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Abstract: Recently, the Gini index detector (GID) has been proposed as an alternative for data-fusion
cooperative spectrum sensing, being mostly suitable for channels with line-of-sight or dominant
multi-path components. The GID is quite robust against time-varying noise and signal powers, has
the constant false-alarm rate property, can outperform many the state-of-the-art robust detectors,
and is one of the simplest detectors developed so far. The modified GID (mGID) is devised in this
article. It inherits the attractive attributes of the GID, yet with a computational cost far below the
GID. Specifically, the time complexity of the mGID obeys approximately the same run-time growth
rate of the GID, but has a constant factor approximately 23.4 times smaller. Equivalently, the mGID
takes approximately 4% of the computation time spent to calculate the GID test statistic, which brings
a huge reduction in the latency of the spectrum sensing process. Moreover, this latency reduction
comes with no performance loss with respect to the GID.

Keywords: cognitive radio; dynamic spectrum access; dynamic spectrum sharing; Gini index detector;
spectrum sensing

1. Introduction

The massive deployment of wireless communication systems in recent years has
caused a shortage of the radio-frequency (RF) spectrum. This shortage can be credited
to the fixed spectrum allocation policy, in which a primary user (PU) network is given
exclusive rights to use a specific RF band. However, research indicates that many allocated
RF bands are not fully utilized in certain regions and time periods, leading to inefficient
spectrum usage [1–3]. As the Internet of Things (IoT) and 5G/6G networks continue to
expand, the RF spectrum scarcity issue is expected to worsen, since these technologies
require higher bandwidths and will intensify the competition for the limited spectrum
resources [4].

One potential solution to the problem of inefficient use of the RF spectrum is the adop-
tion of cognitive radio (CR) networks [5]. These networks are capable of identifying vacant
bands resulting from the primary network’s varying spectrum occupation in time and
space. A dynamic spectrum access (DSA) policy can be adopted in this case. In DSA, cogni-
tive secondary user (SU) terminals opportunistically make use of unoccupied RF bands.
The technique used by the secondary network to utilize vacant bands is called spectrum
sensing. This technique is extensively covered in the literature; see for example [3,4,6–8]
and references therein.

Spectrum sensing can be performed independently by each SU, or can apply multiple
SUs in collaboration. When performed by each SU, it can have its performance penalized
by propagation-related phenomena, such as multi-path fading, shadowing due to signal
blockage, and hidden terminals caused by PU signals not arriving at an SU with detectable
strength. On the other hand, cooperative spectrum sensing (CSS) applies several SUs to
improve the accuracy of decisions upon the channel occupation state. Thus, CSS has been
considered the preferred solution for detecting vacant spectrum bands.
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In this paper, a centralized CSS with data fusion is considered, in which the samples of
the PU signal received by the SUs are forwarded to the FC, where test statistic computation
and comparison with a decision threshold are performed to yield the global decision
on the occupation state of the sensed band. This decision is then broadcast to the SUs,
which subsequently compete for the band if it is vacant using an appropriate multiple-
access technique.

1.1. Related Research

The literature is rich in research works proposing detectors for spectrum sensing.
Many of them apply the sample covariance matrix (SCM) as the received PU signal, as
described for instance in [9–15] and references therein. These detectors are usually referred
to as covariance-based detectors.

Blind detectors are considered herein. They do not make use of any information about
the detected signal or the noise variance. Examples are the Hadamard ratio (HR) detec-
tor [9], the arithmetic to geometric mean (AGM) detector [10], volume-based detectors (VD),
number 1 (VD1) and number 2 (VD2) [11], the maximum–minimum eigenvalue detector
(MMED) [12], the eigenvalue-based generalized likelihood ratio test (GLRT) [12] detector,
the Gini index detector (GID) [13], the Gerschgorin radii and centers ratio (GRCR) [14]
detector, and the Pietra–Ricci index detector (PRIDe) [15].

The computational burdens associated with the calculation of the test statistics of the
above-mentioned detectors differ, depending on the operations needed. For example, the
HR and VD are based on the determinant of the SCM. The AGM, the MMED, and the GLRT
need the estimation of the eigenvalues of the SCM. On the other hand, the GID, GRCR, and
PRIDe operate directly on the elements of the SCM, and as a consequence are less complex.

The GID, GRCR, and PRIDe are particularly noteworthy, not only because they have
lower computational complexity, but also because they are more robust against signal and
noise power variations than the other detectors considered herein.

The GID detector is further explored in this work. Its test statistic is based on the
Gini index, which is a statistical dispersion metric commonly used in economics and social
sciences as a measure of inequality [13]. Although the GID test statistic does not make use
of eigenvalues or determinants of the SCM, its computational cost is penalized due to the
relatively high burden associated with the calculation of the magnitude of the elements of
the SCM, or the magnitude of the results of operations performed on the SCM elements.
This work aims at reducing the computational cost of the GID detector, which is achieved
by replacing with real quantities the complex values operated in the test statistic while
maintaining the original Gini-index-based operations defined in [13].

