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Abstract—The Pietra-Ricci index detector (PRIDe) has been re-
cently proposed as one of the simplest techniques for centralized,
data-fusion cooperative spectrum sensing, attaining robustness
against time-varying signal and noise levels, constant false alarm
rate, and high detection power. In this paper, we propose the
design and implementation of the PRIDe detector, targeting field
programmable gate array (FPGA) and application-specific inte-
grated circuit (ASIC) solutions. Novel approaches are proposed
for computing the PRIDe’s test statistic, including the absolute
value of complex quantities, the complex multiplier-accumulator,
and the spectrum occupancy decision. The absolute value oper-
ation, which is critical to the PRIDe test statistic computational
cost, applies the coordinate rotation digital computer (CORDIC)
algorithm as a low latency and resource-efficient option. Register
transfer level (RTL) and Monte Carlo simulations show that the
resulting ultra-low latency PRIDe detector architectures attain
no performance loss with respect to floating-point simulations.
One of the two proposed ASIC design versions of the PRIDe
sensor occupies 34.9% lower area compared to the most area-
efficient sensor reported in literature, whereas the other one is
5.7× faster than the fastest state-of-the-art sensor. In a nutshell,
the proposed detector architecture delivers the highest area
and power efficiencies, considering the scaled values of area-
time product (ATP) and power-delay product (PDP) metrics, in
comparison to implementations reported to date.

Keywords—Cognitive radio, coordinate rotation digital com-
puter, field programmable gate array, application-specific inte-
grated circuit, Pietra-Ricci index detector, spectrum sensing.

I. INTRODUCTION

THE radio frequency (RF) spectrum scarcity in the ultra-
high frequency (UHF), L, S, and C bands, which com-

prise frequencies from a few hundred MHz to around 8 GHz,
is the major bottleneck for the deployment of new wireless
communication technologies [1]. This range of frequencies
hosts many wireless communication services (e.g., TV, mobile
communications, aeronautics communications, and military
applications), causing spectrum congestion.
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While mobile communication services demand progres-
sively more spectrum to support their growth of users and ap-
plications, most broadcasting services are changing to stream-
ing through the internet and replacing traditional TV and
radio systems. Nonetheless, the fixed RF spectrum allocation
policy used by regulators led to an inefficient utilization of
this resource [2].

An alternative to mitigate the RF spectrum shortage prob-
lem is the dynamic spectrum access (DSA) [3], in which a
secondary user (SU) can share the spectrum with a primary
user (PU), which is the licensed user of a given band in
the fixed allocation policy. The DSA solutions are related to
the concept of cognitive radio (CR) [4]. A CR is a device
that knows the radio environment and uses this knowledge to
change its operating parameters (e.g., frequency, modulation,
coding and transmission power), yet avoiding interference to
the PU’s transmissions.

A key enabling technique for the deployment of CR tech-
nology is spectrum sensing, which applies signal processing
operations to detect the occupancy of a spectrum band by
PUs, allowing the CR-enabled SU to opportunistically access
this band when it is vacant. Stand-alone spectrum sensing
refers to the technique that is performed independently by
each SU. It carries simple implementation but suffers from
performance degradation under shadowing, multipath fading
and hidden terminals. To achieve better performance, coop-
erative spectrum sensing (CSS) is the preferred solution. It
applies multiple SUs that jointly perform spectrum sensing,
subsequently forwarding the sensing information to a fusion
center (FC), where the information is processed to allow
for a global decision on the spectrum occupancy state. The
CSS outperforms the stand-alone spectrum sensing due to the
spatial diversity attained by multiple SUs in different locations.

Spectrum sensing is a binary hypothesis test in which H1
denotes the presence of a PU signal in the sensed band,
whereas H0 denotes the absence of a PU signal. The test is
made by comparing a test statistic 𝑇 , which is formed directly
or indirectly from the received signal samples, with a decision
threshold 𝜆. The decision is in favor of H1 if 𝑇 > 𝜆; otherwise,
the decision favors H0. The spectrum sensing performance
is often assessed by means of the probability of detection,
𝑃d, and the probability of false alarm, 𝑃fa. The former is the
probability of deciding that the PU signal is present in the
sensed band, given that it is indeed present. The latter is the
probability of declaring that the PU signal is present, when it
is in fact absent. The performance is mostly impacted by the
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test statistic employed. A multitude of test statistics has been
reported in the literature, as exemplified subsequently.

A. Related works

Semi-blind detectors require information about the PU sig-
nal characteristics, the noise variance or both to determine the
test statistic. Detectors that do not depend on knowing neither
the PU signal nor the noise variance are commonly referred
to as blind. Among the large number of test statistics reported
in the literature, examples of semi-blind detectors are the
energy detector (ED) [5] and the maximum eigenvalue detector
(MED), also known as Roy’s largest root test (RLRT) [6].
Examples of blind detectors are the eigenvalue-based gen-
eralized likelihood ratio test (GLRT) [7], the maximum-
minimum eigenvalue detector (MMED) [8], the arithmetic
to geometric mean (AGM) detector [9], the Hadamard ratio
(HR) detector [10], the volume-based detectors (VD) [11], the
Gerschgorin radii and centers ratio (GRCR) detector [12], the
Gini index detector (GID) [13], and the PRIDe [14].

The ED test statistic has the lowest implementation com-
plexity among all detectors. However, in practice, its overall
complexity unveils to be high due to the fact that the noise
variance needs to be estimated [15]. The test statistics of the
MED, MMED, AGM and GLRT are based on the eigenvalues
of the sample covariance matrix (SCM) of the received signal,
resulting in high implementation complexity due to the need
of eigenvalue estimation. The HR detector applies the deter-
minant of the SCM, which also incurs a high computation
cost. On the other hand, the test statistics of the GID, GRCR
and PRIDe operate directly on the elements of the SCM,
resulting in relatively lower implementation complexities. The
PRIDe deserves special attention, not only for being an state-
of-the-art detector, but also due to its attractive attributes of
blindness, robustness against time-varying signal and noise
levels, constant false alarm rate (CFAR), and high detection
performance.

As far as the hardware implementation of blind detectors for
cooperative spectrum sensing is concerned, a few initiatives
can be found in the literature. In [16] and [17], data-fusion
based cooperative spectrum sensors have been implemented
under the GLRT paradigm. In [18], the sensor has been
implemented with an MED/MME reconfigurable architecture.
These implementations have similar complexities, as all of
them are eigenvalue based designs. However, the computations
of the eigenvalues are different among them: [16] and [18] use
the iterative power method algorithm, whereas [17] applies
the iterative Cholesky decomposition. More algorithms for
the eigenvalue computation problem can be found in [19]
and references therein, but no matter the algorithm used,
these extra steps add more complexity and latency compared
to a detector that depends only on the SCM computation.
The implementation reported in [20] addresses the GRCR
test statistic, whose complexity is similar to the PRIDe. In
this case, the test statistic does not rely on eigenvalues, but
its complexity is increased due to the computation of the
magnitude of the SCM entries. So far, the PRIDe has not
been considered for hardware implementation.

B. Contributions and organization of the article

The main contribution of the work reported in this article is
the design and implementation of an ultra-low latency PRIDe
sensor architecture, targeting FPGA and ASIC solutions. The
proposed architecture is suitable for ordinary spectrum sens-
ing, but is especially suitable for those applications that de-
mand fast sensing, for example to scan a wide frequency band
in a short time, to fasten the sliding-window approach [21] for
detecting pulse radar signals, or simply to reduce the overall
sensing time aiming at increasing the secondary network data
throughput.

This work also details the complete development flow, from
the conception and evaluation of candidate architectures and
definition of the best architectures for composing each module,
to the design, synthesis and simulation of the hardware for
FPGA and ASIC solutions for the PRIDe sensor.

