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Abstract: This paper describes a class of D-dimensional 
product codes of length nD, rate (½)D and minimum 
distance 4D. The key feature of this class is that its iterative 
(turbo) decoding with a soft-input soft-output (SISO) 
algorithm is based on a very simple minimum distance (MD) 
decoding of the component codes. Simulation results are 
compared to bounds on MD performance for both the AWGN 
and flat Rayleigh fading channels. They show the main 
advantage of such a coding/decoding scheme: a good tradeoff 
between complexity and performance. 
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1. INTRODUCTION 

This paper considers a class of low rate 
multidimensional product codes. This class is formed by 
using the same non-systematic component code in each 
dimension. The component code is a specific example 
of application of the generalized code concatenation 
technique [1]. The description given here is based on a 
similar description given in [2] for the construction of 
generalized code concatenation over rings. The key 
feature of this component code is that it is possible to 
derive for it a very simple MD decoding algorithm 
based on applying Wagner decoding [3] twice. This 
feature guarantees a decoding complexity for the 
product code similar to that of the single parity check 
product codes described in [4]. In order to achieve an 
even lower complexity, a modified form of Pyndiah´s 
SISO decoding algorithm [5] is applied. 

The paper is organized as follows: Section 2 
describes the considered class, whereas Section 3 
explains briefly its iterative decoding algorithm. Section 
4 analyzes the performance results, and, finally, Section 
5 is devoted to some conclusions and final comments. 

2. DESCRIPTION OF THE CLASS 

Let c1 be a codeword of the binary repetition code C1 
= (n/2, 1, n/2) and c2 be a codeword of the binary single 
parity-check code C2 = (n/2, n/2-1, 2). Then, a 
codeword c of the non-systematic code C = (n, k, dmin) = 
(n, n/2, 4) can be expressed as 
 

21 ]11[]10[ ccc ⊕=  (1) 
 

where the sum ⊕ is over GF(2) and the product [01]c1  
is calculated by substituting a 0 in c1 by 00 and a 1 by 
01. The same is done for [11]c2, where now a 1 in c2  
becomes 11. 

By using the same non-systematic code C as the 
component code in each of the D dimensions, a product 
code of length nD, rate (½)D and minimum distance 4D is 
obtained. Figure 1 shows how to construct such a code 
when D=3 and n=8. The three-dimensional cube of 64 
information bits consists of four 4×4 two-dimensional 
arrays. In the first step, each array is encoded row-by-
row, yielding four 4×8 two-dimensional arrays and a 
total of 128 coded bits. Then, in the second step, each of 
these arrays is encoded column-by-column, yielding 
four 8×8 two-dimensional arrays and a total of 256 
coded bits. Finally, in the third step, these arrays are 
interpreted as consisting of eight 4×8 two-dimensional 
arrays and encoded in the direction of dimension d=3 to 
yield a block of 512 coded bits. 
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Figure 1: Construction of a three-dimensional 
product code with (8,4) component codes. 

 
Starting with kD information bits, it is possible to 

construct a block of coded bits in D dimensions. In this 
case, one should interpret the D-dimensional product 
code as a serial concatenation of D codes separated by 
D-1 block interleavers in which the number of columns 
is Nc = n and the number of rows of the interleaver 
between the code d and d+1 is 

 
dDd

r knN −−= 1  (2) 
 
If (2) is accomplished, it is possible to verify [6] that 

all the nD-1 n-element vectors oriented in the “direction” 



of each dimension of the D-dimensional hypercube of 
nD coded bits are codewords of C. 

The key feature of this specific component code C is 
that it is possible to derive for it a very simple MD 
algorithm. Set c1=0 (the all-zero codeword) and apply 
Wagner decoding for a single parity-check code of 
length n/2 over the binary alphabet {00, 11}. The 
decision is ĉ . Then set c1=1 (the all-one codeword) and 
again apply Wagner decoding for a parity-check code 
over the alphabet {01, 10}. The decision is ĉ ’. 
Compare the Euclidean distances from ĉ  and ĉ ’ to the 
received codeword r and choose as the final decision the 
shortest one. 

