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Abstract

The Pietra-Ricci index detector (PRIDe) has been recently proposed as one of the simplest techniques for data-fusion cooperative
spectrum sensing (CSS), attaining robustness against time-varying signal and noise levels, constant false alarm rate, and high
performance. This paper proposes a hybrid sensing information fusion scheme for cluster-based CSS, in which the PRIDe is
applied to data-fusion at the cluster heads (CHs), in combination with decision-fusion of CHs’ decisions at the fusion center. A
modified version of the k-means clustering algorithm is used to form the clusters, where a CH is defined as the cluster member
closest to the cluster’s centroid. Theoretical and computer-simulation results trade the spectrum sensing performance against the
energy per bit effectively transmitted during the data communication interval, unveiling that, contrary to the common thought,
cluster-based CSS may not provide energy savings compared to CSS without clustering. Moreover, it is demonstrated that the
performance rank of the well-known decision-fusion rules AND, OR and MAJ is strongly affected by the distance between the
primary network transmitter and the secondary users, as well as by the path-loss exponent of the sensing channel.

Keywords: Cluster-based cooperative spectrum sensing, cognitive radio, data-fusion cooperative spectrum sensing,
decision-fusion cooperative spectrum sensing, k-means clustering, Pietra-Ricci index detector (PRIDe).

1. Introduction1

The growth of wireless communication systems in recent years has led to a scarcity of the radio-frequency (RF)2

spectrum. This is owed mainly to the adoption of a fixed spectrum allocation policy, which grants exclusive rights3

to a primary user (PU) network. Nonetheless, in some regions and at certain times, the allocated bands may be4

underutilized, resulting in inefficient spectrum usage.5

The massive deployment of the Internet of Things (IoT) and the fifth generation (5G) of wireless communication6

networks is expected to worsen the RF spectrum shortage, as the large expected number of terminals will demand7

even higher bandwidths, which is also a trend regarding beyond-5G networks. To alleviate this shortage, a cognitive8

radio (CR) network can be adopted to explore unoccupied frequency bands using a dynamic spectrum access policy,9

with cognitive secondary user (SU) terminals opportunistically using vacant bands [1, 2].10

Spectrum sensing [3, 4, 2, 5], with or without the aid of an RF spectrum occupancy database [6], is used by the11

secondary network to detect spectral holes. However, it is known that independent spectrum sensing by each SU12

is prone to performance degradation [2], meaning that cooperative spectrum sensing (CSS) is the preferred solution.13

CSS involves multiple SUs co-participating in the sensing process to improve the accuracy of channel occupation state14
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decisions. The most common form of CSS is the centralized approach, in which the sensing information gathered by15

the SUs are transmitted to the fusion center (FC) of the secondary network, where the decision upon the state of the16

sensed channel is made.17

When centralized CSS takes place, there are often two alternatives for combining the sensing information at the18

FC: i) In data-fusion CSS (sometimes called sample-fusion CSS), the received signal samples collected by the SUs,19

or any soft-information derived from these samples are forwarded to the FC, where a test statistic is formed and20

compared with a decision threshold to yield the global decision on the occupation state of the sensed band. ii) In21

decision-fusion CSS, a test statistic is formed in each SU, allowing for a local spectrum occupancy decision. The22

SUs’ decisions are subsequently forwarded to the FC, where a hard-decision combining rule is applied to the local23

decisions to yield the global decision.24

The well-known hard-decision combining approach is the κ-out-of-c rule, in which the FC decides in favor of25

the presence of the primary signal if κ or more SUs decide in the same manner. Common special cases of this rule26

are the so-called OR (for κ = 1), AND (for κ = c), and majority (MAJ) voting (for κ = ⌊c/2 + 1⌋, where ⌊x⌋ is the27

greatest integer less than or equal to x). Although there is no general expected outcome regarding the influence of28

the hard-decision combining approach chosen, it significantly depends on the spectrum sensing performances of the29

SUs. The MAJ rule normally wins when these performances are the same, with the performance rank of OR, AND30

and MAJ varying considerably if the performances are different from each other.31

In either data-fusion or decision-fusion, the global decision made at the FC is broadcasted to the SUs, which will32

subsequently compete for the band, if it is vacant, using any appropriate multiple access technique.33

Decision-fusion is known to deliver worse spectrum sensing performances in comparison to data-fusion, and larger34

computational complexity of the SUs due to the need of computing local test statistics. However, decision-fusion CSS35

is often referred as capable of potentially increasing the secondary network throughput, while reducing its energy36

consumption due to the smaller amount of data that is reported to the FC in comparison with data-fusion CSS. Hence,37

the choice between data-fusion and decision-fusion CSS seems to rely on a trade-off analysis involving spectrum38

sensing performance, energy consumption and data throughput.39

The cluster-based CSS [7] strategy lies in-between pure data-fusion and pure decision-fusion CSS. In a cluster-40

based CSS system, nodes are grouped into clusters, with cluster members sending their sensing information to cluster41

heads (CHs), and CHs sending the received sensing information data (with or without its own sensing data) to the cen-42

tral node for fusion. Cluster-based CSS can potentially provide energy savings compared to CSS without clustering,43

owed mainly to the reduction in the amount of data transmission and processing overhead. At the same time, it aims44

at improving the performance relative to pure decision-fusion CSS.45

Among the variety of detectors designed so far for spectrum sensing, the Pietra-Ricci index detector (PRIDe) [8]46

has been recently proposed as one of the simplest techniques for centralized data-fusion CSS, attaining robustness47

against time-varying signal and noise levels, constant false alarm rate, and high detection capability. In this paper, a48

cluster-based hybrid-fusion CSS approach is proposed, in which clusters of SUs are formed and the PRIDe is used as49

the test statistic generated at the CHs using data-fusion CSS. The decisions made by the CHs are then are forwarded50

to the FC, applying a decision-fusion CSS strategy. The hybrid fusion aims at attaining the attractive attributes of51

decision-fusion and data-fusion CSS, namely: smaller energy consumption and potential higher throughput of the52

former, combined with better performance of the latter.53

1.1. Related research54

Several test statistics have been developed for spectrum sensing, many of them relying on processing the ele-55

ments of the sample covariance matrix (SCM) of the received signal [9, 10, 11, 12, 13, 14, 8]. Among the SCM-56

based test statistics, it can be mentioned the Hadamard ratio (HR) detector [9], the arithmetic to geometric mean57

(AGM) detector [10], the volume-based detectors (VD) [11], the maximum-minimum eigenvalue detector (MMED),58

the eigenvalue-based generalized likelihood ratio test (GLRT) [12], the Gini index detector (GID) [13], the Ger-59

schgorin radii and centers ratio (GRCR) [14], and the already-mentioned Pietra-Ricci index detector (PRIDe) [8].60