1.2. Contribution and Structure of the Article

The modified Gini index detector (mGID) is proposed in this paper. Likewise, the
GID, the test statistic of the mGID, is formed from the elements of the SCM, which makes
it less complex than most of the state-of-the-art detectors proposed so far. The mGID
inherits important attributes of the GID, namely, blindness, attractive robustness against
nonuniform and time-varying received signal and noise levels, and a constant false-alarm
rate (CFAR). Moreover, its performance is practically equal to the GID’s. In summary, the
main contributions of the present work are as follows:

• The novel and practical mGID test statistic, whose computational cost is drastically re-
duced when compared to the GID, with practically no performance loss and inherited
desirable attributes of the GID.

• A two-fold model improvement with respect to [13] time-varying signal power at-
tached to path-loss and corrected signal-to-noise ratio (SNR) calibration.

• Numerical results that provide insight into the system’s operation and support the
conclusions of the work.

• A fully-commented Matlab simulation code [16] capable of supporting a complete
system analysis under a variety of circumstances and system parameters.
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The remainder of the article is organized as follows: Section 2 describes the signal,
noise, and channel models. The GID and mGID test statistics are addressed in Section 3.
Numerical results and interpretations are presented in Section 4. The conclusions and
opportunities for future research are given in Section 5.

2. Signal, Noise, and Channel Models

The model for centralized CSS with data fusion adopted herein is grounded on [13,15].
It considers m SUs in cooperation, each one collecting n samples of the PU signal during
a sensing interval. The samples gathered by the SUs are transmitted to the FC over an
error-free report channel, forming the sample matrix Y ∈ Cm×n, which is given by

Y = hxT + V, (1)

where the vector x ∈ Cn×1 contains the PU signal samples, which can be modeled as zero-
mean complex Gaussian random variables or modulated signal samples in the base band.
Here, a base-band quaternary phase-shift keying (QPSK) PU signal is adopted.

The channel vector h ∈ Cm×1 in (1) is formed by elements, hi, that represent the
sensing channel gains between the PU transmitter and the ith SU, for i = 1, . . . , m. The
variation in these gains over time can model the fading effect produced in the signal due
to multi-path propagation of the electromagnetic wave and other propagation-related
variations imposed on the PU signal, such as shadowing due to blockage by obstacles.

When modeling spectrum sensing, the gains of the channels between the PU transmit-
ter and the SU’s receivers are often considered constant during the sensing interval, and
independent and identically distributed among consecutive sensing events. The constant
channel gains mean that the duration of the sensing interval is shorter than the coherence
time [17] of the sensing channel, that is, the signal fading produced by the channel changes
slowly and can be considered practically constant during the entire sensing interval. On the
other hand, the independence between successive sensing events means that the interval
between these events is greater than the coherence time of the sensing channel. Addition-
ally, the multiplication between h and xT in (1) is meant to model a flat fading channel
whose coherence bandwidth is larger than the bandwidth of the PU signal [17].

The channel vector is modeled as h = Ga, where G is a gain matrix to be defined
a little later, and a ∈ Cm×1 is a vector formed by complex-Gaussian random variables
ai ∼ CN [

√
K/(2K + 2), 1/(K + 1)], where K = 10K(dB)/10 is the Rice factor [17] of the

channels between the PU transmitter and the SUs, and where K(dB) = 10 log10(K) is the
Rice factor in decibels.

When a channel is subjected to Ricean fading, the Rice factor is a measure of the ratio
between the signal strength received via the dominant propagation path and the power of
the signals coming from the other paths. A dominant propagation path occurs, for example,
in a line-of-sight (LoS) condition between the transmit and receive antennas, or when a
strong specular reflection of the transmitted signal towards the receiver happens. A larger
Rice factor is associated with less variability (i.e., less fading) in the instantaneous received
signal strength. A zero Rice factor (K(dB) = −∞ dB) corresponds to a channel with Rayleigh
fading. On the other hand, a pure additive white Gaussian noise (AWGN) channel results if
K(dB) = ∞ dB. In practical terms, K(dB) < −10 dB corresponds to an approximate Rayleigh
fading, and K(dB) > 10 dB makes the channel approximately free of fading.