Other contributions related to the design and signal process-
ing operations of the PRIDe test statistic are:

• the analysis of fixed-point operation and word length in
the spectrum sensing performance;

• analysis of different hardware architectures to construct
resource-efficient designs of multiply-accumulate units;

• a CORDIC-based magnitude computation unit with
resource-efficient design and reduced latency;

• a divider-free implementation avoiding division to com-
pute the SCM values and the test statistic.

The remainder of the paper is organized as follows: Sec-
tion II introduces the centralized data-fusion cooperative spec-
trum sensing model, presents the PRIDe test statistic, and
addresses spectrum sensing performance comparisons among
state-of-the-art detectors. Section III discusses the conven-
tional and proposed hardware architectures for the PRIDe sen-
sor implementation. The results obtained through simulations
and synthesis of the proposed PRIDe sensor are addressed in
Section IV. The conclusions are reported in Section V.

II. CSS MODEL, PRIDE TEST STATISTIC, AND CSS
PERFORMANCE COMPARISONS

A. CSS basic model and PRIDe test statistic

The basic model for centralized CSS with data fusion model
comprises 𝑚 SUs, each collecting 𝑁 samples of the PU signal
during each sensing interval. At the FC, the samples collected
by all SUs form the matrix Y ∈ C𝑚×𝑁 , which is given by

Y = hxT + V, (1)

where the vector x ∈ C𝑁×1 contains the samples associated
to the PU signal, which are zero-mean complex Gaussian
random variables whose variance is determined according
to the average signal-to-noise ratio (SNR) across the SUs.
The channel vector h ∈ C𝑚×1 is formed by elements ℎ𝑖 ,
𝑖 = 1, 2, . . . , 𝑚, that represent the channel gains between the
PU transmitter and the 𝑖-th SU. These gains are constant during
the sensing interval and independent and identically distributed
(i.i.d.) over the sensing rounds. The matrix V ∈ C𝑚×𝑁 in (1)
is formed by i.i.d. Gaussian noise samples with zero mean and
SNR-dependent noise variance.
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After the matrix Y defined in (1) is formed at the FC, the
SCM of order 𝑚 is computed as

R =
1
𝑁

YY†, (2)

where † denotes the complex conjugate and transpose. Under
the hypothesis H0, it follows that Y = V. Under H1, Y =

hxT + V.
Let 𝑟𝑖 denote the 𝑖-th element of the vector formed by

stacking all columns of R, and let

𝑟 =
1
𝑚2

∑︁𝑚2

𝑖=1
𝑟𝑖 , (3)

The PRIDe test statistic defined in [14] is

𝑇PRIDe =

∑𝑚2

𝑖=1 |𝑟𝑖 |∑𝑚2

𝑖=1 |𝑟𝑖 − 𝑟 |
. (4)

The computation of the SCM at the FC becomes an inten-
sive task as the number of SUs (𝑚) performing CSS increases.
This is owed to the fact that the numbers of combinational and
sequential hardware resources in FPGA and ASIC platforms
that deliver parallel processing scale non-linearly with 𝑚.
Employing a conventional serial processing architecture may
solve the hardware resource limitation, but may result in a
large latency that can be prohibitive to the spectrum sensing
task.

B. Spectrum sensing performance

The basic model described by (1) is enhanced in [14], taking
into account typical sensing channel characteristics found in
the real world, namely: the combination of Rician fading
and thermal noise, the temporal variation of received signal
and noise powers across the spectrum sensors, and the time-
varying condition of the line-of-sight between the primary
transmitter and mobile sensors. Under such an enhanced
model, several performance results are presented and discussed
in [14], highlighting the superiority of the PRIDe over state-
of-the-art detectors in a variety of circumstances.

In this subsection, to complement the results given in [14]
and to support the choice of the PRIDe for hardware imple-
mentation, its performance is contrasted with the performances
attained by the blind detectors listed in Section I-A, namely:
GID, HR, AGM, VD number 1 (VD1), MMED, eigenvalue-
based GLRT, and GRCR. Their test statistics are given in
Table I, where 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑚 are the eigenvalues of R,

TABLE I: Competing test statistics

𝑇GID =

∑𝑚2
𝑖=1 |𝑟𝑖 |∑𝑚2

𝑖=1
∑𝑚2

𝑗=1
��𝑟𝑖 − 𝑟 𝑗 �� 𝑇AGM =

1
𝑚

∑𝑚
𝑖=1 𝜆𝑖(∏𝑚

𝑖=1 𝜆𝑖
)1/𝑚

𝑇HR =
det(R)∏𝑚
𝑖=1 𝑟𝑖,𝑖

𝑇GLRT =
𝜆1∑𝑚
𝑖=1 𝜆𝑖

𝑇VD1 = log
[
det(E−1R)

]
𝑇MMED =

𝜆1
𝜆𝑚

𝑇GRCR =

∑𝑚
𝑖=1

∑𝑚
𝑗=1, 𝑗≠𝑖 |𝑟𝑖, 𝑗 |∑𝑚
𝑖=1 𝑟𝑖,𝑖

det(R) is the determinant of R, 𝑟𝑖, 𝑗 is the element in the 𝑖-th
row and 𝑗-th column of R, and E = diag(d), where diag(d) is
the diagonal matrix whose main diagonal corresponds to the
vector d = [𝑑1, 𝑑2, · · · , 𝑑𝑚], with 𝑑𝑖 = ∥R(𝑖, :)∥2 and ∥ · ∥2
denoting the Euclidean norm.

In the enhanced model described in [14], whose details
are omitted here for conciseness, fractions 0 ≤ 𝜌N < 1
and 0 ≤ 𝜌S < 1 are defined to set the uniformly-distributed
variations of the noise and received signal powers about their
averages, respectively. The Rice factor of the channels between
the PU transmitter and the SU’s receivers is a Gaussian
random variable whose mean, 𝜇𝐾 , and standard deviation, 𝜎𝐾 ,
depend on the morphology of the environment (urban, rural
or suburban), according to [22].

The performance results shown hereafter give the proba-
bility of detection, 𝑃d, as a function of the most relevant
CSS system parameters (𝜌N, 𝜌S, SNR, 𝑁 , 𝑚 and 𝜇𝐾 ), for a
CFAR 𝑃fa = 0.1 [23], and channel parameters characterizing
a suburban area [22], for which 𝜇𝐾 = 2.63 dB and 𝜎𝐾 = 3.82
dB. Each point on all curves has been determined from 50000
Monte Carlo computer simulation runs, which corresponds to
the same amount of spectrum sensing rounds, using Matlab.
Unless otherwise stated, the default parameter values are 𝑚 = 4
SUs, 𝑁 = 100 samples, SNR = −11 dB, fractions of signal and
noise power variations: 𝜌S = 0.9 and 𝜌N = 0.5𝜌S, and mean
and standard deviation of the Rice factor: 𝜇𝐾 = 2.63 dB and
𝜎𝐾 = 3.82 dB. In some cases, a few parameters have been set
to keep 𝑃d ≈ 0.9 around the mid-value of the CSS parameter
varied, for the best detector in each case. In this way, it can
be easily seen the influence, on 𝑃d, of parameters below and
above their mid-values.

Fig. 1(a) gives 𝑃d versus the fraction 𝜌S that governs
the received signal power variations, for 𝑁 = 400 samples.
Fig. 1(b) shows 𝑃d versus the SNR across the SUs, for
𝑁 = 300 samples. Fig. 1(c) gives 𝑃d versus the number of
samples, 𝑁 . Fig. 1(d) depicts the influence of the number of
SUS, 𝑚, on 𝑃d, for SNR = −9.5 dB. Finally, Fig. 1(e) shows
𝑃d versus the mean Rice factor 𝜇𝐾 , for 𝑁 = 280 samples.

The variation patterns of 𝑃d in all graphs in Fig. 1 are
consistent with the patterns reported in [14]. Moreover, the
graphs show the superiority of the PRIDe for a variety of
system parameters; its superiority in other circumstances and
for other system parameters can be inferred from the large
amount of results reported in [14].