The computational burden associated to the test statistics for the detectors HR and VD depends mainly on calcu-61

lating the determinant of the SCM (in the case of HR) or another matrix derived from the SCM (in the case of VD).62

Detectors such as the AGM, the MMED, and the eigenvalue-based GLRT rely on computing the eigenvalues of the63

SCM to construct the test statistics. In contrast, the GID, GRCR and PRIDe directly operate on the elements of the64

SCM to build their test statistics without utilizing eigenvalues, determinants or other equally complex operations.65
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The detectors HR, VD, AGM, MMED, GLRT, GID, GRCR and PRIDe are considered blind, in the sense that66

they do not rely on information about the noise variance, nor about the characteristics of the primary signal. The67

GID, GRCR and PRIDe detectors are noteworthy because they have lower computational complexity compared to the68

others, being also robust against changes in the powers of the received signal and noise. Among these detectors, the69

PRIDe is the least complex [8].70

In regard to the research efforts on energy-efficient CSS techniques, several authors have proposed methods to71

reduce energy expenditure, for example adopting optimization strategies at some stage of the sensing process [15, 16,72

17]. Techniques to reduce the number of radios that transmit during the SUs information exchange stage have been73

also proposed, for instance in [18, 19].74

A survey of energy-efficient CSS schemes is presented in [7], where the cluster-based approach is defined as75

the one considering that cluster members report their local decisions to the corresponding CH. The role of the CHs76

is to either forward the received cluster members’ decisions to the FC, or to make a decision at the cluster level,77

subsequently reporting it to the FC, where the final decision takes place under a hard-decision combining rule.78

In [20], it is proposed a hybrid cluster-based CSS in which clusters are defined according to sensing reliability and79

energy efficiency, with the term ‘hybrid’ referring to the use of these two metrics. The SUs apply energy detection80

and transmit their decisions to the secondary network’s base-station, where a majority voting decision rule is applied.81

The CHs are meant to relay data traffic from the cluster members to the base-station, also acting as sensing nodes.82

An iterative algorithm is proposed in [21] to determine joint optimal sensing time, data transmission time, and the83

number of SUs that maximize energy efficiency of a cluster-based CSS scheme. The cluster members independently84

detect the presence of the PU signal, forwarding their decisions to the CH, which combines the observations using the85

κ-out-of-c rule. The CH decides either to transmit data if the sensed band is unoccupied, or to sleep if the PU signal is86

declared present.87

The cluster-based CSS scheme considered in [22] also adopts the approach of transmitting the SUs decisions to88

the CHs, which forward them to the FC, where the κ-out-of-c rule is applied. The individual SUs decisions are made89

via energy detection. The authors propose multiple reporting channels to enhance the spectrum sensing performance90

and reduce the reporting time delay of the CHs.91

An optimal linear weighted CSS for cluster-based topology is proposed in [23]. The cluster members apply energy92

detection and forward the captured signal energies to the CH, where they are combined under weights determined93

according to the signal-to-noise ratio (SNR) and the historical sensing accuracy. The decisions made by the CHs are94

forwarded to the FC, where the OR rule is applied.95

The sensing throughput trade-off problem is addressed in [24], where a cluster-based CSS is also adopted. Energy96

detection is performed by the cluster members, which report their decisions to the head user (equivalent to the CH).97

Each head user then applies the κ-out-of-c rule and forwards the decision to the FC, where the head users’ decisions98

are combined using the OR rule.99

From the research reported, it can be seen that most of the proposed cluster-based CSS approaches consider100

energy detection at the SU level, performing intermediate hard-decision combining at the CH and a final hard-decision101

combining at the FC. The single identified reference that makes soft-combining at the CH level, yet using energy102

detection, is [23]. However, recall that the energy detector is not blind, since it needs to know the noise variance to103

proper establish the decision threshold, and it may suffer from large performance loss due to noise uncertainty [25].104

On the other hand, many proposals adopt unrealistic assumptions for analyzing the network performance, resulting105

in equally unrealistic analyses and conclusions. Examples are the adoption of the same SNR and the same spectrum106

sensing performance for all SUs [26], in some cases neglecting the influence of relevant propagation phenomena of107

the sensing channel [27, 28]. Motivated by these facts, the framework proposed herein adopts a realistic system model108

in combination with a state-of-the-art blind detector, aiming at forming a hybrid cluster-based CSS from which it is109

possible to draw solid conclusions regarding the trade-off between spectrum sensing performance and energy savings110

in the secondary network.111

1.2. Contribution and structure of the article112

This paper proposes and analyzes a cluster-based CSS scheme in which soft-decision-fusion at the CHs is com-113

bined with hard-decision-fusion at the FC, so the given name ‘hybrid fusion’. Differently from the common use of114

energy detection, the soft-decision-fusion part of the hybrid scheme applies data-fusion CSS at the clusters level, by115
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forming PRIDe test statistics at the CHs. The decisions made at the CHs are forwarded to the FC, where the final116

decision is reached by means of the κ-out-of-c rule. A modified version of the k-means clustering algorithm is used to117

form the clusters, under the restriction that the minimum number of cluster members is 2. This restriction is necessary118

for the proper operation of the PRIDe detector (or any other SCM-based detector), since it is subsumed that the order119

of the SCM is at least 2. Numerical results trade the spectrum sensing performance against the energy per bit effec-120

tively transmitted during the data communication phase. As a byproduct, it is also provided a comprehensive Matlab121

code [29] for simulating the proposed hybrid fusion scheme in a variety of circumstances and system parametrization.122

In summary, the main contributions of this work are:123

• A hybrid information fusion for cluster-based CSS, in which data-fusion at the cluster level, using the PRIDe,124

is combined with decision-fusion CSS at the FC level.125

• A modified version of the k-means clustering algorithm that guarantees that no cluster has less than 2 members,126

making it feasible the use of the covariance-matrix-based PRIDe test statistic in the data-fusion part.127

• A practical-appealing system model that adopts realistic clustering, distance-dependent path-loss, sensing chan-128

nel fading with variable line-of-sight condition, and variable signal and noise levels across the SUs.129

• A plenty of numerical results, including theoretical ones, to support the conclusions of the work.130

• A fully-commented comprehensive Matlab simulation code [29] capable of supporting a complete system anal-131

ysis under a variety of circumstances and system parameters.132

The remainder sections of the article are organized as follows. Section 2 presents the clustering strategy adopted133

in the hybrid fusion scheme. The cooperative spectrum sensing model is described in Section 3, along with the134

PRIDe test statistic. Section 4 addresses the model for assessing the energy consumption of the secondary network.135

Numerical results are presented and commented in Section 5. The conclusions are given in Section 6.136

2. Clustering model137

It is assumed that the SUs positions, which are determined by two-dimensional coordinates (x, y), are randomly138

distributed throughout the primary network coverage area, which is assumed to be circular with radius r.139