From measurements reported in [18], it has been found that K(dB) is an environment-
dependent random variable that can be well characterized by a Gaussian distribution
with mean µK and standard deviation σK, both in dB, i.e., K(dB) ∼ N [µK, σK]. Typical
values of µK and σK are determined according to the propagation characteristics of the
area, and are reported in [18] as well. This model for the Ricean fading is consistent with
reality: While moving, an SU receiver experiences different situations in terms of the
line of sight with the PU transmitter antenna. For example, urban areas typically have
a large number of big obstacles between the PU and the SUs, which reduces the mean
Rice factor and increases its variability, which is measured by σK. On the other hand, rural
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or open areas exhibit higher Rice factors, on average, but have lower variability due to
the smaller number and small diversity of the obstacles commonly found in these areas.
An urban area typically has µK = 1.88 dB and σK = 4.13 dB. Rural or open areas typically
have µK = 2.63 dB and σK = 3.82 dB. Suburban regions are commonly associated with
µK = 2.41 dB and σK = 3.84 dB [18].

The present signal model also takes into account that the received signal power
levels across the SUs may be unequal and time-varying due to the different distances
between the PU transmitter and the SUs, and due to the variation in theses distances across
different sensing events caused by the motion of the SUs. To model unequal and time-
varying received signal levels, the above-mentioned gain matrix G ∈ Rm×m is given by
G = diag(

√
p/Ptx), where p = [Prx1, . . . , Prxm]

T is the vector containing the received PU
signal powers across the m SUs, with [·]T denoting transposition, Ptx is the transmitted PU
signal power in watts, and the operator diag(·) returns a diagonal matrix whose diagonal
is formed by the elements of the vector in the argument.

The log-distance path-loss prediction model [17] represents a very simple form to
calculate the area-mean received signal power at a distance d from the transmitter. It can be
used to calculate the PU signal power received by the ith SU, Prxi, yielding

Prxi = Ptx

(
d0

di

)η

, (2)

where d0 is a reference distance in the far-field region of the PU transmit antenna, di is the
distance between the PU transmitter and the ith SU receiver, and η is the environment-
dependent dimensionless path-loss exponent [17]. The larger the value of η, the grater the
signal attenuation at a given distance.

Variability in thermal noise at the SUs’ receivers is also assumed in the present model.
In practice, this variability cannot be neglected and is caused by multiple factors, such
as variations in the ambient temperatures to which the SUs are subjected, uncalibrated
receiver front-end circuits, uneven noise figures and gains of the low noise amplifiers
(LNAs), and unwanted signals present in the sensed band, such as atmospheric noise
and RF interference, which can be considered as background noise added to the receiver
thermal noise. In this paper, the nonuniform and time-varying characteristic of the noise
power is modeled as follows: since the elements in the ith row of the matrix V ∈ Cm×n

in (1) are associated with the ith SU, they are represented by independent Gaussian random
variables whose mean is zero and the variance is

σ2
i = (1 + ρui)σ̄

2, (3)

where ui is a realization of a uniform random variable Ui in the interval [−1, 1], that is,
Ui ∼ U [−1, 1], σ̄2 is the noise variance averaged across all SUs, and 0 ≤ ρ < 1, which is a
predefined parameter of the model, is the fractional variation in the noise power around σ̄2.

The instantaneous signal-to-noise ratio, γ, across the SUs is a random variable, since it
depends on σ2

i and on the distances di, which vary according to the random SUs’ locations.
In light of (2) and (3), a realization of γ is given by

γ =
1
m

m

∑
i=1

Ptx(d0/di)
η

(1 + ρui)σ̄2 . (4)

Thus, the average SNR across the SUs, which is also a predefined parameter of the
model, is given by

SNR = E[γ], (5)

where E[γ] is the expected value of γ.
To implement this variable noise level model, firstly the expectation of the uncalibrated

γ′ has to be calculated, which is defined for an uncalibrated average noise variance σ̄2 = 1
and for a given realization of the SUs’ locations. Taking into account that the random
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variables Ui ∼ U [−1, 1] are independent from each other, it can be written, in light of (4),
that

E[γ′] = 1
m

m

∑
i=1

E
[

Prxi
(1 + ρUi)

]
, (6)

where the uniform random variable Zi = 1 + ρUi lies in-between a = 1− ρ and b = 1 + ρ.
The expectation of the random variable Prxi/Zi is given by

E
[

Prxi
Zi

]
=
∫ b

a

Prxi
zi(b− a)

dzi =
Prxi

b− a
ln
(

b
a

)
. (7)

Applying this result in (6), with a = 1− ρ and b = 1 + ρ, the expected value of γ′ for
0 < ρ < 1 is found to be

E[γ′] =
ln
(

1+ρ
1−ρ

)
2ρm

m

∑
i=1

Prxi. (8)

For ρ = 0, Equation (8) yields an indeterminate result that can be easily solved taking
into account that

lim
ρ→0

1
2ρ

ln
(

1 + ρ

1− ρ

)
= 1,

in this case yielding

E[γ′] = 1
m

m

∑
i=1

Prxi. (9)

Since SNR = E[γ] = E[γ′]/σ̄2, the calibrated average noise variance is given by

σ̄2 =
E[γ′]
SNR

. (10)

In the last step, this σ̄2 is plugged into (3), along with a realization ui of the random
variable Ui, to yield σ2

i , which is the variance in the noise samples in the ith row of the
matrix V. New values of {σ2

i } are computed in each sensing round, conferring the time-
varying character to the noise power.