Special attention must be directed to Fig. 1(a), from where
it can be seen that the PRIDe is robust against variations
of the received signal and noise levels at the SUs, the same
happening with the detectors GID, HR, VD1 and GRCR. The
detectors GLRT (eigenvalue-based), MMED and AGM are not
robust. Fig. 1(e) also deserves attention, since it shows how
the level of a dominant multipath signal component affects the
performance of the detectors. The PRIDe once again attains
attractive performances, for moderate-to-high Rice factors,
and the GID becomes quite attractive in strong line-of-sight
condition.

Hence, the choice of the PRIDe for hardware implementa-
tion is well-supported by its attractive performance and low
computation complexity.
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(a) (b)

(c) (d)

(e)

Fig. 1: 𝑃d versus CSS system parameters. Unless otherwise
mentioned, 𝑚 = 4, 𝑁 = 100, SNR = −11 dB, 𝜌S = 0.9,
𝜌N = 0.45, 𝜇𝐾 = 2.63 dB and 𝜎𝐾 = 3.82 dB. (a) 𝑃d versus
𝜌S for 𝑁 = 400 instead of 𝑁 = 100; (b) 𝑃d versus SNR for
𝑁 = 300 instead of 𝑁 = 100; (c) 𝑃d versus 𝑁; (d) 𝑃d versus 𝑚
for SNR = −9.5 dB instead of SNR = −11 dB; (e) 𝑃d versus
𝜇𝐾 for 𝑁 = 280 instead of 𝑁 = 100.

III. PROPOSED HARDWARE ARCHITECTURES

This section presents the proposed hardware architectures of
the PRIDe sensor device. They are composed of a main generic
module for the sample covariance matrix computation, a test

statistic computation module, a decision-making module, and
a module for magnitude computation based on the CORDIC
algorithm.

A. Sample covariance matrix computation module

At the FC, the 𝑛-th sample received from the 𝑖-th SU, for
𝑛 = 1, . . . , 𝑁 and 𝑖 = 1, . . . , 𝑚, corresponds to the element
𝑦
𝑖,𝑛

of the matrix Y given in (1), which is processed via (2)
to yield the SCM R. The element in the 𝑖-th row and 𝑘-th
column of R, for 𝑖, 𝑘 = 1, . . . , 𝑚, is given by

𝑟𝑖,𝑘 =
1
𝑁

𝑁∑︁
𝑛=1

𝑦𝑖,𝑛𝑦
∗
𝑘,𝑛 , (5)

which clearly involves the multiplication of possibly complex-
valued quantities. For notation simplicity, let 𝑐 denote the
result of the multiplication between a complex number 𝑎 and
a complex conjugate number 𝑏∗. The real and imaginary parts
of 𝑐 are, respectively,

ℜ(𝑐) = ℜ(𝑎)ℜ(𝑏) + ℑ(𝑎)ℑ(𝑏), (6)

ℑ(𝑐) = ℑ(𝑎)ℜ(𝑏) − ℜ(𝑎)ℑ(𝑏). (7)

This is the natural approach to perform a complex con-
jugate multiplication in hardware level. It requires 4 real-
valued multipliers and 2 real-valued adders (additions and
subtractions are treated hereafter just as additions). Consider
now the alternative approach

ℜ(𝑐) = ℜ(𝑎) [ℜ(𝑏) − ℑ(𝑏)] + ℑ(𝑏) [ℜ(𝑎) + ℑ(𝑎)], (8)

ℑ(𝑐) = ℜ(𝑎) [ℜ(𝑏) − ℑ(𝑏)] + ℜ(𝑏) [ℑ(𝑎) − ℜ(𝑎)], (9)

in which the number of multipliers has been reduced from 4
to 3 with respect to (6) and (7), owed to the fact that the term
ℜ(𝑎) [ℜ(𝑏) − ℑ(𝑏)] is common to (8) and (9). Nonetheless,
in (8) and (9) the number of adders has been increased from
2 to 5 with respect to (6) and (7) [24], [25].

It is a well-known fact that a multiplier represents a high
resource-consuming unit, and the reduction in the number of
multipliers is, then, of paramount relevance to the optimization
of hardware designs. To compute an entry 𝑟𝑖,𝑘 of R as given
in (5), the approach given in (6) and (7), or the one given
in (8) and (9) is typically adopted. Here, three multiply-
accumulate (MAC) hardware architectures can be devised as
options to build the SCM computation module, as shown in
Fig. 21. Architecture I, which is depicted in Fig. 2a, is the
direct implementation of (6) and (7), without simplifications.
Architecture II, which is shown in Fig. 2b, is based on (8)
and (9), making use of associations to reduce the number
of multipliers. Architecture III, which is shown in Fig. 2c,
is proposed here as an alternative. It is based on the same
equations applied in Architecture I, but reusing the multipliers
in two different clock cycles. This architecture halves the

1In Fig. 2 and similar ones presented throughout the text, the number of
bits (word length) used to represent a given input value or result is placed
close to the corresponding line carrying the quantity, and is denoted by the
number of bits followed by the lowercase letter ‘b’.
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(a) Architecture I. (b) Architecture II. (c) Architecture III.

Fig. 2: MAC unit architectures.

number of real multipliers in comparison with Architecture I,
with the help of a crossbar switch [26]. The crossbar switch,
whose micro-architecture is indicated inside Fig. 2c, allows
the inputs to be redirected to the desired outputs according to
a selection signal (sel.). Hence, the four multiplications in (6)
and (7) can be calculated using only two multipliers. Finally,
the selective add-subtract block performs the addition or
subtraction operations according to its selector input, routing
the computed value to the real or imaginary accumulator. The
selection signal from architecture III, presented in Fig. 2c, is
an external port of the MAC unit and it is internally shared
by the crossbar switch and the add-subtract block.

The lower part of a MAC architecture computes the cumula-
tive sum of multiplication results, processed in the upper part.
This yields an element 𝑟 ′

𝑖,𝑘
of the SCM, that is not divided by

𝑁 in this step. The division by 𝑁 is made after a combination
of MAC results, as explained in the sequel.

Likewise [20], the SCM computation module considered
herein is an array of MAC units whose outputs are multiplexed
through a divider. However, similarly to many detectors, the
PRIDe test statistic given in (4) is not sensitive to scale factors.
Hence, the division by 𝑁 is purely from a mathematical
rigor, having no impact on the spectrum sensing performance.
Nonetheless, this division reduces the number of bits (word
length) used to represent the result. Moreover, working with
binary words, when the number of samples is a power of two
the divider becomes a simple right-shift operation, meaning
that an arithmetic divider unit is not needed. Thus, following
this reasoning, here we propose a simple bit shift to perform
the division by the highest power of two below 𝑁 . For
example, if 𝑁 = 50 samples, the division is made as a shift
of ⌊log2 50⌋ = 5 bits to the right, and a bit resizing to reduce
the word length from 18 bits to 13 bits. If the number of
samples is a power of two, the values of 𝑟𝑖,𝑘 will be equal
to the ones produced by (2); otherwise they will be scaled by

a value in the range (1, 2). Fig. 3 illustrates the architecture
of the proposed optimized SCM computation module for the
PRIDe test statistic.

As shown in [20], taking into account that R is Hermitian,
𝑚(𝑚 − 1)/2 MACs are needed to calculate the upper or
the lower off-diagonal elements of R, and 𝑚 MAC units
are needed to calculate the diagonal elements, resulting in
𝑚(𝑚 + 1)/2 MAC units to construct the SCM computation
module.

Fig. 3: Optimized SCM computation module.