The necessary information to the clustering process, which is determined in the deployment phase of the hybrid140

CSS scheme, is the maximum number of clusters, cmax, and the total number of SUs, mT. The total number of SUs141

is divided into c ≤ cmax clusters, each cluster containing m j ≥ 2 members, for j = 1, . . . , c. The clusters are formed142

according to a modified version of the k-means clustering algorithm [30, 31]. Since the PRIDe subsumes that the143

order of the SCM is at least 2, the modification in the k-means algorithm guarantees that each cluster contains at least144

2 members, which is made by executing the algorithm firstly with k = cmax and testing if any cluster has a single145

member. If true, the algorithm is repeated for k ← k − 1, until there is no more clusters having a single member. The146

final number of clusters is c = k, with c ≤ cmax.147

The unmodified k-means clustering algorithm aims at grouping similar data points together into clusters. It starts148

by randomly selecting k points from the set to serve as the initial cluster centroids. A centroid is the central point in a149

cluster of points or, equivalently, it is the average of the coordinates of the cluster’s members. The k-means clustering150

algorithm finds the best k centroids to divide the data into k clusters such that the sum of the squared distances between151

each cluster component and its nearest centroid is minimized. Each point is assigned to the closest centroid. Next,152

the algorithm updates the position of the centroids to be the average of all the points assigned to that centroid. This153

process of reassigning points to centroids and updating the centroids is repeated until the centroids no longer change154

significantly. In the end, each point is assigned to a cluster based on its closest centroid, resulting in k clusters.155

Figure 1 shows a random realization of the k-means clustering process for mT = 15 and cmax = c = 3. In Matlab,156

which has been used to plot this figure, the k-means clustering algorithm is performed by the function kmeans [32].157

The SUs, the PU transmitter (PUtx), the FC - which is also the base-station (BS) of the secondary network, the CHs,158

and the cluster centroids are also shown. Are also shown: the Voronoi regions’ frontiers that separate the clusters, and159

the perimeter of the circular coverage area where the SUs are uniformly distributed. The CHs are defined as the SUs160

located closest to the clusters’ centroids. In this exemplifying scenario, the number of SUs in each cluster are m1 = 6,161
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m2 = 3, and m3 = 6. The area radius is normalized to r = 1 m, and in this case the PUtx is located at the coordinates162

(r, r) = (1, 1) m. The FC coordinates are (0, 0), meaning that it is positioned at the center of the coverage area of the163

secondary network.164

In Figure 1, the node PUtx is the transmitter of the primary network. Three types of nodes belonging to the165

secondary network can be identified in this figure: The SUs that perform spectrum sensing, the SUs that are designated166

cluster heads (CHs) used as intermediate fusion centers of the sensing information transmitted by the clusters’ SUs,167

additionally acting as spectrum sensors, and a node that works as the fusion center (FC) of the cluster heads’ decisions.168

If no clustering is adopted, there are two types of nodes in the secondary network: The SUs that perform spectrum169

sensing, and the central node that acts as the fusion center of the signal samples collected by the SUs.170

Figure 1. Clustering via the modified k-means algorithm.

It is worth highlighting that if cmax > mT/2, then c < cmax with probability 1, since mT/c must be greater than,171

or equal to 2. For example, for mT = 16 and cmax = 9, the number of clusters resulting from the modified k-means172

algorithm is at most c = 8, which corresponds to 2 members per cluster. Moreover, if cmax > mT/2, the execution173

time of the algorithm increases, since it will be repeated for successively smaller k, departing from cmax, up to mT/2.174

After that, it is likely that the algorithm repeats for even smaller values of k, until there is no cluster with less than 2175

members. The probability that the algorithm is repeated for k < mT/2 increases for larger values of mT.176

3. Spectrum sensing model177

This section describes the overall CSS model adopted in this article, starting with the signal, noise and channel178

models, followed by the presentation of the PRIDe test statistic, and ending with the model for performance analysis.179

3.1. Signal, noise and channel models180

In the jth cluster, for j = 1, . . . , c, the CSS uses m j SUs, each one gathering n samples of the PU signal during181

the sensing interval. The samples collected by the SUs of a cluster, including the CH, are aggregated at the jth CH to182

form the matrix Y j ∈ Cm j×n given by183

Y j = h jxT + V j, (1)

where the vector x ∈ Cn×1 contains the PU signal samples, which are zero-mean complex Gaussian random variables184

whose variance is determined according to the average SNR across the SUs.185

The channel vector h j ∈ Cm j×1 is formed by elements hi, j, i = 1, . . . ,m j, representing the channel gains between the186

PU transmitter and the ith SU of the jth cluster. These gains are constant during the sensing interval and independent187
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and identically distributed (i.i.d.) over the sensing rounds. The channel vector is given by h j = G ja j, where G j188

is a gain matrix to be defined ahead, and a j ∈ Cm j×1 is a vector formed by complex-Gaussian random variates189

ai, j ∼ CN[
√

Ki, j/(2Ki, j + 2), 1/(Ki, j + 1)], where Ki, j = 10K(dB)
i, j /10, with K(dB)

i, j = 10 log10(Ki, j) being the Rice factor,190

in dB, of the channel between the PU and the ith SU of the jth cluster. From [33], it can be found that Ki, j ∼191

N[µK , σK] is an environment-dependent Gaussian random variable, with mean µK and standard deviation σK , both in192

dB, determined according to the propagation characteristics of the area. An urban area is considered herein, for which193

µK = 1.88 dB and σK = 4.13 dB [33].194

Unequal and time-varying received signal power levels across the SUs occur due to the different distances between195

the PU transmitter and the SUs, and due to the variation of these distances across different sensing rounds due to196

SUs’ motion. This is modeled by setting the diagonal gain matrix G j ∈ Rm j×m j as G j = diag(
√

p j/PtxPU), where197

p j = [PrxSU1, j PrxSU2, j . . . PrxSUm j, j]
T is the vector with the received PU signal powers across the m j SUs of the jth198

cluster, with [·]T denoting transposition, PtxPU is the transmitted PU signal power, and diag(·) returns a diagonal matrix199

whose diagonal is formed by the vector in the argument.200

The PU signal power received by the ith SU of the jth cluster, for i = 1, . . . ,m j, is determined via the log-distance201

path-loss prediction model [34, p. 202], yielding202

PrxSUi, j = PtxPU

(
d0

dPUi, j

)η
, (2)

where d0 is a reference distance in the far-field region of the PU transmit antenna, dPUi, j is the distance from the PU203

transmitter to the ith SU of the jth cluster, and η is the environment-dependent dimensionless path-loss exponent.204