The present SNR calibration model corrects the one considered in [13], in which
the SNR is given by the ratio between the average signal power and the average noise
power, which could be better named average signal to average noise power ratio. Notice
from (4) and (5) that the correct SNR calculation is the average of the quotient between
the instantaneous signal power and the instantaneous noise power. Using the notation
adopted herein, in [13] it is considered that

SNR =
1
m

m

∑
i=1

Prxi

E[(1 + ρUi)σ̄2]
=

1
mσ̄2

m

∑
i=1

Prxi ,

and here, it is established that

SNR =
1
m

m

∑
i=1

E
[

Prxi

(1 + ρUi)σ̄2

]
=

ln
(

1+ρ
1−ρ

)
2ρmσ̄2

m

∑
i=1

Prxi,

where the factor ln[(1 + ρ)/(1− ρ)]/2ρ makes explicit the inequality between the two
SNR definitions. This factor is plotted in Figure 1, in dB, as a function of ρ. If the SNR
is defined according to [13] so that it remains constant for any ρ, the actual SNR will be
10 log10{ln[(1 + ρ)/(1− ρ)]/2ρ} dB higher, progressively overestimating the detector’s
performance in regard to the one achieved with the correct SNR, as ρ becomes larger.
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Figure 1. Factor ln[(1 + ρ)/(1− ρ)]/2ρ, in dB, as a function of ρ.

The influence of the correct SNR calibration on the detector’s performance is evidenced
by means of a numerical result presented in Section 4, specifically by Figure 7.

3. Test Statistics, Time Complexities, and Constant False-Alarm Rate of GID and
mGID

This section presents the GID test statistic and the derivation of its modified version,
the mGID test statistic. A time complexity analysis is subsequently performed by comparing
the computer run time of both detectors. Finally, the constant false-alarm rate properties of
the GID and mGID are addressed.

3.1. GID and mGID Test Statistics

The matrix Y defined in (1), which contains the mn samples received by the m SUs,
is formed at the FC. Under the hypothesisH0, the primary signal is absent in the sensed
band, yielding Y = V. Under the hypothesisH1, then Y = hxT + V. Given Y, the SCM of
order m is subsequently computed at the FC, according to

R =
1
n

YY†, (11)

where † denotes complex conjugate and transpose.
Let ri denote the ith element of the vector r formed by stacking all columns of R, for

i = 1, . . . , m2. The GID test statistic proposed in [13] is computed at the FC according to

TGID =

2(m2 −m)
m2

∑
i=1
|ri|

m2

∑
i=1

m2

∑
j=1

∣∣ri − rj
∣∣ , (12)

where the constant 2(m2 − m) has been used in [13] for convenience, but it does not
influence the performance of the GID detector, and can be removed.

The decision on the occupation state of the sensed band is made at the FC by comparing
TGID with a decision threshold λ. If TGID > λ, the decision is made in favor of the hypothesis
H1. Otherwise, H0 is chosen. The value of λ is defined a priori, according to the desired
false-alarm rate.

The calculation of the magnitude of the complex quantities contained in r is responsible
for the main computational burden associated with the test statistic (12). The magnitude
calculation carries a relatively high computational cost due to its computation as the
square root of the sum of the squared-real and squared-imaginary parts. To aggravate this
computational burden, such calculation must be performed m2 times in the numerator
and m4 times in the denominator of (12).
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The mGID test statistic proposed in this paper is formed by replacing the possibly
complex quantities, ri, in (12) by the real quantities qi = <(ri) +=(ri), where <(ri) and
=(rik) are the real and the imaginary parts of ri, respectively. As a consequence, the
computational cost of the mGID is drastically reduced in comparison with the GID. It is
noteworthy that a similar procedure has been used in [19] to devise the modified Pietra–
Ricci index detector (mPRIDe). The resultant mGID test statistic is

TmGID =

m2

∑
i=1
|qi|

m2

∑
i=1

m2

∑
j=i

∣∣qi − qj
∣∣ , (13)

from which the constant 2(m2 −m) has been removed, and an additional simplification
has been performed in the right-hand summation of the denominator, which sums from
j = i to j = m2 instead of the original sum from j = 1 to j = m2. This simplification takes
into account that |qi − qj| = |qj − qi|.