B. Test statistic computation module

Two units have been designed to compose the test statistic
computation (TSC) module: the mean value (MV) unit and
the differential absolute value (DAV) unit, whose architectures
are presented in Fig. 4. The MV unit, which is illustrated in
Fig. 4a, calculates 𝑟 defined in (3), exploring the fact that
the upper and lower off-diagonal elements of the SCM are
complex conjugates of each other. Hence, their sum is twice
the sum of the real parts of one of them, yielding
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𝑟 =
1
𝑚2

©­«
𝑚∑︁
𝑖=1

𝑟𝑖,𝑖 + 2
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

ℜ{𝑟𝑖, 𝑗 }
ª®¬ . (10)

The MV shares the same simplification of the SCM, avoid-
ing dividers when the number of SUs are a power of two.
In this case, it is possible to use only a simple bit shifting
operation. This property is explored by the authors for 𝑚 = 4.

The DAV unit, which is depicted in Fig. 4b, has been
implemented to calculate the numerator and the denominator
of the PRIDe test statistic (4). In the numerator, the sum of all
absolute values has been simplified, since complex conjugate
numbers have the same magnitude. In the denominator, which
it is computed by summing the magnitudes of the difference
between the SCM elements and their mean, it has been applied
the fact that the difference between a complex quantity and
a real number has the same magnitude of the difference
between its complex-conjugate and the number. Using these
simplifications, the PRIDe test statistic can be rewritten as

𝑇PRIDe =

𝑚∑
𝑖=1

��𝑟𝑖,𝑖 �� + 2
𝑚∑
𝑖=1

𝑚∑
𝑗=𝑖+1

��𝑟𝑖, 𝑗 ��
𝑚∑
𝑖=1

��𝑟𝑖,𝑖 − 𝑟
�� + 2

𝑚∑
𝑖=1

𝑚∑
𝑗=𝑖+1

��𝑟𝑖, 𝑗 − 𝑟
�� . (11)

The DAV unit operates in two phases. During the first phase
it processes the numerator of (11), while giving the MV unit
the time to compute the mean value. In the second phase,
the counters inside the internal control unit shown in Fig. 4b
switch the multiplexed inputs of the absolute value (abs)
operations and configure them to calculate the denominator.
The demultiplexer (demux) output is controlled to store the
numerator and the denominator in different registers at the
proper time.

Aiming at reducing latency, the DAV unit has been im-
plemented to compute all absolute value operations in the
numerator and the denominator of (11) in parallel.

The TSC module architecture has been designed under two
approaches in regard to the absolute value calculations, as
shown in Fig. 5. In the conventional approach, the absolute
value of an input is calculated by taking the square root of
its real and imaginary parts squared. Two real multipliers are
needed to calculate the values squared, subsequently applying
a square root algorithm, as shown in Fig. 5a. The non-restoring
square root algorithm of [27] has been used to implement the
square root operation in this work.

To optimize the hardware architecture of the TSC module,
an alternative to perform the absolute value calculation is
the use of the CORDIC algorithm, as shown in Fig. 5b.
The algorithm was originally proposed in [28] as a digital
computer for airborne applications, but finds other uses in
several situations [29]. The CORDIC algorithm is designed
to perform angular rotations on vectors, iteratively. These
rotations are made through a set of trigonometric equations,
which can be simplified into a multiplication by the tangent of
the desired rotation angle. In base 2, for the 𝑛-th iteration, it
follows that tan 𝜃 = 2−𝑛, meaning that a multiplication by tan 𝜃
is a simple shift of the binary word. The algorithm restricts

rotations to angles that meet this condition, so its construction
depends only on simple hardware structures such as adders,
registers and shifters.

(a) MV.

(b) DAV.

Fig. 4: Architectures of the MV and DAV units.

(a) Conventional design. (b) CORDIC-based design.

Fig. 5: Approaches used to perform the absolute value (abs)
computation inside the DAV unit.

A CORDIC module normally has three inputs: 𝑥 for the real
part of the complex input value, 𝑦 for the imaginary part and 𝑧

for the desired rotation angle, and the algorithm has two modes
of operation: rotation and vectorization. Only the vectorization
mode is used herein. In this mode, the CORDIC algorithm
seeks to minimize the residual value stored in the imaginary
part register, so that the vector is rotated to the abscissa axis,
that is, after 𝑛 iterations 𝑦 → 0. As the aimed result is only
the magnitude, all hardware features related to the rotation
angle path can be removed, allowing a simplified construction
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of the CORDIC module for magnitude calculation (denoted
as CORDIC mag in Fig. 5b), which is depicted in Fig. 6.
In the serial design, an input multiplexer ensures that after
the first iteration, only the feedback values will continue to be
processed by the algorithm. A configurable adder is controlled
via a signal fed back from the outputs. In this case, the value
of the control signal is equal to an exclusive OR between
𝑥 and 𝑦 signals, corresponding to their most significant bits
(MSBs). The configurable adders are fed by registers and 𝑛-
bit shifters. The construction of the CORDIC algorithm in this
work applies 𝑛 = 4 iterations and 13 bits word length for the
real and imaginary inputs, as justified in the subsequent section
of this paper.

Fig. 6: Proposed serial CORDIC mag architecture.

Once the numerator and denominator of (11) are calculated,
a divider unit would be needed to yield the PRIDe test statistic
value. However, such a division operation should be avoided in
hardware implementations due to its complexity and resource
usage, although restoring algorithms allow its implementation
more efficiently when the arithmetic operation is unavoidable.
In this article, a divider unit has been initially implemented
using the restoring algorithm based on [30] to calculate the
test statistic value. However, it is possible to circumvent the
division operation if only the spectrum occupation decision is
the necessary output. This latter approach has been adopted by
the final PRIDe sensor architecture, as described in the sequel.

C. Decision-making module

The decision-making (DM) module is simply a comparator.
If the test statistic 𝑇PRIDe is greater than or equal to the
threshold 𝛾, a decision indicator receives bit 1 (decision in
favor of H1); otherwise it receives bit 0 (decision in favor of
H0). After the decision is made, a ‘done’ signal is output to
indicate that the state of the decision indicator is available in
the ‘decision’ output.

Denoting the numerator of the test statistic as Ωnum, and the
denominator as Ωden, the PRIDe hypothesis test is

𝑇PRIDe =
Ωnum

Ωden
≶ 𝛾. (12)

As already mentioned, if the value of 𝑇PRIDe has no use and
only the decision matters, the hypothesis test can be made by
simply moving Ωden to the threshold side, yielding

Ωnum ≶ 𝛾Ωden, (13)

in which the division present in (12) is exchanged by a mul-
tiplier operating on Ωden and 𝛾, yielding a simpler hardware
implementation alternative.

The DM module is fed by the threshold value 𝛾, which can
be directly connected to an input pin of the DM, or can be
multiplexed along with the input samples to reduce the number
of pins of an FPGA or ASIC package. This latter approach is
particularly useful if it is desired that the decision threshold
can be changed on-the-fly, due to changes in some system
parameter. If this is not the case, feeding the DM module with
the threshold value via a dedicated pin is a more reasonable
choice. In other words, the SCM computation module is idle
during the TSC module operation, having its clock signal
deactivated, which gives the TSC module a time equal to the
TSC module latency to read the threshold by reusing a pin used
as input of the SU samples in a denser package ASIC design.
In this work, which targets both FPGA and ASIC designs, the
multiplexed pin option was not applied.

D. Complete PRIDe spectrum sensor architecture

The final PRIDe sensor architecture has been implemented
by interconnecting the modules previously described, as shown
in Fig. 7. Some designs are made with the SCM computation
module built using different MAC and TSC module archi-
tectures and different absolute value computation approaches.
The results of these combinations are presented in the next
section.

Fig. 7: Architecture of the Pietra-Ricci index detector.

The following design parameters have been adopted: the
input samples are 6-bit signed fixed-point numbers for the real
and imaginary parts. Hence, assuming 𝑚 = 4 SUs, the sample
matrix Y is fed to the sensor block by means of a 48-bit bus.
The matrix R contains 10 values computed with 26 bits. The
absolute value computations within the DAV unit are designed
to operate with 13 bits for the real and the imaginary parts, the
same setting being adopted by the MV unit. After summing
up the absolute values, the numerator and the denominator
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TABLE II: Comparative synthesis report for SCM and TSC modules.