Larger values of η means larger signal attenuation.205

The variability of thermal noise is also assumed in the present model. Across a large area, this variability can be206

significant and depends on multiple factors, including temperature, physical properties of the receiver components, and207

environmental conditions such as electromagnetic interference, atmospheric noise, and radio-frequency interference208

that are added to the receiver noise as if they were thermal noise. Herein, the nonuniform and time-varying noise level209

is modeled as follows: The elements in the ith row of the matrix V j ∈ Cm j×n in (1) are independent, with respect to i210

and j, Gaussian random variables with zero mean and variance211

σ2
i = (1 + ρui)σ̄2, (3)

where ui is the realization of a uniform random variable Ui in the interval [−1, 1], that is, Ui ∼ U[−1, 1], σ̄2 is the212

noise variance averaged across all SUs, and 0 ≤ ρ < 1, which is a predefined parameter of the model, is the fractional213

variation of the noise power about σ̄2.214

The signal-to-noise ratio averaged across the SUs of the jth cluster is denoted as SNR j. It is also a random215

variable, since it depends on σ2
i and on the distances dPUi, j , which vary according to the SUs’ positions. In light of (2)216

and (3), a realization of SNR j is given by217

SNR j =
1

m j

m j∑
i=1

PtxPU

(
d0/dPUi, j

)η
(1 + ρui)σ̄2 . (4)

Thus, the global average SNR across all SUs, which is also a predefined parameter of the model, is given by218

SNR =
1
c

c∑
j=1

E[SNR j], (5)

where E[SNR j] is the expected value of SNR j.219

To implement such a variable noise level model for computer simulation purposes, firstly it has to be calculated220

the expectation of the uncalibrated SNR′j, which is defined for an uncalibrated average noise variance σ̄2 = 1, and for221

a given realization of the SUs’ locations. This expectation is derived in the Appendix A. For ρ = 0, it is given by222

E[SNR′j] =
1

m j

m j∑
i=1

PrxSUi, j (6)
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and for 0 < ρ < 1 it is given by223

E[SNR′j] = ln
(

1 + ρ
1 − ρ

)
1

2ρm j

m j∑
i=1

PrxSUi, j. (7)

Having computed E[SNR′j], a global uncalibrated SNR′ is calculated via (5), that is, SNR′ = 1
c
∑c

j=1 E[SNR′j].224

Then, the calibrated value of the average noise variance is given by225

σ̄2 =
SNR′

SNR
. (8)

Finally, this σ̄2 is plugged into (3), along with a realization of Ui, to yield σ2
i , which is the variance of the noise226

samples in the ith row of the matrix V j for all j. New values of the set {σ2
i } are computed in each sensing round,227

conferring the desired time-varying character to the noise level.228

The procedure just described, which can be easily identified in the source code [29], is repeated whenever a new229

clustering is performed from a new realization of the SUs’ locations.230

At this point of the spectrum sensing process, the matrix Y j defined in (1) is computed by the jth CH. Under the231

hypothesisH0, the primary signal is absent in the sensed band, yielding Y j = V j. Under the hypothesisH1, it follows232

that Y j = h jxT + V j.233

Given Y j, the SCM of order m j is subsequently formed at the jth CH, according to234

R j =
1
n

Y jY†j , (9)

where † denotes complex conjugate and transpose.235

It is worth mentioning that if cmax = 1 = c, the single matrix Y j = Y1 and, consequently, the single SCM R j = R1236

are computed at the FC, since there is no CH.237

3.2. PRIDe test statistic238

Given R1 at the FC when cmax = 1, or R j at the jth CH when cmax > 1, the PRIDe test statistic is computed as239

follows. Let r j,z,k denote the element in the zth row and kth column of R j, for j = 1, . . . , c and z, k = 1, . . . ,m j, and let240

the average of r j,z,k over z and k be241

r̄ j =
1

m2
j

m j∑
z=1

m j∑
k=1

r j,z,k. (10)

The PRIDe test statistic originally proposed in [8], computed by the jth CH or by the FC, using a slightly-modified242

notation adapted to the present cluster-based approach, is243

TPRIDe j =

m j∑
z=1

m j∑
k=1

∣∣∣r j,z,k

∣∣∣
m j∑
z=1

m j∑
k=1

∣∣∣r j,z,k − r̄ j

∣∣∣ . (11)

The decision upon the occupation state of the sensed band is made at the jth CH ( j = 1, . . . , c), or at the FC244

( j = 1), by comparing TPRIDe j with a decision threshold λ j. If TPRIDe j > λ j, the decision is made in favor of the245

hypothesisH1. Otherwise,H0 is chosen. The value of λ j is defined a-priori, according to the desired false alarm rate.246

Notice that if cmax = 1, a pure data-fusion CSS takes place.247

It is informative to mention that it is not possible to have c = mT in the proposed hybrid fusion scheme, which248

would correspond to a pure decision-fusion CSS. In this case, all clusters would have a single SU, preventing PRIDe,249

or any other SCM-based detector of functioning. In fact, according to the last paragraph of Section 2, the value250

of c is at most equal to mT/2. Nonetheless, if multi-antenna SUs were considered, a PRIDe test statistic could be251

formed in all SUs, which would be capable of producing local decision, thus enabling a pure decision-fusion CSS.252

This multi-antenna approach is not considered in this paper.253
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3.3. Spectrum sensing performance254

The metrics used to assess the spectrum sensing performance are the probability of detection, Pd, and the prob-255

ability of false alarm, Pfa. The former is the probability of deciding in favor of an occupied sensed band, given that256

it is indeed occupied. The latter is the probability of deciding in favor of a vacant band, given that it is occupied. A257

high Pd is desired to protect the primary network against interference of secondary transmission occurring in a band258

erroneously declared vacant. On the other hand, a low Pfa is targeted, aiming at increasing the secondary network259

throughput.260

The performance of the data-fusion CSS in the cluster level, which is measured by the local probabilities of false261

alarm and detection at the CH of each cluster, cannot be determined theoretically because the probability density262

functions (PDFs) of the PRIDe test statistic underH0 andH1 are unknown [8].263

The expressions for calculating the global (at the FC) probabilities of false alarm and detection, in the case of264

possibly unequal spectrum sensing performance metrics of the SUs in a pure decision-fusion CSS, are given in [35].265

These expressions can be adapted to the computation of the global performance metrics of the proposed hybrid fusion266

scheme, simply replacing the SUs’ performance metrics in the original expression of [35] by the CHs’ performance267

metrics, and replacing the number of SUs by the number of CHs. Hence, combining the CHs’ decisions under the268

κ-out-of-c rule at the FC yields the global performance metrics269

Pfa =

c∑
ℓ=κ

|Dℓ |∑
u=1

c∏
j=1

PfaCH
Dℓu, j
j (1 − PfaCH j)

1−Dℓu, j (12)

and270

Pd =

c∑
ℓ=κ

|Dℓ |∑
u=1

c∏
j=1

PdCH
Dℓu, j
j (1 − PdCH j)

1−Dℓu, j , (13)

where |Dℓ | =
(

c
ℓ

)
= c!