To illustrate the implication of using |qi| instead of |ri|, Figure 2 depicts random
realizations of |ri| and |qi| for m = 3, corresponding to the sample covariance matrix

R =

 r1 r4 r7
r2 r5 r8
r3 r6 r9



≈ 10−6

 0.118 0.046 + j0.003 0.040 + j0.004
0.046− j0.003 0.068 0.022 + j0.004
0.040− j0.004 0.022− j0.004 0.071

.

From this figure, it can be seen that the values of |ri| and |qi| = |<(ri) + =(ri)| are
not pairwise equal, except for the diagonal elements of R, which correspond to r1 = q1,
r5 = q5, and r9 = q9. Nonetheless, there is a compensation effect in the sums ∑i |qi| that
can be observed in the values of (q2, q4), (q3, q7), and (q6, q8): notice that q2 is shifted below
r2 approximately the same amount that q4 is shifted above r4; analogously, q3 is shifted
below r3 approximately the same amount that q7 is shifted above r7; and q6 is shifted
below r6 approximately the same amount that q8 is shifted above r8. As a consequence,
∑i |qi| ≈ ∑i |ri|, which produces a negligible modification in the numerator of TmGID with
respect to the numerator of TGID. The same reasoning applies to the denominators, that is,
∑i ∑j |qi − qj| ≈ ∑i ∑j |ri − rj|. Thus, there is a small difference between TGID and TmGID,
which guarantees that their performances are approximately the same, to be confirmed by
the results presented in Section 4.

Figure 2. Random realizations of |ri| and |qi| for m = 3.
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3.2. Time Complexities

Regardless of the magnitude of a real number, its absolute value can be calculated in
constant time. Taking this fact into account, the time complexity of (13), using the big-O
notation, is O(m4), as determined by the computation of its denominator. Analogously, the
time complexity of (12) is also O(m4). However, (12) is computed with a larger constant
factor than in the case of (13) because the absolute value of a complex quantity applies a
square-root operation, which is way more computationally expensive than multiplications
or additions. Hence, the detectors GID and mGID have the same time complexity in terms
of the big-O notation, but the GID test statistic takes longer to be computed due to the
higher computational cost of the square-root operation.

In order to assess the time complexities of the GID and mGID test statistics, run-time
measurements were carried out for them, as a function of the number of SUs, m, using a
computer with an 11th Gen Intel Core i7-11800H @ 2.30 GHz processor, with 64 GB RAM,
running the Windows 11 Professional and the 64-bit Matlab R2018b, and measured via the
Matlab functions tic and toc. These functions were respectively placed before and after
the subroutine that computes the corresponding test statistics in the Matlab code [16]. The
resultant measurements are shown in Figure 3.

A power curve fitting of the type axb + c was applied to the run-time measurement
results, using the pwrfit function of the Mathcad software [20], version 15, yielding
a1 ≈ 2.2× 10−7, b1 ≈ 3.90, and c1 ≈ 3.5× 10−5 for the GID, and a2 ≈ 9.4× 10−9, b2 ≈ 3.86,
and c2 ≈ 9.3× 10−6 for the mGID. From this procedure, it is demonstrated the fourth-power
growth rate of the computation time for both detectors, as given by b1 and b2, approximately
equals 4, and the much larger constant time factor of the GID is approximately 23.4 times
larger than in the case of the mGID, as given by a1/a2 ≈ 23.4. In other words, the mGID
test statistic (13) takes approximately 4% of the computation time spent for calculating the
GID test statistic (12), which represents a huge reduction in the latency of the spectrum
sensing process.

Figure 3. Run-time computation measurements of the GID and mGID test statistics.

3.3. Constant False-Alarm Rate

The CFAR property is the ability of a detector to maintain the false-alarm rate irrespec-
tive the value of a system parameter of interest [19]. In the context of spectrum sensing, the
parameter of interest is the noise variance.

To assess the CFAR property of the GID and mGID, Figure 4 depicts the empirical
probability density functions (PDFs) of TGID and TmGID, under H0 and H1, for m = 6,
SNR = −13 dB, η = 2.5, n = 250, ρ = 0.5, µK = 20 dB, and σK = 0 dB, for 50,000
realizations of each test statistic, under each hypothesis, and for two different values
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of the average noise variance σ̄2. The specific noise variances σ̄2 = 1.9408× 10−6 and
σ̄2 = 4.4921× 10−5 resulted from setting the PU transmitted signal power to 5 and 50 watts,
respectively.

From Figure 4, it can be seen that the supports of the PDFs of TGID underH0 do not
change when subjected to different noise variances, the same occurring with TmGID. Hence,
given a predefined decision threshold, the probability of a false alarm will not change with
the noise variance, which confers the CFAR property to the GID and mGID.