SCM-I SCM-II SCM-III TSC-conventional TSC-CORDIC

Slice LUTs 1831 1753 1331 5467 2404
Slice Registers 720 288 298 1244 512

Slices 640 558 452 1826 710
Latency (clock cycles) 𝑁 𝑁 2𝑁 30 14

outputs are 16 bits wide, which is also the word length of the
decision threshold 𝛾. A controller unit processes clock and
reset signals for all blocks.

IV. FINAL ARCHITECTURE DESIGN AND ASSESSMENT

This section describes the final architecture design and
the assessment of its hardware characteristics. The design
and architecture synthesis are addressed firstly, followed by
the time and performance analysis of the developed PRIDe
detector. Comparisons and discussions about the results and
state-of-the-art outcomes are presented subsequently.

A. Design and synthesis

The resource consumption by the proposed architectures
were analyzed through the synthesis and implementation re-
port obtained from the FPGA development platform. The SCM
computation module architecture is directly impacted by the
MAC unit design and the TSC module is directly impacted by
the DAV unit employed.

Table II presents the synthesis report of the proposed
SCM and TSC modules. SCM-I refers to the architecture
implemented with the MAC Architecture I (Fig. 2a), SCM-
II refers to the MAC Architecture II, and SCM-III refers to
the MAC Architecture III. The synthesis and implementation
of the very high speed integrated circuit (VHSIC) hardware
description language (VHDL) code have been carried out by
using the Xilinx Vivado software, aiming the Xilinx FPGA
chipset Zynq®-7000 SoC (XC7Z030FBG676-3).

It can be seen from Table II that the SCM-II incurs lesser
logic utilization in terms of slice look-up tables (LUTs)
compared with SCM-I, which is the simplest implementation
in terms of complex multiplications, achieving significant
advantage over the SCM-I in terms of register utilization. In
the case of SCM-III, the logic utilization in terms of LUTs is
≈ 27% smaller than SCM-I, but the module latency in number
of clock cycles is twice the SCM-I latency. Comparing SCM-
II and SCM-III, there is no clear winner. If resource usage
(area efficiency) is more relevant than latency (time efficiency),
SCM-III outperforms SCM-II. If the number of samples 𝑁 is
small, the higher area efficiency of SCM-III favors its choice.
When 𝑁 is too large, the higher time efficiency of SCM-II
favors its choice.

The synthesis report of the TSC module presented in
Table II unveils that the CORDIC algorithm attains resource
utilization of 55%, 58% and 61% lesser in terms of LUTs,
registers and slices, respectively, relative to the conventional
implementation of the absolute value computation using the
non-restoring square root algorithm of [27]. The latency
attained with the CORDIC algorithm is 53% smaller than

the conventional implementation. Although both the CORDIC
and the square root algorithms are iterative, the number of
iterations of the square root depends on the word length asso-
ciated to the value being processed [27], while the CORDIC
uses a fixed preset number of iterations. For this reason, the
CORDIC-based solution has been chosen here to implement
the TSC module of the proposed PRIDe spectrum sensor.

In this work, FPGA implementations of two hardware
architectures of the PRIDe spectrum sensor have been carried
out. These suggested architectures are referred to as PRIDe
V1 and PRIDe V2. Here, PRIDe V1 has been designed by
incorporating SCM-II (that uses MAC-II architecture) and
TSC-conventional modules, along with controller and DM
module, as presented in Fig. 7. On the other hand, PRIDe
V2 incorporates SCM-III (that uses MAC-III architecture)
and TSC-CORDIC modules. Further, FPGA implementation
results of both these spectrum sensors are listed in Table III.

From Table III, it can be concluded that the PRIDe V2 uses
less hardware resources than the PRIDe V1, at the cost of a
higher latency, which is the sum of latencies of all modules
of our spectrum sensor.

TABLE III: Synthesis report of the PRIDe sensor. BUFG
refers to global clock buffers, and bonded IOB refers to the
input/output pins required by the module.

PRIDe V1 PRIDe V2

Slice LUTs 4506 4086
Slice Registers 809 820

Slices 1360 1247
Bonded IOB 68

BUFG 2
Latency (clock cycles) 𝑁 + 15 2𝑁 + 15

Table IV summarizes the hardware complexities of the
developed modules in terms of the basic units like MAC
and CORDIC-based absolute value computation, and the basic
hardware resources (adders, dividers and multipliers). The
individual complexities are identified as follows: 𝜇 denotes
the MAC unit complexity, 𝛼 represents the CORDIC-based
absolute value computation complexity, Σ denotes the adder
complexity, 𝜒 identifies a divider complexity, and 𝜋 denotes
the complexity of a 16 × 16 bits multiplier. Recall that the
divider used by the MV unit is a simple shifter if the number
of SUs is a power of two.

Only higher hierarchy units like MAC, adders and absolute
value computers are accounted in the hardware complexity
analysis. Basic units like shifters, LUTs and registers are not
included here. Moreover, the control unit, although indispens-
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able to the proper functioning of the spectrum sensor, does
not have its complexity affected by the design variables.

From Table IV it can be concluded that the hardware
complexity growths of the designed modules are independent
of the number of samples, 𝑁 . The complexities of the SCM
and TSC modules depend on the number of SUs, 𝑚, which
affects the number of MAC and DAV units needed. The
growths in the numbers of MAC and DAV units with 𝑚 are the
same, but their computational burdens (time complexities) are
different from each other. The hardware complexity of the DM
module is constant and determined by the type of multiplier
used to compute 𝛾Ωden.

TABLE IV: Hardware complexities.

Hardware complexity

SCM module ΠSCM = 𝑚
2 (𝑚 + 1)𝜇

TSC module ΠTSC = 𝑚
2 (𝑚 + 1)𝛼 + (𝑚2 +𝑚 − 2)Σ + 𝜒

DM module ΠDM = 𝜋

The post-implementation design of the PRIDe sensor has
achieved a critical path delay2 of 5.489 ns and 5.606 ns
for PRIDe V1 and PRIDe V2 architectures, respectively. The
above critical path delays are translated into maximum clock
frequencies of 182 MHz and 178 MHz for PRIDe V1 and
PRIDe V2 architectures, respectively. The operating clock
frequency used by the proposed implementations considered
herein is 𝑓clk = 166 MHz. At this frequency, the dynamic
power dissipations estimated in Vivado software with SAIF
(Switching Activity Interchange Format) file from the post-
implementation simulation are 130 mW for PRIDe V1 and 102
mW for PRIDe V2 resulting in dynamic power performances
of 0.7831 mW/MHz and 0.6145 mW/MHz, respectively. At
the worst-case scenario, operating at their maximum clock
frequency, PRIDe V1 exhibits a dynamic power consump-
tion of 141 mW, while PRIDe V2 consumes 109 mW. The
thermal profiles of both sensors are depicted in Fig. 8, with
reported values reaching a maximum temperature of 26.7°C
for PRIDe V1 and 26.5°C for PRIDe V2, both without a heat
sink and with zero airflow. The ambient temperature used in
the power estimation is 25°C, and Vivado’s default parameters
include a medium heat sink and 250 linear-feet per minute
(LFM) airflow.

The reported device has been designed to process the
digital samples received from the SUs. The receiver front-
end, the analog-to-digital conversion and other analog signal
processing units are not addressed in the present design.

B. Detailed latency analysis

In this subsection, the delays that compose the overall
latency of the PRIDe sensor architecture are described.

2The critical path delay is the maximum logical and routing delays among
the designed paths. It is used to define the maximum operating frequency that
the design can properly operate. If the critical path delay is too long, greater
than clock period, the next rising edge clock occurs before a signal arrives at
its destination.

