

Fig. 2. True and approximate means of the absolute value of the sum of a
Gaussian and a Laplacian random variable with zero means.

C. Noise uncertainty models

Two noise uncertainty models are considered in this paper.
The conventional model assumes that σ̂2 lies in-between σ2/ρ
and ρσ2, that is,

σ̂2 ∈ [σ2/ρ, ρσ2], (12)

where ρ ≥ 1 is the noise uncertainty parameter that governs
the amount of uncertainty on σ2.

A recently-proposed model [16] considers that σ̂2 lies in-
between (1− ρ)σ2 and (1 + ρ)σ2, that is,

σ̂2 ∈ [(1− ρ)σ2, (1 + ρ)σ2], (13)

where 0 ≤ ρ < 1 is the noise uncertainty parameter.

D. SNRw computation

The calculations of the SNRw are made by equating µ0 and
µ1 for each test statistic, for each channel type, and for the
worst cases in each of the above-described noise uncertainty
models. The worst cases correspond to a reduction of σ̂2 under
the hypothesis H0, and an increase of σ̂2 under H1, which
makes the PDFs of the test statistic to get closer to each other.
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Equating the means (6) and (7) and replacing σ̂2 by
the worst-case uncertainty limits given in (12), one obtains
σ2/(σ2/ρ) = (σ2

x + σ2)/(ρσ2). Using the fact that σ2
x/σ

2 =
SNR, after some simple manipulations one obtains the SNRw
for the ED under Gaussian (G) or Laplacian (L) noise and
uncertainty model (12), which is

SNRED,G,L,(12)
w = ρ2 − 1. (14)

Again equating (6) and (7), now replacing σ̂2 by the worst-
case uncertainty limits given in (13), one obtains σ2/[(1 −
ρ)σ2] = (σ2

x + σ2)/[(1 + ρ)σ2]. After some manipulations, it
follows that the SNRw for the ED under Gaussian or Laplacian
noise and uncertainty model (13) is given by

SNRED,G,L,(13)
w =

2ρ

1− ρ
, (15)

which matches [16, Eqn. (28)], a result that has been obtained
using the conventional SNRw calculation approach.

Equating (8) and (9) and replacing σ̂2 by the worst-case
uncertainty limits given in (12), it is easy to find out that the
SNRw for the AVC detector under Gaussian noise is

SNRAVC,G,(12)
w = ρ2 − 1, (16)

which is identical to the SNRw given in (14), that is, the SNR
wall of the ED and the AVC detectors when subjected to
Gaussian noise are the same. This conclusion is consistent
with the one stated in [11] regarding the immutability of the
SNR wall for any particular case of the GED (recall that the
ED and the AVC are particular cases of the GED).

Now equating (8) and (9) and replacing σ̂2 by the limits
given in (13), it is also easy to conclude that the SNRw for
the AVC detector under Gaussian noise is

SNRAVC,G,(13)
w =

2ρ

1− ρ
, (17)

which is identical to (15), as expected according to the
comments in the end of the previous paragraph.

When the AVC detector is impaired by Laplacian noise,
equating (10) and (11) and replacing σ̂2 by the limits given
in (12), it follows that

SNRAVC,L,(12)
w =

ρ2 − 1

2
, (18)

which is half of the value determined from (16). This means
that the AVC detector is more robust than the ED when
subjected to Laplacian noise. From another perspective, it
means that the AVC detector is capable of outperforming the
ED when impaired by Laplacian noise [7].

Finally, if (10) and (11) are equated, with σ̂2 replaced by
the limits given in (13), it is easily found that the SNRw for
the AVC detector under Laplacian noise becomes

SNRAVC,L,(13)
w =

ρ

1− ρ
, (19)

which is half of the value obtained from (17), as expected.
It is worth highlighting that the noise uncertainty determined

by both models investigated herein is applied in the noise
variance used in the test statistic (or, equivalently, in the
decision threshold), aiming consistence with the uncertainty

produced by noise variance estimation errors [16]. The con-
ventional practice assumes prior knowledge of the nominal
noise variance σ2 (the decision threshold is set according to
it), and noise uncertainty takes place by assuming that the
actual noise variance σ̂2 deviates from σ2 due to interfering
signals treated as noise. Nonetheless, the simple method
for calculating the SNRw considered herein also applies to
this conventional approach. For instance, if (4) is written
as TED = 1

nσ2

∑n
i=1 y

2
i , with σ̂2 being the unknown noise

variance impairing yi, the means (6) and (7) would become
µ0 = σ̂2/σ2 and µ1 = (σ2

x + σ̂2)/σ2, respectively. Equating
these means under the limits given in (12), one easily obtains
SNRED,G,(12)

w = (ρ2 − 1)/ρ, which is a classical well-known
outcome [5].