(a) (b)
Figure 4. Empirical PDFs of the test statistics TGID and TmGID under H0 and H1: (a) average noise
variance σ̄2 = 1.9408× 10−6; (b) average noise variance σ̄2 = 4.4921× 10−5.

Figure 4 also suggests that the performances of the GID and mGID are the same, since
the PDFs of their test statistics are practically identical in shape, except for a small shift of
the mGID’s PDFs to the left, relative to the GID’s.

4. Numerical Results

This section addresses the performance of the detectors GID and mGID, as well as of
the competing state-of-the-art blind detectors listed in Section 1, namely, PRIDe, HR, VD1
(VD number 1), GLRT, MMED, AGM, and GRCR. The test statistics of these competing
detectors are given in the sequel.

The test statistic of the PRIDe detector [15] is

TPRIDe =

m2

∑
i=1
|ri|

m2

∑
i=1
|ri − r̄|

, (14)

where ri is the same variable defined in (12), and r̄ = (1/m2)∑m2

i=1 ri.
The HR test statistic [9] is computed as

THR =
det(R)

m
∏
i=1

ri,i

, (15)

where ri,j is the element in the i-th row and j-th column of the sample covariance matrix R,
and det(R) is the determinant of R.

The VD1 detector [11] has a test statistic given by

TVD1 = log
[
det(E−1R)

]
, (16)
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where E = diag(e), with diag(e) being the diagonal matrix whose main diagonal cor-
responds to the vector e = [e1, e2, · · · , em], where ei = ‖R(i, :)‖2 and ‖ · ‖2 denotes the
Euclidean norm.

The test statistic of the eigenvalue-based GLRT detector [12] is

TGLRT =
λ1

m
∑

i=1
λi

, (17)

where λ1 ≥ λ2 ≥ · · · ≥ λm are the eigenvalues of R.
The detector MMED [12] forms its test statistic according to

TMMED =
λ1

λm
. (18)

In the case of the AGM [10], the test statistic is given by

TAGM =

1
m

m
∑

i=1
λi(

m
∏
i=1

λi

)1/m , (19)

and the GRCR [14] has a test statistic computed according to

TGRCR =

m
∑

i=1

m
∑

j=1,j 6=i
|ri,j|

m
∑

i=1
ri,i

. (20)

The performances reported herein have been measured in terms of the probability of
detection, Pd, for a fixed Pfa = 0.1, as a function of the main system parameters. All results
were generated via Monte Carlo computer simulations using the Matlab R2018a running
the source code available in [16].

The CSS topology adopted for analysis is exemplified in Figure 5. It comprises a
secondary network with m SUs (m = 10 in this example) uniformly distributed in a circular
coverage area with radius r meters (a normalized r = 1 has been used in this figure), with
the PU transmitter located at (x, y) = (r, r) meters, with (x, y) = (1, 1) meter in the figure,
and the FC located at the center of the coverage area. Each sensing event requires defining
new random positions of the SUs, aiming at mimicking mobile SUs. The PU signal samples,
which come from a base-band QPSK signal, are then generated according to the model
described in Section 2 for the vector x. These samples are multiplied by the channel vector
h and the result is added to the noise matrix V, according to (1), forming the matrix Y of
received signal samples. As demonstrated in Section 2, the channel vector h accounts for
multi-path fading and distance-dependent signal attenuation from the PU transmitter to
the SUs. Subsequently, matrix Y is made available to the FC, where the sample covariance
matrix R is computed, and from which the desired test statistics are formed. For each
detector under analysis, a number of 20,000 test statistic values are computed under H0
andH1, and used to estimate the cumulative distribution functions (CDFs) from which Pd
is read for the reference Pfa = 0.1.



Sensors 2023, 23, 5403 11 of 17

Figure 5. CSS topology for m = 10 SUs, normalized coverage radius r = 1 m, FC at (x, y) = (0, 0) m,
and PU transmitter at (x, y) = (1, 1) m.

Figure 6 depicts Pd versus the mean of the Rice factor of the sensing channel, µK,
for m = 6 SUs, SNR = −13 dB, path-loss exponent η = 2.5, coverage radius r = 1 km,
n = 250 samples per SU, fraction of noise power variation ρ = 0.5, and standard deviation
of the Rice factor σK = 0 dB.

The main result unveiled by Figure 6 is the influence of the line-of-sight condition from
the PU transmitter to the SUs on the performance of the detectors, especially in the case
of the GID and mGID. Firstly, notice that the GID and mGID achieve practically the same
performances. Moreover, they become attractive under a moderate-to-high LoS component,
i.e., for µK > 0 dB. Taking this fact into consideration, the remaining results of this section
consider µK = 20 dB, which tightly approximates a pure AWGN channel. This is to explore
the GID and mGID operations under the scenario corresponding to their best performances.