(c−ℓ)!ℓ! is the cardinality of the set Dℓ, which is defined as follows: Let δ j = 1 or δ j = 0 denote the271

decision made by the j-th CH in favor of H1 or H0, respectively. The set Dℓ contains the binary c-tuples that satisfy272 ∑c
j=1 δ j = ℓ. Thus, Dℓ can be interpreted as a matrix of order

(
c
ℓ

)
× c, and Dℓu, j ∈ {0, 1} is the element sitting on the u-th273

row and j-th column of this matrix.274

In Section 5, the performances of the data-fusion part of the hybrid scheme are measured by means of Monte275

Carlo simulations and plugged into (12) and (13) for theoretical assessment of the decision-fusion part. Simulations276

are also made to certify the theoretical performance of this part of the hybrid fusion.277

4. Energy consumption model278

In this article, a time-division multiplexing (TDM) frame structure is adopted, in which the interval for data279

transmission is denoted as τt, and is given by280

τt = τ − τs − (mT − c)τrSU − cτrCH, (14)

where τ is the frame duration, τs is the sensing interval common to the mT SUs, τrSU is the reporting interval for a281

single SU to transmit its soft-decision (PU signal samples) to the associated CH, and τrCH is the report interval for a282

single CH to transmit its hard-decision to the FC. All intervals are measured in seconds.283

The total energy, in joules, spent by the secondary network during a frame can be calculated as284

ET = mTτsPs + τrSU

c∑
j=1

m j−1∑
i=1

PtxSUi, j + τrCH

c∑
j=1

PtxCH j + pτt

c∑
j=1

m j∑
i=1

PtxDATAi, j, (15)

where Ps is the power dissipated by each SU during the spectrum sensing interval; PtxSUi, j is the power of the signal285

transmitted by the ith SU of the jth cluster to the corresponding CH in order to report the PU signal samples associated286

to the data-fusion part of the hybrid scheme; PtxDATAi, j is the power of the signal transmitted by the ith SU of the jth287

cluster to the FC during the data transmission interval; PtxCH j is the power of the signal transmitted by the jth CH to288
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the FC for reporting the decisions associated to the decision-fusion part of the hybrid scheme; and p is the probability289

of deciding in favor of a vacant band, which is given by290

p = pH0 (1 − Pfa) + pH1 (1 − Pd), (16)

where Pfa and Pd are the global probabilities of false alarm and detection, and pH0 and pH1 are the probabilities of291

absence and presence of the PU signal in the sensed band, respectively.292

Applying the log-distance path-loss model, the values of PtxSUi, j, PtxCH j and PtxDATAi, j operated in (15) are respec-293

tively computed as294

PtxSUi, j = PrxCH

(
dCHi, j

d0

)η
, (17)

295

PtxCH j = PrxFC

(
dFC j

d0

)η
, (18)

and296

PtxDATAi, j = PrxFC

(
dBSi, j

d0

)η
, (19)

where dCHi, j and dBSi, j are the distances from the ith SU of the jth cluster to the jth CH, and to the BS (which is297

collocated with the FC), respectively, dFC j is the distance from the jth CH to the FC, and PrxCH and PrxFC are the CHs’298

and FC’ receivers sensitivities (minimum received power levels), respectively. Moreover, recall from (2) that d0 is the299

reference distance and η is the path-loss exponent of the log-distance path-loss model.300

If no clustering is adopted, that is, if cmax = 1, there is a single report interval, τrSU, for each of the mT SUs to301

transmit directly to the FC. In this case, (14) specializes to302

τt = τ − τs − mTτrSU, (20)

and (15) becomes303

ET = mTτsPs + (τrSU + pτt)
mT∑
i=1

PtxDATAi,1, (21)

where PtxDATAi,1 is the power of the signal transmitted by the ith SU to the FC during report and data transmission.304

The amount of the successfully transmitted data [36] in the secondary network, measured in bits, depends on the305

correct identification of a vacant band, and is given by306

D = pH0 (1 − Pfa)Rbτt, (22)

where Rb is the data rate in the secondary network, in bit/s. Notice that D/τt is the secondary network effective307

throughput, in bit/s.308

Finally, aiming at assessing the energy efficiency, the consumed energy per bit [36] of the secondary network, in309

joule/bit, is computed as310

EB =
ET

D
. (23)

5. Numerical results311

This section starts by presenting the pseudo-code associated to the Matlab simulation used to generate the results312

presented herein. Preliminary numerical results are then provided, aiming at obtaining insights that complement and313

facilitate the interpretations of the conclusive results subsequently presented.314
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Pseudo-code associated to the Matlab source code given in [29].

1. Define the values of the system parameters (see Table 1).
2. For each randomly-generated cluster set, Do:

2.1) Given mT and cmax, perform modified k-means clustering,
yielding c and the coordinates of SUs and CHs.

2.2) Compute σ̄2 based on (8) and related equations.
2.3) For the jth cluster of the set, up to j = c, Do:

2.3.1) Set m j according to the number of SUs in the cluster.
2.3.2) Calculate the distances from SUs to PU, CH, and FC,

and from CH to FC.
2.3.3) For each sensing round within a cluster, Do:

2.3.3.1) Plug σ̄2 into (3) to get σ2
i .

2.3.3.2) Generate PU signal vector x, channel vector h j,
and noise matrix V j.

2.3.3.3) Compute Y j and R j underH0 andH1.
2.3.3.4) Compute TPRIDe j underH0 andH1.
End for (sensing rounds).

2.3.4) Compute local PfaCH and PdCH that form the ROC
relative to the jth cluster.

End for (clusters within a set).
2.4) Compute the sums of PtxSUi, j, PtxCH j and PtxDATAi, j.
2.5) Compute empirical and theoretical global Pfa and Pd.
2.6) Compute τt, Pd at the reference Pfa, D and ET

for the present cluster set.
End for (cluster set).

3. Compute EB as the average of the quotient between ET (for each of the clusters sets) and D (also for each of the clusters sets).
4. Compute empirical and theoretical global Pfa and Pd as the average of Pfa and Pd across the clusters sets.