3. DECODING ALGORITHM 

The iterative decoding algorithm uses the same three 
main decoding phases of the algorithms for single 
parity-check multidimensional product codes, described 
in [4]. These phases are: initialization, decoding in each 
dimension, and repetition. The main difference lies on 
the SISO algorithm used for decoding the codewords in 
each dimension. Instead of using the BCJR MAP 
algorithm, a modified form of Pyndiah´s SISO decoding 
algorithm is applied. 

In the initialization phase, the channel likelihood 
ratios for all received noisy symbols are defined as 

 
grgrc =Λ ),|(  (3) 

 
where g is the fading amplitude, c is the transmitted 
codeword symbol and r is the received channel value. 
For the AWGN channel, g is set equal to one. 

As mentioned above, the decoding algorithm is 
essentially Pyndiah´s algorithm. However, instead of 
using Chase Algorithm to decode the codewords in each 
dimension, the algorithm described in Section 2 is 
applied in phase two. Due to the fact that it is based on 
applying Wagner algorithm twice, the output of this 
algorithm is a unique decision, ĉ d = ĉ  (or ĉ ’), that is, 
no list of concurrent codewords is generated.  

The repetition phase consists of repeating decoding 
iterations as long as required. Figure 2 shows a block 
diagram, representing operations for the j-th decoding 
step, where the maximum value of j, say jmax, is the total 
number of iterations multiplied by D. The vector R 
represents all nD received noisy symbols and gR  

represents the symbol-by-symbol multiplication by the 
respective fading amplitude. The expression “decoding 
in one dimension” in this figure means decoding nD-2     
n × n two-dimensional arrays in the “direction” of one 
of the dimensions. Decoding an array consists of 
decoding n rows (or n columns). Hence, “decoding in 
one dimension” implies applying the SISO decoding 
algorithm nD-1 times. 

The model for the parameter β(j) was chosen so as 
to follow a linear rule similar to that of [7], that is, 

β(j)=K1(j+1)/jmax. However, the model for the parameter 
α(j) was a logarithmic one, that is, α(j)=K2log(j)/jmax, 
where K1 and K2 were empirically chosen to be, 
respectively, 8 and 6 for any 2D code and 15 and 8 for 
any 3D code. 
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Figure 2: Decoding structure for the j-th decoding step. 
 

As mentioned above, concurrent codewords are 
unavailable due to the fact that soft decoding of 
component code C does not generate a list of test 
patterns. Therefore, the reliabilities of decisions, dr , are 

always obtained through 
 

dd cr ˆβ=  (4) 
 
where dĉ  represents a symbol of the final decision dĉ . 

It is important to emphasize that the fading 
amplitudes are used only in computing the channel 
likelihood ratios in Equation (3). No other operation of 
Figure 2 for the j-th decoding step considers knowledge 
of the fading amplitudes. 

4. PERFORMANCE RESULTS 

This section presents some simulation and 
analytical performance results for two-dimensional (2D) 
and three-dimensional (3D) product codes constructed 
with component codes C = (8,4,4) and C = (12,6,4). The 
product codes are denoted as (n, n/2, 4)D , where D is 
the dimension. All simulation results are for a number 
of iterations equal to 10. Two types of upper bounds on 
the bit error probability for MD decoding with BPSK 
signalling are also considered: true upper bounds and 
average upper bounds. They were obtained according to 
the methods for analysing serial concatenated codes 
described in [8], [9]. 

Figure 3 shows the performance for 2D and 3D 
product codes with (8,4,4) component codes on the 
AWGN channel. It can be seen that for an Eb/N0 about 
5.5 dB, the performance curve of the 2D code crosses 
the corresponding average bound, but it remains above 
the true bound, since the turbo decoding algorithm is not 
MD decoding. It can also be seen in Figure 3 that the 
performance of the 3D code is slightly better than that 
of the 2D one, especially for low values of Eb/N0. 
Moreover, it is observed that, for both codes, the 
performance curves tend to follow the rate of decay of 
the bit error rate estimated by the bound, but for the 3D 



code the performance of the iterative decoding 
algorithm is still far from the average bound. These last 
observations are also valid for the results shown in 
Figure 4. 
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Figure 3: Performance results for the (8,4,4)2 and 
(8,4,4)3 product codes on AWGN channel. 