Figure 6. Pd versus µK , for m = 6, SNR = −13 dB, η = 2.5, r = 1 km, n = 250, ρ = 0.5, and
σK = 0 dB.

Figure 6 also demonstrates that the performance variation pattern of the PRIDe is
similar to the GID and mGID, yielding a better performance for lower values of µK and
a worse performance for higher values of µK. The other detectors exhibit low sensitivity
to the variation in µK, with the GLRT, MMED, and AGM being practically useless. This is
because these three detectors are not robust against variations in the received signal and
noise levels, which are implicitly present in the setup used to plot Figure 6.
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The effect on Pd due to changes in the fraction ρ that governs the amount of noise
power variation about its average is shown in Figure 7, for m = 6, SNR = −13 dB, η = 2.5,
r = 1 km, n = 250, µK = 20 dB, and σK = 0 dB. Figure 7a considers the new model
for calibrating the SNR, according to (5) and related equations, while Figure 7b has been
plotted under the SNR definition given in [13], which corresponds to the ratio between the
average signal power to the average noise power. Notice that the performances of the GID
and mGID are practically the same, and that they are quite robust against the variation in
the noise level, up to ρ = 0.8, the same occurring with the detectors PRIDe, HR, VD1, and
GRCR. The performance of the detectors GLRT, MMED, and AGM are highly affected by
the value of ρ, as anticipated in the comments about Figure 6.

(a) (b)
Figure 7. Pd versus ρ, for m = 6, SNR = −13 dB, η = 2.5, r = 1 km, n = 250, µK = 20 dB, and σK = 0
dB: (a) correct SNR model; (b) incorrect SNR model.

On the other hand, Figure 7b suggests a much better robustness of the GID, mGID,
and PRIDe than the other detectors; an equivalent conclusion regarding the GID has been
reported in [13]. Since Figure 7a adopts the correct way of computing the SNR as the
average of the quotient between the instantaneous signal and noise powers, the conclusions
drawn from it are the correct ones. In Figure 7b, the probability of detection for all detectors
are overestimated at higher values of ρ, since the actual (correct) SNRs in this case have
been measured as −12.98, −12.93, −12.73, −12.37, −11.61, and −8.74 dB, respectively, for
ρ = 0, 0.2, 0.4, 0.6, 0.8, and 0.99 (recall that the SNR associated with Figure 7b has been
configured as −13 dB for any ρ, applying the incorrect definition). Observe that if −13 dB
is subtracted from the above SNR values, the results are approximately the quantities given
in Figure 1.

To put it concisely, the detectors GID, mGID, PRIDe, HR, VD1, and GRCR show some
resistance to changes in noise power, but their level of robustness is not as high as perceived
when an incorrect definition of the SNR is utilized.

Figure 8 gives Pd versus the number of SUs, m, for SNR = −14 dB, η = 2.5, r = 1 km,
n = 250, ρ = 0.5, µK = 20 dB, and σK = 0 dB. As expected, the performances of all robust
detectors improve as m increases, whereas the non-robust ones (GLRT, MMED, and AGM)
do not follow this improvement pattern due to the deleterious influence of the signal and
noise level variations. For the system settings considered in Figure 8, the GID and mGID
considerably outperform the other detectors, closely followed by the PRIDe. Once again,
the results show practically identical performances of the GID and mGID.
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Figure 8. Pd versus m for SNR = −14 dB, η = 2.5, r = 1 km, n = 250, ρ = 0.5, µK = 20 dB, and
σK = 0 dB.

Figure 9 depicts Pd versus the SNR, in dB, assuming m = 6, η = 2.5, r = 1 km, n = 250,
ρ = 0.5, µK = 20 dB, and σK = 0 dB. The performance improvement observed for all
detectors as the SNR increases is the expected outcome. The GID and mGID performances,
once again, are in agreement with each other, and are superior to the other detectors, given
that the line-of-sight condition has been established by setting µK = 20 dB. The PRIDe
performs quite similarly to the GID and mGID, while the HR, VD1, and GRCR come in
third position with practically identical performances. It can be seen that, in spite of being
under nonuniform received signal and noise powers, the GLRT, MMED, and AGM are
capable of attaining satisfactory performances, but only at relatively higher SNR regimes.

Figure 9. Pd versus SNR for m = 6, η = 2.5, r = 1 km, n = 250, ρ = 0.5, µK = 20 dB, and σK = 0 dB.