Fig. 8: The thermal profile of junction temperature as a
function of frequency. Solid lines represent Vivado’s default
condition, while dashed lines correspond to scenarios with no
heat sink and zero airflow.

The SCM computation module latency is denoted by Δ1,
whose value is based on the required time by the MACs
to process the input samples and compute the SCM. In the
proposed architectures, both MAC-I and MAC-II are able to
process one sample per clock cycle. On the other hand, MAC-
III needs two clock cycles to reuse the same multipliers to
calculate real and imaginary parts separately. Thus, the SCM
computation module latency is 𝑁 clock cycles for MAC-I and
MAC-II, and 2𝑁 for MAC-III.

The MV unit latency is denoted by Δ2.1. In the proposed de-
sign, the MV unit realizes partial summations of the diagonal
and off-diagonal elements of the SCM, left-shifting (equivalent
to the multiplication of the off-diagonal elements by two) and
right-shifting of the final summation (representing the division
of the summation result by 𝑚2), producing a latency equal to
3 clock cycles.

The latency of the absolute value operation inside the DAV
unit is Δ2.2.1. The conventional non-restoring square root
algorithm produces a latency equal to the word length used
to represent each real and imaginary value, which in this
architecture design is 13 bits. The CORDIC algorithm with
four iterations plus a reset/pre-load clock cycle yields a latency
of 5 clock cycles.

The summation latency inside the DAV unit is represented
by Δ2.2.2. This summation, following (11), is performed in-
dependently on the diagonal and the off-diagonal elements of
the SCM. Then, the off-diagonal sum is left-shifted and added
to the diagonal sum. This process requires 3 clock cycles.

The extra latency of 1 clock cycle associated with the output
enable and synchronization signal used by the DAV control
unit is denoted by Δ2.2.3.

The total latency of the TSC module is Δ2. The MV unit
calculates the mean value in parallel with the test statistic
numerator computation, which causes no effect on the TSC
module latency because Δ2.1 is always smaller than Δ2.2.1,
regardless of the DAV architecture (conventional or CORDIC-
based). Moreover, the computation of the denominator starts
right after the computation of the absolute value of the numer-
ator is completed. Consequently, the DAV unit produces two
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Fig. 9: Detailed timing chart for the TSC (Δ2) and DM (Δ3) modules.

times the absolute value operation latency, plus the summation,
demux and registering latencies, plus Δ2.2.3. Fig. 9 depicts how
this parallel computation is performed. The TSC module delay
is Δ2 = 2Δ2.2.1+Δ2.2.2+Δ2.2.3, yielding a latency of 30 and 14
clock cycles for the TSC module using the conventional and
the CORDIC-based absolute value computation approaches,
respectively.

The DM module latency, which is 1 clock cycle, is denoted
by Δ3. This is the time needed to multiply Ωden by 𝛾 and
compare the result with Ωnum to make the decision on the
spectrum occupancy state.

Fig. 9 illustrates the timing diagram for the above-described
latencies Δ2 and Δ3.

Finally, ΔPRIDe is the total latency (in number of clock
cycles) required by the PRIDe spectrum sensor. It is equal
to the sum of individual modules latencies described above,
that is,

ΔPRIDe = Δ1 + Δ2 + Δ3. (14)

Cognitive radio networks with centralized data-fusion CSS
operate with a fixed frame structure that is divided into a spec-
trum sensing interval, followed by an interval corresponding
to the report of the collected samples to the FC, an interval
for processing the received samples at the FC and making
the spectrum occupancy decision, an interval for spectrum
allocation, and an interval for data transmission. Clearly,
the reduction of the time spent for sensing, reporting, FC
processing, and spectrum allocation allows the cognitive radio
network to transmit more data in the frame, increasing its data
throughput [31]. Likewise [20], this work focus on the reduc-
tion of the processing time at the FC side. Hence, the PRIDe
sensor architecture developed herein aims at minimizing the
test statistic computation and global decision delays. Given a
clock frequency 𝑓clk, the time required by these tasks at the
FC side is given by

𝜏FC =
ΔPRIDe

𝑓clk
. (15)

C. Detection performance analysis

The impact of fixed-point operation and the number of
CORDIC iterations on the performance have been assessed
by means of Monte Carlo simulations in Matlab. The aim was
to set the minimum number of iterations for the CORDIC-
based absolute value computations, and design the overall
PRIDe sensor architecture with the smallest word lengths

that do not cause noticeable performance loss with respect to
the conventional absolute value calculation and floating-point
operation. The results found were 6 bits for the fixed-point
word length that represent the input samples, and 4 iterations
in the CORDIC algorithm.

Starting with the design parameters defined from the sim-
ulations, the hardware description language (HDL) code for
the proposed sensor architecture has been written in VHDL
using the Xilinx Vivado software. Subsequently, the sensor
performance has been evaluated by comparing Matlab sim-
ulation results with the behavioral (also known as register
transfer level, RTL) simulation results, as well as with the post-
implementation (also known as functional) simulation results
obtained from the Vivado software.

To perform the Monte Carlo simulations in Matlab, 15000
sample matrices Y of order 𝑚 × 𝑁 = 4 × 100 were generated
using the Matlab, under hypothesis H1 with SNR = −8 dB,
and under H0. These matrices were exported from Matlab
and imported by custom read-only memories (ROMs) inside
the RTL simulation test bench. The results generated by the
RTL simulation followed the reverse export-import path to
plot the receiver operating characteristics (ROC) curve of
the PRIDe test statistic. The Matlab-generated samples were
used to simulate the PRIDe sensor in floating-point operation,
and converted into signed fixed-point representation with 6-bit
word length and 5-bit fraction to simulate the PRIDe sensor
in fixed-point operation.

Fig. 10 shows all ROC curves obtained from the perfor-
mance analysis of the PRIDe sensor: the ROC obtained via
Matlab using the conventional absolute value computation
in float-point (double), the ROC obtained via Matlab using
the CORDIC-based absolute value computation with samples
processed in fixed-point, the ROC obtained from the RTL sim-
ulation via Vivado, and a single operating point representing
the measured 𝑃fa = 0.1060 and 𝑃d = 0.7424, obtained from
the post-implemented functional simulation using a decision
threshold 𝛾 = 0.884765625, whose value was pre-computed
targeting 𝑃fa = 0.1. From Fig. 10, it can be seen that all ROC
curves are superimposed, and that the measured operating
point lies on these curves. Thus, the 6-bit word length adopted
to represent the input samples in fixed-point notation, and
the number of CORDIC iterations equal to 4 are capable
of not degrading the PRIDe performance relative to floating-
point computations and the use of conventional absolute value
computation whose hardware implementation depends on less
efficient algorithms (e.g., iterative square root algorithms).

The measured mean squared error (MSE) between the test
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Fig. 10: Simulated performance of the PRIDe sensor.

statistic values calculated by the Matlab simulation and those
obtained from the RTL hardware-level simulation using the
data-set under hypothesis H0 was 4.457 × 10−6. Under H1,
the MSE was 1.130×10−4. In both cases, the CORDIC-based
absolute value computation was adopted. From the agreement
of the results presented in Fig. 10, it can be concluded that
such errors can be considered small enough to cause no impact
on the performance of the FPGA and ASIC-implemented
PRIDe sensor.

The overall processing times under a clock frequency of
166 MHz were 690 ns and 1290 ns for the PRIDe V1 and
the PRIDe V2 architectures, respectively, demonstrating a
clear advantage of PRIDe V1 in this regard, and an overall
extremely low-latency design.