5.1. Simulation pseudo-code315

The pseudo-code shown in the sequel describes the main steps followed by the Matlab simulation code used to316

generate the results presented in this paper. The associated fully-commented source code is available at [29].317

In a few words, the Monte Carlo simulation of the hybrid fusion scheme firstly generates multiple instances of318

SUs’ positions. For each instance, the modified k-means clustering is applied, defining the number of clusters, the319

cluster members’ positions, and the cluster heads’ positions. For each cluster, a number of spectrum sensing rounds320

are executed to yield local probabilities of false alarm and detection. The decisions made at the cluster levels are321

combined via the κ-out-of-c rule, yielding global probabilities of false alarm and detection. These probabilities, at the322

clusters and fusion-center levels, are the average of the corresponding metrics attained in all instances of clustering.323

Theoretical probabilities of false alarm and detection are also computed by the simulation code.324

When a parameter is varied to verify its influence on performance and energy consumption, steps 2, 3 and 4 of the325

pseudo-code are repeated an amount of times equal to the number of parameter values.326

In Step 2.5, the theoretical Pfa and Pd for a given cluster set are computed from (12) and (13), respectively, using327

the values of PfaCH and PdCH read from the receiver operating characteristic (ROC) curve associated to each cluster of328

the set. In the case of cmax = 1, the empirical ROC related to the single cluster becomes the global ROC. As already329

mentioned, this ROC cannot be found theoretically, since the PDFs of TPRIDe under H0 and H1 are unknown. When330

cmax > 1, the empirical Pfa and Pd in Step 2.5 of the pseudo-code are computed as follows:331

1. Firstly, PfaCH and PdCH are read from the ROC curve associated to each cluster of a set.332

2. For a large number of trials, say 50000, two uniformly-distributed c-tuples uH0 and uH1 are randomly generated333

in the interval [0, 1].334

3. For each trial, the binary c-tuples dH0 and dH1 are formed, in which bits 1 represent the condition uH0 < PfaCH335

and uH1 < PdCH (these binary c-tuples represent false alarms and correct detections).336
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4. Two counters, CH0 and CH1 then accumulate, throughout the trials, the events in which the sum of the elements337

in dH0 is greater than, or equal to κ (from the κ-out-of-c rule), and in which the sum of the elements in dH1 is338

greater than, or equal to κ, respectively.339

5. The estimated Pfa and Pd are obtained by dividing CH0 and CH1 , respectively, by the number of trials.340

The procedure just described can be easily identified in the source code [29].341

5.2. Preliminary results342

Figure 2 shows insightful spectrum sensing performance results, in terms of ROC curves, at the CHs (local) and343

at the FC (global), for a single random realization of the SUs’ positions (shown on the right of each sub-figure)344

followed by k-means clustering, for mT = 15, cmax = 1, 3, 5, SNR = −12 dB, r = 1000 m, and PUtx location at345

(r, r) = (1000, 1000) m. The remaining parameters are the default ones listed in Table 1. If necessary, one can retrieve346

detailed definitions of the parameters from Section 2.347

Figure 2a considers cmax = 1, i.e. no clustering, yielding a pure data-fusion CSS scheme. The SNR = −12 dB has348

been set to yield Pfa ≈ 0.1 and Pd ≈ 0.9. The main objectives of Figure 2a are to serve as reference for Figure 2b and349

Figure 2c, while demonstrating the exact match between simulation and theoretical results.350

In Figure 2b, c = 3 clusters resulted by setting cmax = 3. This figure shows the ROC associated to each cluster,351

as well as the simulated and theoretical ROCs at the FC for κ = 1 (OR), κ = 3 (MAJ) and κ = 5 (AND) in the κ-out-352

of-c combining rule. Again, theoretical and simulated ROCs are in perfect agreement. The particular distribution of353

SUs yielded quite different local performances, with cluster 3 achieving the best result due to its localization closer354

to the PU transmitter, even outperforming the global ROCs. The local performance of cluster 2 is poor, owed to its355

larger distance from the PU transmitter. Notice that cluster 1 outperformed cluster 2, in spite of having 1 SU less,356

but a closer localization with respect to the PU transmitter. This scenario shows the superiority of the AND rule,357

followed by MAJ and OR. However, none of these decision-fusion combining rules were capable of providing a358

global performance superior, or at least equal to the one achieved without clustering (see Figure 2a).359

Figure 2c considers c = 5 clusters, which resulted from setting cmax = 5. Once again, theoretical and simulation360

results agree. Likewise Figure 2b, the new clustering yielded quite different local performances, and global perfor-361

mances not capable of supplanting the ones given in Figure 2a. Notice that MAJ and AND rules reverse superiority362

around (Pfa, Pd) ≈ (0.3, 0.7), with the OR rule occupying the worst position. In other words, the performance rank363

among the decision-fusion combining rules is not fixed, as anticipated in Section 1. Observe also an overall per-364

formance reduction in comparison with Figure 2b, which is an indication that clustering with progressively larger365

numbers of clusters tends to yield worse performances. Lastly, notice that the local performances are consistent with366

the specific SUs’ clustering: the best local performance corresponds to cluster 3, which is quite close to the PU trans-367

mitter; cluster 5 is even closer, but it has one SU less than cluster 3; the worst local performance refers to cluster 2,368

which is farther apart from the PU transmitter.369

5.3. Conclusive results370

This subsection addresses the spectrum sensing performance, measured by means of the global Pd for a fixed371

global Pfa = 0.1, and the average energy per bit, EB, consumed by the secondary network, as functions of several372

system parameters. The simulation results have been generated via the Matlab R2018a, using the source code available373

in [29]. The default parameters adopted in the simulations are listed in Table 1, unless otherwise explicitly mentioned.374

Some of the parameters given in Table 1 need a sort of explanation or justification. The path-loss exponent η = 2.5375

is a typical value in urban environments. The number of samples, n = 240, has been determined assuming a channel376

bandwidth B = 6 MHz, sampled at the Nyquist rate during the sensing interval τs = 20 µs. A small number of samples377

has been chosen to contribute with the speed of the simulations; the conclusions obtained with this number apply to378

any feasible n. Likewise [36], given the frame duration τ = 200 µs, the sensing interval τs = 20 µs has been chosen as379

10% of τ, and the report interval τrCH + τrSU = 2 µs has been chosen as 10% of τs. Notice that the report interval for380

decision-fusion, τrCH = 0.9 µs, is approximately equal to the one adopted for data-fusion, τrSU = 1.1 µs. This is based381

on [37], where a real frame structure is considered. In such structure, the packet head that is part of the report interval382

is very large compared to the spectrum sensing data, no matter if this data refers to decisions or digitized samples,383

meaning that the difference in the report data length for decision-fusion and data-fusion does not bring significant384

difference to the overall report interval, which becomes approximately the same for both fusion schemes. The mean385
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(a)

(b)

(c)

Figure 2. Local and global ROCs for a realization of the SUs’ positions, for mT = 15 and global SNR = −12 dB: (a) cmax = 1. (b) cmax = 3, cluster
SNRs: −12.3, −19.2, −9.3 dB. (c) cmax = 5, cluster SNRs: −17.9, −20.6, −9.4, −16.3, −8.2 dB. This figure is better viewed in color.

and the standard deviation of the sensing channel Rice factor were defined based on [33], and corresponds to an urban386

area. The reference Pfa = 0.1 is in agreement with the IEEE 802.22 standard [6].387

Figure 3 shows the global probability of detection, Pd, and the average energy per bit, EB, versus the maximum388

number of clusters, cmax, for a coverage radius r = 1000 m and path-loss exponent η = 2.5. Figure 3a considers389

mT = 50, SNR = −15 dB, and that the PUtx is located at (r, r) m. Figure 3b assumes mT = 30, SNR = −14 dB, and390
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the PUtx location at (10r, 10r) m. The other parameters are those given in Table 1.391

(a) (b)

Figure 3. Pd and EB versus cmax for r = 1000 m, and η = 2.5: (a) mT = 50, SNR = −15 dB, PUtx at (r, r); (b) mT = 30, SNR = −14 dB, PUtx at
(10r, 10r).