The influence, on Pd, of the distances from the PU to the SUs, which depend on the
(x, y) coordinates of the PU, is shown in Figure 10 for x = y, m = 6, SNR = −14 dB, η = 2.5,
r = 1 km, n = 250, ρ = 0.5, µK = 20 dB, and σK = 0 dB. The non-robust detectors (GLRT,
MMED, and AGM) are useless for any PU coordinate, which is owed to the variability
in signal and noise levels and to the SNR value (see Figure 9). When the PU coordinates
x, y are below ≈3r m, the performances of all robust detectors decrease due to the larger
relative discrepancies among the received signal powers, similarly to what happens when
the path-loss exponent increases. For x, y above ≈3r m, practically no performance changes
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are observed for all detectors, meaning that the relative discrepancies among the received
signal powers were not capable of causing performance loss or improvement.

Figure 10. Pd versus (x, y) coordinates of the PU transmitter, x = y, for m = 6, SNR = −14 dB,
η = 2.5, r = 1 km, n = 250, ρ = 0.5, µK = 20 dB, and σK = 0 dB.

Finally, Figure 11 gives Pd as a function of the path-loss exponent, η. The detectors
GLRT, MMED, and AGM attain useless performances for any η, a consequence of their non-
robustness to the noise and signal power variations. The performances of the remaining
detectors reduce as η becomes larger, which seems an expected outcome if one recalls
that a larger path-loss exponent means higher signal attenuation from the PU to the SUs.
However, the performance reduction shown in Figure 11 is not directly caused by the higher
attenuation, since the SNR has been set as fixed for any η. A higher path-loss exponent
produces higher differences among the received signal power levels, which translate into
worse spectrum sensing performances. For instance, a realization of the received signal
powers, in dBm, for η = 1 was 14.4, 14.0, 13.9, 16.4, 17.9, and 14.5. For η = 4, another
realization of the signal powers, also in dBm, was −79.7, −75.1, −80.2, −75.2, −65.8, and
−65.9. Notice the higher variations in the second case.

Figure 11. Pd versus η for m = 6, SNR = −13 dB, r = 1 km, n = 250, ρ = 0.5, µK = 20 dB, and
σK = 0 dB.
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5. Conclusions and Opportunities for Future Research

The modified GID (mGID) has been proposed in this article. It has been observed that
the mGID inherited the attractive attributes of the GID, additionally having a computational
cost far below the GID. The time complexity of the mGID obeys approximately the same
growth rate of the GID, but has a constant factor approximately 23.4 times smaller. In other
words, the mGID spends approximately 4% of the processing time spent to calculate the
GID test statistic, which corresponds to a huge reduction in the latency of the spectrum
sensing process. Furthermore, this latency reduction has come with no performance loss in
the mGID with respect to the GID.

Two improvements to the models originally proposed in [13] have also been suggested:
(i) the variations in the received signal levels have been associated with the path loss of
the channels between the PU transmitter and the SUs; and (ii) the models for the SNR
computation and calibration of the corresponding noise power level have been modified
to take into account the correct definition of the SNR as the expectation of the quotient
between the random signal and noise power levels. Besides more trustable results, these
improvements have uncovered the actual degree of robustness of the analyzed detectors
against time-varying signal and noise levels, which is not as high as previously reported in
the literature.

A fully-commented Matlab code has been made available at [16], allowing a complete
performance analysis of the detectors considered herein under a variety of circumstances
and system parameters. Other detectors can be easily added to the analysis by simply
adapting or reproducing the sub-routines inside the code.

Some opportunities for future research departing from the present work can be high-
lighted: (i) the hardware implementation of the mGID in a field-programmable gate array
(FPGA), an application-specific integrated circuit (ASIC), or both, is a natural path beyond
the contributions of this article; (ii) the model described in Section 2 is already an appealing
and practical model, but could be improved by adding spatially correlated shadowing and
erroneous report channels to allow for the assessment of their influences on the spectrum
sensing performance; (iii) in a simpler work, other detectors could be also compared with
the mGID in terms of performance and computational cost.
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Abbreviations
The following abbreviations are used in this manuscript:

AGM Arithmetic to geometric mean
ASIC Application-specific integrated circuit
AWGN Additive white Gaussian noise
CDF Cumulative distribution function
CR Cognitive radio
CSS Cooperative spectrum sensing
DSA Dynamic spectrum access
FC Fusion center
FPGA Field programmable gate array
GID Gini index detector
GLRT Generalized likelihood ratio test
GRCR Gerschgorin radii and centers ratio
HR Hadamard ratio
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IoT Internet of Things
LNA Low-noise amplifier
LoS Line of sight
mGID Modified Gini index detector
MMED Maximum-minimum eigenvalue detector
mPRIDe Modified Pietra–Ricci index detector
PDF Probability density function
PRIDe Pietra-Ricci index detector
PU Primary user
QPSK Quadrature phase-shift keying
RF Radio frequency
SCM Sample covariance matrix
SNR Signal-to-noise ratio
SU Secondary user
VD Volume-based detector
VD1 Volume-based detector number 1
VD2 Volume-based detector number 2
5G Fifth generation
6G Sixth generation
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