D. ASIC design and comparisons

The proposed hardware architectures of PRIDe V1 and
PRIDe V2 spectrum sensors are ASIC synthesized and post-
layout simulated in the 90 nm-CMOS technology node from
United Microelectronics Corporation (UMC). The VHDL
codes of suggested spectrum sensors are functionally verified,
synthesized, post-synthesis simulated and timing analyzed
using the NCSim electronic design automation (EDA) tool
from Cadence. Further, the timing verified gate-level netlist of
our design has been imported to Cadence-Innovus EDA tool,
using the 5-metal layer LEF files of 90 nm-CMOS process.
Here, the physical design of the spectrum sensor architecture
is carried out where floor-plan, power plan, placement, signal
routing, clock tree synthesis, and timing verifications are
carried out hierarchically. Based on the post placed-&-route
timing analysis, PRIDe V1 and PRIDe V2 architectures are
capable of delivering maximum clock frequency of 186.6 MHz
with the critical path delay of 5.386 ns. Further, post-layout
simulations indicate that PRIDe V1 and PRIDe V2 attain
latencies − i.e. ΔPRIDe value in (15) − of 115 and 215 clock
cycles, respectively, while processing 100 signal samples. As a
result, at aforementioned clock frequency ( 𝑓clk) and latencies,
sensing times (i.e. 𝜏FC = ΔPRIDe/ 𝑓clk) of 0.616 𝜇s and 1.152 𝜇s

are delivered by PRIDe V1 and PRIDe V2 spectrum sensors,
respectively. Comprehensive power analysis has been carried
out at the clock frequency of 186 MHz with the supply voltage
of 1.2. Thus, PRIDe V1 and PRIDe V2 consume total powers
(leakage and dynamic powers) of 15.72 mW and 9.695 mW,
respectively. An overall design area of PRIDe V1 is 0.094
mm2 that incorporates 11700 standard cells. Similarly, PRIDe
V2 with 10421 cell-count occupies 0.084 mm2 of area. Chip
layouts in 90 nm-CMOS process of both the proposed PRIDe
V1 and PRIDe V2 spectrum sensors are presented in Fig. 11.

(a) (b)

Fig. 11: 5-metal layered ASIC chip-layouts of the proposed
(a) PRIDe V1 and (b) PRIDe V2 spectrum sensors in UMC
90 nm-CMOS technology node.

Our ASIC design results of the proposed spectrum sensors
are presented and compared with the state-of-the-art imple-
mentations in Table V. Here, the comparisons have been
carried out with two types of spectrum sensors: cooperative
spectrum sensors (CSRs) and stand-alone spectrum sensors
(SSSRs). Synthesized and post-layout simulated results of
PRIDe V1 and PRIDe V2 are compared with the contemporary
Gini index-based [32] and GRCR-based [20] CSRs. Further-
more, implementation of [18] is the unified MED/MMED-
based CSR. The reported work of [16] is based on GLRT
based CSR that uses iterative power method to compute all the
eigenvalues of SCM. Unlike, [17] applies iterative Cholesky
method for the same. These CSRs from literature deliver
excellent detection performance, under the assumption that the
received signal-power and noise-variance, at the cooperating
SUs, are uniform. However, in a real-world scenario where the
received signal-power and noise-variance are different, SUs
fluctuate in both space and time (i.e. non-uniform dynamical
noise and received signal-power scenario). Under such realistic
scenario, the proposed PRIDe-based CSS algorithm delivers
superior performance as compared to CSS algorithms from
[16]–[18], [20], [32].

In addition, the implementations reported in [33]- [40] are
all SSSRs. Here, SSSR from [33] is a digital baseband proces-
sor based on adaptive channel-specific threshold and sensing-
time. Similarly, [34] is a rapid interferer detector that uses
compressed sampling with a quadrature analog-to-information
converter. The SSSR reported in [35] is a 30 MHz to 2.4
GHz CMOS-receiver with an integrated tunable RF-filter and
a dynamic-range-scalable energy detector for white-space and
interference-level sensing in cognitive-radio systems. Unlike,
[36] and [39] are digital SSSRs based on cyclostationary-



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS 12

TABLE V: Comparison of the proposed PRIDe V1 and PRIDe V2 spectrum sensors with the state-of-the-art implementations.

Prop.
PRIDe
V1✠

Prop.
PRIDe
V2✠

[32]‡
TCE-
2022

[20]‡
TVLSI-
2022

[18]‡
ISCAS-
2021

[16]✠
TVLSI-
2021

[17]✠
TCAS-
II-
2021

[33]‡
JSSC-
2012

[34]‡
JSSC-
2015

[35]‡
JSSC-
2012

[36]✠
TCAS-
II-
2018

[37]‡
TCAS-
I-2018

[38]‡
TCAS-
I-
2018

[39]‡
TCAS-
I-
2019

[40]✠
TVLSI-
2016

Topology CSR CSR CSR CSR CSR CSR CSR§ SSSR SSSR SSSR SSSR SSSR SSSR SSSR SSSR

Technology
(nm)

90® 90® 130⋇ 130© 130† 90† 90† 65⊕ 65★ 90≀ 90♣ 130♠ 65♠ 90≏ 130♠

Supply (V) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1 1.1 1.2 1.2 1.2/1.1 1 1.2 1.5

Area (mm2) 0.094 0.084 0.35 0.27 0.564 2.41 2.47 1.64 1.96 2.3 0.26𝑑 1.33 2.53 0.42𝑐 0.165

Scaled area♯
(mm2)

0.094 0.084 0.167𝑎 0.129𝑎 0.27𝑎 2.41 2.47 3.144𝛽 3.76𝛽 2.3 0.26 0.64𝛼 4.85𝛽 0.42 0.08𝛽

Total power
(mW)

15.72⋄ 9.695⋄ 8.31𝛿 6.47𝛿 8.3809 35.35 31.84 7.4 81 44 39.66 0.878 47.9 38.24 28.5

Scaled
total power
(mW)∓

15.72⋄ 9.695⋄ 5.05𝛿 3.93𝛿 5.09 35.35 31.84 17.33 152.33 44 39.66 0.65 112.2 38.24 10.41

Max. clock
frequency
(MHz)

186.6 186.6 88.8 88.8 88.8 87.71 101.83 -NA- -NA- -NA- -NA- -NA- -NA- 404 -NA-

Detection
bandwidth∈
(MHz)

93.3⊙ 93.3⊙ 44.4⊙ 44.4⊙ 44.4⊙ 43.85⊙ 50.91⊙ 200≺ 1000⊣ 0.2-30 200Φ 0.36-
0.72⊥

132⊥ >400⊥ 40Φ

Sensing time
(ms)

0.00062 0.0012 0.043 0.005 0.120/
0.236

0.0604 0.133 <50 0.004 -NA- <5 0.133 0.42 0.0535 1

Scaled
sensing time
(ms)∓

0.00062 0.0012 0.03026 0.00352 0.08445/
0.166

0.0604 0.133 <54.11 0.00493 -NA- <5 0.0865 0.4545 0.0535 0.7727

ATP (mm2-
ms)⋏

0.00006 0.0001 0.0150 0.0014 0.0678/
0.133104

0.1455 0.3285 82 0.007 -NA- 1.3 0.177 1.063 0.0225 0.165

Scaled ATP
(mm2-ms)∓

0.00006 0.0001 0.0051 0.00046 0.0228/
0.0449

0.1455 0.3285 170.13 0.0185 -NA- 1.3 0.0551 2.20 0.0225 0.0611

PDP (mW-
ms)⋎

0.0097 0.012 0.3573 0.0323 1.00/
1.977

2.14 4.23 370 0.324 -NA- 198.3 0.117 20.118 2.046 28.5

Scaled PDP
(mW-ms)∓

0.0097 0.012 0.1527 0.0138 0.4299/
0.8455

2.14 4.23 937.97 0.7506 -NA- 198.3 0.05624 51.00 2.046 8.04

§: CSR based on GLRT CSS-algorithm with Cholesky algorithm; ⋇: GID based digital CSR; ©: GRCR based digital CSR; ®: PRIDe based digital CSR; ⊕: Wideband digital
baseband Processor; ⋏: ATP (Area Time Product) = Area × Sensing Time; ⋎: PDP (Power Delay Product) = Total Power × Sensing Time.
★: Wideband Rapid Interferer Detector; ≀: Dynamic-Range-Scalable Energy detector for Cognitive radio; †: Eigenvalue based digital CSR

♯: Scaled Area = Area/𝑠2 where 𝑠 = scaling factor; 𝛼: 𝑠 = (130/90); 𝛽: 𝑠 = (65/90); 𝛾: 𝑠 = (180/130).
∓: The scaled metrics for power and delay follow the scaling equations as outlined in [41].