Figure 3a and Figure 3b unveil an energy consumption inversely-proportional to Pd and directly proportional do392

cmax for any decision-fusion, a result that is supported by the facts:393

• The probability p in (15) and (21) has a large influence on ET, because, for a fixed Pfa, a large Pd produces a394

high p, which in turn yields an smaller ET.395

• From (14), (20) and (22) it can be seen that D does not change too much with the number of clusters, since τt396

changes slightly by changing c, because τrSU ≈ τrCH.397

Figure 4 illustrates and complements the above-mentioned facts, using the MAJ rule analyzed in Figure 3b as398

an exemplifying case. It shows the total spent energy, ET, and the amount of successfully transmitted bits, D, both399

averaged over all realizations of the cluster sets in the simulation, versus cmax, for r = 1000 m, η = 2.5, mT = 30,400

SNR = −14 dB, and PUtx at (10r, 10r). Indeed, a large Pd (see also Figure 3b) yields an smaller ET, with D changing401

slightly with cmax, and ET increasing as cmax increases. The net result is that EB increases with the number of clusters.402

Figure 4. Total spent energy, ET, and amount of successfully transmitted bits, D, versus cmax for the MAJ rule, considering r = 1000 m, η = 2.5,
mT = 30, SNR = −14 dB, and PUtx at (10r, 10r).

Back to Figure 3, it is an evidence that clustering does not benefit energy savings, meaning that the best option is to403

adopt a pure data-fusion strategy, which performs better than the hybrid scheme, irrespective to the number of clusters.404

This strong conclusion, which applies for other values of mT (results not presented for conciseness), contradicts the405

common belief that clustering is unconditionally more energy-efficient.406
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Regarding the comparison among the combining rules, from Figure 3a it can be observed that the AND rule407

outperforms MAJ and OR in the case of the PU transmitter location at (r, r) = (1000, 1000) m. When this location is408

changed to (10000, 10000), notice from Figure 3b that the MAJ rule wins, with the OR coming in the second position409

and the AND rule yielding the worst performance and the largest energy consumption.410

Figure 5 highlights the influence of the PU transmitter location on performance and energy consumption, for411

SNR = −12 dB and secondary network coverage radius r = 1000 m. Figure 5a considers cmax = 5, mT = 20,412

and η = 1.5, whereas Figure 5b is for mT = 30, cmax = 11, and η = 2.5. The other system parameters are those413

listed in Table 1. In both cases, it can be seen exchanges of the performance and energy consumption ranks as the414

PU transmitter location is modified. When the PU transmitter lies at distances around r or smaller, the AND rule415

is preferred, with the MAJ occupying the second position and the OR yielding the worst performance and largest416

energy consumption. The MAJ and AND rules exchange their positions for little larger distances, with the AND rule417

becoming the worst for even larger distances. For positions beyond ≈ (3r, 3r), the MAJ wins in terms of performance,418

followed by the OR and the AND. The opposite happens in terms of energy consumption. Notice that when the419

distance between the PU transmitter and the SUs are much larger than the coverage radius of the secondary network,420

small performance changes are verified if this distance is modified, a consequence of having small differences among421

the SNRs across the SUs.422

From Figs. 2, 3 and 5 it can be concluded that, when the PU transmitter is close to the SUs, the performance of the423

AND rule improves due to the quite different local performances (caused by quite different SNRs). As the distances424

from the PU transmitter to the SUs increase, less variation is observed among the local performances, which benefits425

the MAJ rule. Interestingly enough, the MAJ rule is often mentioned in the literature as being superior to AND and426

OR. This is because most of the reported analyses assume that the PU transmitter is far enough from the SUs, such427

that the local performances become approximately the same or, equivalently, the SNRs across the SUs are the same428

or nearly the same. In such case, it can be seen from Figure 5 that the MAJ rule indeed wins.429

(a) (b)

Figure 5. Pd and EB versus the location (x, y) of the PU transmitter, for x = y, and for SNR = −12 dB: (a) cmax = 5, mT = 20, η = 1.5; (b) mT = 30,
cmax = 11, η = 2.5.

Figure 6 shows Pd and EB versus the path-loss exponent, η, for mT = 20, cmax = 5, r = 1000 m, and SNR = −10 dB.430

Figure 6a considers that the PUtx is located at (r, r) m, and Figure 6b assumes that the PUtx location is (10r, 10r) m.431

The other parameters are those given in Table 1. When the PU transmitter is close to the SUs, the influence of η on432

performance is pronounced, except for the AND rule. Notice that the differences between AND, MAJ and OR become433

larger as η increases. When the PU transmitter is placed farther away from the SUs, η practically does not influence434

performance. One must be aware that the SNR has been set the same for both locations of the PU transmitter. Thus,435

it makes sense that the energy consumption grows exponentially with η, since the SUs’ transmit powers have been436
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increased with η to keep the SNR unchanged.437

(a) (b)

Figure 6. Pd and EB versus η for mT = 20, cmax = 5, r = 1000 m, and SNR = −10 dB: (a) PUtx at (r, r); (b) PUtx at (10r, 10r).