IV. NUMERICAL RESULTS

This section presents Monte-Carlo simulation results show-
ing Pfa versus Pd for the detectors ED and AVC, under
Gaussian and Laplacian noise, with and without noise un-
certainty, applying the worst-case noise uncertainty limits
given in (13). All results were obtained by averaging 103

independent spectrum sensing trials.
Fig. 3 shows the results for SNR = −10 dB and n = 1500

samples, under different noise uncertainties. In the case of
ρ = 0.02, from (15) and (17) one obtains SNRw ≈ −13.89 dB
for the ED under Gaussian or Laplacian noise, and for the AVC
under Gaussian noise, respectively. From (19) one obtains
SNRw ≈ −16.89 dB for the AVC detector under Laplacian
noise. Since SNR > SNRw, full control of Pfa versus Pd can
be made, in the case targeting Pd > 0.9 and Pfa < 0.1 for the
best detector with ρ = 0.

From Fig. 3 it can be seen that the ED and the AVC have
approximately the same performance under Gaussian noise,
which is consistent with their equal SNRw. A slight advantage
of the ED is observed in this situation.

When impaired by Laplacian noise, it can be seen from
Fig. 3 that the AVC outperforms the ED, which is also
consistent with the smaller SNRw of the AVC in this case.
Comparing the two graphs in this figure, it can be seen
the performance degradation of both detectors when noise
uncertainty takes place, with a larger degradation of the ED
under Laplacian noise.

Fig. 4 shows the performances of the ED and the AVC
over Gaussian and Laplacian noise under different noise
uncertainties, SNR = −14 dB, n = 8000 samples (left),
n = 50000 samples (right). On the left-hand side graph
the situation is similar to the corresponding graph in Fig. 3,
highlighting the increase in n from 1500 to 8000 to maintain
approximately the same performances even with the reduction
in the SNR from −10 dB to −14 dB. Regarding the right-hand
side graph of Fig. 4, where noise uncertainty takes place, the
SNR = −14 dB is above the SNRw = −16.89 of the AVC
under Laplacian noise, which allowed the target performance
by increasing n from 8000 to 50000 samples with respect to
the left-hand side graph. However, the SNR = −14 dB is
below the SNRw = −13.89 dB of the AVC under Gaussian
noise, and of the ED under Gaussian or Laplacian noise, which
has causes a useless performance for both detectors.
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Fig. 3. Performances of ED and AVC over Gaussian and Laplacian noise
under different noise uncertainties. SNR = −10 dB, n = 1500 samples.

Fig. 4. Performances of ED and AVC over Gaussian and Laplacian noise
under different noise uncertainties. SNR = −14 dB, n = 8000 (left), n =
50000 (right).

V. CONCLUSIONS

This paper proposed a simple method for calculating the
SNR wall of detectors for spectrum sensing, removing the need
of knowing the expressions for computing the probabilities of
detection and false alarm, and the number of samples as a
function of the SNR. The method was applied to find the SNR
wall of the detectors AVC and ED when impaired by Gaussian
or Laplacian noise.

The simple method proposed herein can be applied to
any test statistic, as long as the expressions to compute the
means (or medians) under both test hypotheses are known.
Nonetheless, if they are unknown, one may resort to an
empirical SNR wall computation using the same reasoning
of equality in the means (or medians), which is exemplified
by an algorithm recently proposed in [16].

A natural extension of this work is the application of the
method considered herein to calculate the SNR wall of the ED
and the AVC in the case of centralized cooperative spectrum
sensing with soft-decision and hard-decision fusion, and to

consider the conventional placement of the noise uncertainty
in the received signal samples instead of the test statistics or
the decision threshold.
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