⋄: Total power consumption at 186 MHz. 𝛿: Total power consumption at 88 MHz. ≏: MME Based digital spectrum sensor.
♣: Cyclostationary Feature Detection (CFD) based digital spectrum sensor; ♠: ED based analog spectrum sensor; ♦: ED based digital spectrum sensor.

✠: Synthesized and post-layout simulated results; ‡: Measured results from chip tape-out.
Input word lengths of 𝑥 [𝑛]: 𝑎: 10 bits; 𝑏: 14 bits; 𝑐: 28 bits; 𝑑: 20 bits; 𝑒: 26 bits.

⊙: Signal sensing bandwidth of CSR that is situated in the digital-baseband part of spectrum sensing receiver.
Φ: Signal sensing bandwidth of Digital SSSR that is situated in the digital-baseband part of spectrum sensing receiver.
⊥: Sensing bandwidth of Analog SSSR that is situated in the Analog RF-Frontend part of spectrum sensing receiver.

⊙ & ∈: Maximum clock frequency (Θ𝑚𝑎𝑥 ) ≥ 2× 𝑓𝑏𝑏 (Detection Bandwidth); ∴ 𝑓𝑏𝑏≈ Θ𝑚𝑎𝑥
2 .

≺: Sensing Bandwidth of 200 MHz with resolution of 200-kHz; ⊣: Sensing Bandwidth of 1000 MHz with resolution of 20 MHz.

feature detection and maximum-minimum eigenvalue based
detection techniques, respectively. Further, [37] is successive-
approximation-register based analog ED SSSR for ultra-wide-
band cognitive-radio applications with short sensing time. On
the other hand, [40] is an analog CMOS-RF based ED SSSR.

As shown in Table V, both PRIDe V1 and PRIDe V2
spectrum sensors occupy the smallest area in comparison to all
the reported implementations. To ensure fair comparison be-
tween different semiconductor technologies, scaling equations
are adopted following [41]. Here, the area, delay and power
consumed by all the implementations are scaled to 90 nm
CMOS technology node. In comparison to the smallest area
consumed by the state-of-the-art CSR from [20], PRIDe V1
and PRIDe V2 spectrum sensors consume 27.1% and 34.9%
lower area, respectively. On the other hand, Table V also shows
the comparison of our CSRs with the SSSRs, reported in
the literature. Here, only the work presented in [40] delivers
smaller area than the proposed CSRs. This SSSR has been
designed for ED based spectrum sensing algorithm in the

analog circuit domain that delivers unreliable detection per-
formance under real-world scenario and undergoes SNR wall
problem. Nevertheless, ATP and PDP values of the suggested
PRIDe V1 and PRIDe V2 are better than ones obtained for
[40]. Similarly, sensing times of our CSRs are 5.7× and 2.9×
better than the fastest sensing time of contemporary CSR from
[20], as presented in Table V. It also shows that the suggested
designs have delivered the lowest ATP and PDP among all
the reported implementations. Therefore, both PRIDe V1 and
PRIDe V2 are the most hardware as well as power efficient
CSRs, reported till date.

E. ASIC Fabrication Considerations

The fabrication of the sensor at different technology nodes
can improve or worsen the sensor performance. Smaller
technology nodes (e.g., 65 nm, 45 nm, 22 nm) can achieve
higher maximum operating frequencies, resulting in reduced
latency. However, the number of clock cycles required for
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output remains constant, determined solely by PRIDe’s archi-
tectural design. Smaller technology nodes lead to lower power
consumption than 90 nm CMOS process, provided they are
operating at same clock frequency. In larger technology nodes,
latency increases due to lower clock frequencies, while power
consumption depends on clock frequency and supply voltage.
In larger nodes, clock frequency decreases and supply voltage
increases, potentially causing increased power consumption
due to the quadratic relationship between total power (mostly
dynamic power) and supply voltage.

Irrespective of potential fabrication defects (unavoidable and
not under the designer’s control), there could be some expected
deviations in practical, measured results. One issue is the risk
of setup-time violations along the critical path of the proposed
architecture. This issue can occur due to underestimating
clock skew and jitter, leading to uncertainty. Consequently,
the fabricated ASIC chip may be unable to operate at its
maximum clock frequency of 186.6 MHz, reducing achievable
sensing time and sensing bandwidth. Another challenge is the
potential for hold-time violations within the fabricated PRIDe
architecture. This is the most challenging problem because it
cannot be corrected post-fabrication and remains independent
of clock frequency. Finally, the design must ensure there are
enough supply voltage pads. Without them, the supply voltage
distribution to standard cells may be insufficient, leading to
reduced rail-to-rail swing in digital logic, which, in turn,
impacts noise margins and overall reliability.

Some specific solutions and precautions can be adopted in
the design to mitigate these fabrication challenges. In response
to the setup-time violation issue, one viable approach is to
modify the design to operate at lower clock frequencies until it
meets the set-time condition of the critical path. Alternatively,
it is possible to explore the use of better clock sources with
reduced jitter and clock skew. A crucial precautionary mea-
sure for hold-time violations involves rigorous hold condition
checks during the synthesis and post-layout simulation phases.
Finally, to address the challenge of insufficient supply voltage
distribution, the design must ensure an adequate number of
supply pads and also use the appropriate size of routing
wires to deliver the necessary supply to standard cells. The
mentioned modifications are alternatives to improve the noise
margin and reliability of the design.

V. CONCLUSIONS

This article explored an ultra-low latency design and imple-
mentation of the PRIDe detector for centralized data-fusion
cooperative spectrum sensing in FPGA and ASIC.

New approaches were proposed as alternatives to conven-
tional architectures for the computation of the PRIDe’s test
statistic, namely: the absolute value of complex quantities, the
complex multiplier-accumulator, and the spectrum occupancy
decision. The multiplier-accumulator uses only two clock
cycles, and the absolute value operation, which is critical to the
PRIDe test statistic computational cost, applies the CORDIC
algorithm as a much more efficient option in terms of resource
usage and latency. The spectrum occupancy decision has been
simplified by shifting the denominator of the test statistic to the

decision threshold, avoiding an extra division operation. RTL
and Monte Carlo simulations unveiled that the resulting PRIDe
sensor yields no performance loss with respect to floating-
point simulation results.

The PRIDe sensor, in its most efficient version (PRIDe v1),
consumes a silicon area of 0.094 mm2, a power consumption
of 15.72 mW, and a sensing time of 620 ns. Thus, the proposed
sensor presents an ATP of 0.00006 𝑚𝑚2·𝑚𝑠 and a PDP of
0.0097 𝑚𝑊 ·𝑚𝑠, which the respective scaled values are 7.66×
and 1.42× smaller than its best competitor, with ATP of
0.00046𝑚𝑚2·𝑚𝑠 and PDP of 0.0138𝑚𝑊 ·𝑚𝑠 reported in [20].
These results have shown that the PRIDe spectrum sensor is

more resource- and time-efficient for hardware implementa-
tions than concurrent state-of-the-art test statistics reported in
the literature.

The PRIDe detector is suitable for ordinary spectrum sens-
ing applications, but is especially suitable for those applica-
tions that demand fast sensing, for example to scan a wide
frequency band in a short time, to fasten the sliding-window
approach for detecting pulse radar signals, or simply to reduce
the overall sensing time, aiming at increasing the cognitive
secondary network data throughput.
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