 
Figure 4 shows results for the (12,6,4)2 and 

(12,6,4)3 product codes on the AWGN channel. It can 
be seen that for an Eb/N0 of about 5.7 dB, the 
performance curve of the 2D code also crosses the 
corresponding average bound. For the (12,6,4)3 code, 
one notes a significant performance improvement, in 
comparison with the (8,4,4)3 code performance shown 
in Figure 3. Moreover, going from 2 to 3 dimensions 
with the (12,6,4) component code results in much more 
additional improvement in performance than that 
obtained with the (8,4,4) component code. In spite of 
the fact that the performance is around 5.2 dB away 
from capacity (-1,2 dB for rate 1/8 and BPSK 
signalling), a coding gain of approximately 6 dB is 
obtained with the (12,6,4)3 code, for a bit error rate 
equal to 10-5. This is quite a good result, given the low 
complexity of the coding/decoding process and the 
relatively short length of the code. 

As mentioned above, for 3D codes, there is a 
significant gap in performance between the iterative 
decoding algorithm and the average upper bound. In 
order to reduce this gap, the iterative algorithm 
described in Section 3 was modified. Instead of 
calculating the reliabilities of decisions, rd, by using 
only equation (4), the method of [5], which first 
searches for a concurrent codeword, was considered. 
Figure 5 compares the two methods for 3D codes. The 
method of [5] is denoted with “reliability B” whereas 
the method of Section 3 is denoted with “reliability A”. 

For low error rates, significant improvements in 
performance are obtained. 
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Figure 4: Performance results for the (12,6,4)2 and 

(12,6,4)3 product codes on AWGN channel. 
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Figure 5: Performance results for the (8,4,4)3 and 
(12,6,4)3 product codes on AWGN channel with 

different reliability calculations. 
 
Figures 6 and 7 show performance results on a flat 

Rayleigh fading channel, for product codes with (8,4,4) 
and (12,6,4) component codes, respectively. All results 
consider receiver knowledge of fading amplitudes, as 
was described in Section 3. A loss in performance of 
about 1 dB was observed, if no knowledge of fading 
amplitudes is assumed. Unlike the AWGN channel, 



going from 2 to 3 dimensions with the (12,6,4) 
component code results in less additional improvement 
in performance than that obtained with the (8,4,4) 
component code. Moreover, the performance for the 
(12,6,4)2 code is slightly better than that for the (8,4,4)2 
one. At a bit error rate of 10-5, the performance is about 
6 dB and 7 dB away from capacity for the (12,6,4)3 code 
and the (8,4,4)3 code, respectively. In spite of this fact, 
coding gains of about 38 dB are achieved. 
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Figure 6: Performance results for the (8,4,4)2 and 
(8,4,4)3 product codes on Rayleigh channel. 
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Figure 7: Performance results for the (12,6,4)2 and 
(12,6,4)3 product codes on Rayleigh channel. 

5. CONCLUSIONS 

A class of low rate multidimensional product codes 
and its iterative decoding algorithm were analysed. Its 
decoding algorithm is a modified form of Pyndiah´s 
algorithm that is based on a low complexity MD 
decoding procedure and does not generate concurrent 
codewords. Simulation results were obtained for both 
AWGN and Rayleigh fading channels and compared 
with MD performance bounds. They show that 
performance improves at each iteration and additional 
improvements can be obtained by augmenting the code 
dimension. Moreover, by including generation of 
concurrent codewords, significant performance 
improvements are obtained for low bit error 
probabilities. It remains an open question to characterize 
the complexity of generating concurrent codewords. 

Since the suggested class of codes yields a low rate 
product code, and since the performance of the 
coding/decoding scheme unveiled good results for the 
fading channel, it is natural to conclude that this class 
should be appropriate for communication systems based 
on direct-sequence spread-spectrum techniques 
operating in Rayleigh fading channels. Performance 
results for this class of codes on orthogonal Multicarrier 
CDMA systems shall be reported in a separate work. 
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