From Figure 6a it can be also noticed that the MAJ rule is capable of outperforming the AND and OR rules even438

when the PU transmitter is close to the SUs, but when the path-loss exponent is small. Notably, smaller differences439

among the local performances occur for large distances from the PU transmitter to the SUs, but also for small distances440

combined with a small path-loss exponent, since in both cases the SNRs across the SUs become close to each other.441

The influence of the total number of SUs, mT, on performance and EB is captured by Figure 7. The expected per-442

formance improvement as mT gets large is clearly seen for all decision-fusion rules. Now, the inversely-proportional443

behavior of EB with respect to Pd does not appear, since mT has a stronger influence on increasing ET than p has on444

diminishing it, which can be seen from (15). Once again, notice the exchange in the performance rank of the decision-445

fusion rules, from Figure 7a to Figure 7b, as the result of modifying the PU transmitter location. Notice also that the446

performance difference among the decision-fusion strategies is smaller for higher distances from the PU transmitter447

to the SUs, which can be also inferred from Figs. 3, 5 and 6.448

6. Conclusions449

This paper proposed a hybrid fusion scheme for cluster-based cooperative spectrum sensing, in which the Pietra-450

Ricci index detector has been used for data-fusion at the cluster heads, combined with decision-fusion of cluster heads’451

decisions at the fusion center. A modified version of the k-means clustering algorithm has been used to form the clus-452

ters, where the cluster heads have been defined as the cluster members closest to the clusters’ centroids. Theoretical453

and computer-simulation results traded the spectrum sensing performance against the energy per bit effectively trans-454

mitted during the data communication interval. The results unveiled that cluster-based cooperative spectrum sensing455

may not benefit energy savings, meaning that the best option is to adopt a pure data-fusion strategy. This is a strong456

conclusion that contradicts the common belief that clustering is unconditionally more energy-efficient. Moreover, it457

has been demonstrated that the performance rank of the decision-fusion rules AND, OR and MAJ are strongly af-458

fected by the distances between the primary network transmitter and the secondary users, as well as by the path-loss459

exponent of the channel. The MAJ rule can outperform the others for larger distances or small path-loss exponents,460

whereas the AND rule is preferred in the opposite situation.461

Although the PRIDe has been adopted in the data-fusion part of the proposed hybrid scheme, the conclusions462

presented herein apply to any other covariance-based detector, since, in principle, a given detector is capable of463

achieving the same performance of the PRIDe by the proper setting of the system parameters. This is because different464

models for the sensing channel, for the primary signal or for the noise, as well as different signal power and noise465
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(a) (b)

Figure 7. Pd and EB versus mT for cmax = 5, r = 1000 m, η = 2.5, and SNR = −11 dB: (a) PUtx at (r, r); (b) PUtx at (10r, 10r).

Table 1. Default system parameters.
Parameter Value
Total number of SUs, mT 30
Maximum number of clusters, cmax 5
Average signal-to-noise ratio over all SUs, SNR −14 dB
Path-loss exponent, η 2.5
Coverage radius of the secondary BS, r 1000 m
Reference distance for path-loss calculation, d0 1 m
Number of events for computing the ROCs 500
Number of realizations of cluster sets 200
Secondary network bit rate, Rb 100 kbit/s
Power dissipated per SU during sensing, Ps 1 µW
Number of samples per SU, n 240
Sensing channel bandwidth, B 6 MHz
Frame duration, τ 200 µs
Sensing interval (common to all SUs), τs 20 µs
Report interval of each SU to CH or each SU to FC, τrSU 1.1 µs
Report interval of each CH to FC, τrCH 0.9 µs
CH receiver sensitivity, PrxCH −100 dBm
FC receiver sensitivity, PrxFC −100 dBm
PU transmit power, PtxPU 5 W
PU transmitter location, (x, y) (r, r) m
Fraction of noise power variations about the mean, ρ 0.5
Mean of the Rice factor, µK 1.88 dB
Standard deviation of the Rice factor, σK 4.13 dB
Probability of presence of the PU signal, pH0 0.5
Reference Pfa for Pd calculation 0.1

levels at the SUs’ inputs, or the temporal variation of these quantities, may change both the absolute and the relative466

performance of a detector, meaning that there exists a particular set of system parameters for which the performance467

of any of the covariance-based detectors mentioned in Section 1 can be equated to the PRIDe’s performance.468

The following research opportunities related to the present work can be mentioned: the adoption of imperfect469

report channels, other clustering algorithms, and more sophisticated path-loss prediction models, as well as the use470

of realistic node mobility models to assess the dynamics of the energy expenditure, and the addition of correlated471

shadowing (which may influence the choice of the clustering algorithm), and other test statistics. A weighted hard-472

decision-fusion at the fusion center can be also addressed. Multi-antenna secondary users, aiming at enabling a pure473

decision-fusion cooperative spectrum sensing, is also worth investigating.474
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Appendix A. Expected value of SNR j481

The expected value of SNR j for σ̄2 = 1 can be easily derived by taking into account that the random variables Ui482

are independent from each other, which allows to write, in light of (4), that483

E[SNR′j] =
1

m j

m j∑
i=1

E
[

PrxSUi, j

(1 + ρUi)

]
, (A.1)

where the uniform random variable Zi = 1 + ρUi lies in-between a = 1 − ρ and b = 1 + ρ.484

The expectation of the random variable PrxSUi, j/Zi is485

E
[

PrxSUi, j

Zi

]
=

∫ b

a

PrxSUi, j

zi(b − a)
dzi =

PrxSUi, j

b − a
ln

(
b
a

)
. (A.2)

Applying this result in (A.1), with a = 1 − ρ and b = 1 + ρ, the expected value of SNR′j for 0 < ρ < 1 is found to486

be487

E[SNR′j] = ln
(

1 + ρ
1 − ρ

)
1

2ρm j

m j∑
i=1

PrxSUi, j. (A.3)

For ρ = 0, equation (A.3) yields an indeterminate result that can be easily solved taking into account that488

lim
ρ→0

1
2ρ

ln
(

1 + ρ
1 − ρ

)
= 1,

in this case yielding489

E[SNR′j] =
1

m j

m j∑
i=1

PrxSUi, j. (A.4)

References490

[1] L. Zhang, M. Xiao, G. Wu, M. Alam, Y. Liang, S. Li, A survey of advanced techniques for spectrum sharing in 5G networks, IEEE Wirel.491

Commun. 24 (5) (2017) 44–51. doi:10.1109/MWC.2017.1700069.492

[2] Y. Arjoune, N. Kaabouch, A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and493

future research directions, Sensors 19 (1).494

[3] T. Yucek, H. Arslan, A survey of spectrum sensing algorithms for cognitive radio applications, IEEE Commun. Surveys Tuts. 11 (1) (2009)495

116–130. doi:10.1109/SURV.2009.090109.496

[4] L. Chen, N. Zhao, Y. Chen, F. R. Yu, G. Wei, Over-the-air computation for cooperative wideband spectrum sensing and performance analysis,497

IEEE Trans. Veh. Technol. 67 (11) (2018) 10603–10614.498

[5] A. Nasser, H. Al Haj Hassan, J. Abou Chaaya, A. Mansour, K.-C. Yao, Spectrum sensing for cognitive radio: Recent advances and future499

challenge, Sensors 21 (7). doi:10.3390/s21072408.500

URL https://www.mdpi.com/1424-8220/21/7/2408501

[6] The Institute of Electrical and Electronic Engineers, IEEE, IEEE 802 Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and502

Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands (2011).503
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