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Influence of the Rice Factor on the Performance of
Blind Detectors for Cooperative Spectrum Sensing

Dayan A. Guimardes and Luiz G. B. Guedes

Abstract— Most spectrum sensing research relies on simple
sensing channel models like pure Gaussian or Gaussian with
fading, normally Rice or Rayleigh. Often, a fixed Rice factor is
assumed across the coverage area, disregarding variable line-of-
sight conditions between primary and secondary users. However,
the Rice factor is an environment-dependent random parameter,
and this study examines its impact on the performance of state-
of-the-art blind detectors for cooperative spectrum sensing. It
also takes into account other realistic scenarios like distance-
dependent signal powers, nonuniform receiver noise, and consis-
tent signal-to-noise ratio calibration. Findings reveal significant
effects on certain detectors, with some showing resilience to Rice
factor fluctuations.

Keywords— Cognitive radio, dynamic spectrum access, Rice
factor, spectrum sensing.

I. INTRODUCTION

The proliferation of wireless communication systems in
recent years has led to the radio frequency (RF) spectrum
becoming a scarce resource, attributed to the adoption of fixed
spectrum allocation policies, wherein a network of primary
users (PUs) holds exclusive rights to use a certain RF band.
However, studies indicate that many allocated RF bands re-
main underutilized in certain regions and periods, leading to
inefficient spectrum usage [1], [2].

The scenario of RF spectrum scarcity is expected to worsen,
for instance due to the expansion of both Internet of things
(IoT) and 5G networks and the realization of the 6G net-
works, which will require larger bandwidths and intensify the
contention for the already limited spectrum [1]-[3].

A potential solution to the problem of inefficient spectrum
usage is the adoption of cognitive radio (CR) networks, where
vacant bands resulting from the variable occupancy of the
primary network spectrum in time and space can be identified
[4]. In this case, a dynamic spectrum access (DSA) policy can
be adopted, wherein cognitive terminals of secondary users
(SUs) opportunistically use unoccupied frequency bands. The
so-called spectrum sensing, with or without the assistance of
a database of RF spectrum occupancy, is the technique used
by the secondary network to detect spectral gaps, also known
as whitespaces or spectrum holes [2], [3], [S]-[7].
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While individual spectrum sensing by each SU may be
compromised by multi-path fading, signal shadowing, and
hidden terminals, cooperative spectrum sensing (CSS) involves
multiple SUs to improve the accuracy of decisions regarding
the occupancy state of the sensed band [7].

In this article, a centralized CSS with data fusion is con-
sidered. The samples of the signal received by the SUs are
transmitted to the fusion center (FC) for the calculation of
a test statistic and its comparison with a decision threshold,
aiming to reach a global decision regarding the occupancy
state of the monitored band.

Among the various detectors for spectrum sensing proposed
in the literature, this work considers state-of-the-art blind
detectors, which do not make use of any information about the
detected signal or the noise variance, namely: the Gerschgorin
radii and centers ratio (GRCR) detector [8], the Gini index
detector (GID) [9], the Pietra-Ricci index detector (PRIDe)
[10], the Hadamard ratio (HR) detector [11], the volume-based
detector number 1 (VDI1) [12], the generalized likelihood
ratio test (GLRT) based on eigenvalues [13], the maximum-
minimum eigenvalue detector (MMED) [13], the arithmetic to
geometric mean (AGM) detector [14], and a detector based on
the locally most powerful invariant test (LMPIT) [15].

The computational burden required to form the test statistics
of such detectors varies depending on the necessary opera-
tions: the HR and VDI primarily depend on calculating the
determinant of the received signal sample covariance matrix
(SCM). The detectors AGM, MMED, and GLRT make use
of estimates of the eigenvalues of this matrix. On the other
hand, the GID, GRCR, PRIDe and LMPIT operate directly
on the elements of the SCM, being particularly noteworthy
for having lower computational complexity and being more
robust against variations in signal power and noise than the
other above-mentioned detectors. Among these, the PRIDe has
the lowest complexity, closely followed by the GID, GRCR
and LMPIT [8]-[10], [15].

As far as the model for the PU-to-SUs channel is concerned,
the majority of research on spectrum sensing adopt the simple
additive white Gaussian noise (AWGN) model, or the AWGN
plus signal fading models, especially the Rice, or its particular
case of Rayleigh fading. The Rice factor (or Rice K-factor)
is the ratio between the signal strength received via a dom-
inant propagation path, for example in a line-of-sight (LoS)
condition or specular reflection, and the power contained in
the signals from the other paths. A larger Rice factor means
less variability in the instantaneous received signal strength. A
null Rice factor means the absence of a dominant path, which
corresponds to a Rayleigh fading. In practice, a Rice factor
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greater than 10 corresponds to a channel approximately free
of fading [7].

When the Rice fading is adopted, it is also common that the
Rice factor is kept fixed and the same for the entire coverage
area. However, it is not reasonable to adopt such assumption,
since the line-of-sight conditions between the PU transmitter
and the SUs differ from place to place. This is evidenced by the
results presented in [16], where the Rice factor is shown to be
an environment-dependent random variable. Aligned with this
fact, this paper assesses the influence of the Rice factor on the
performance of the previously-described state-of-the-art detec-
tors. Complementing this contribution, the paper also adopts
other realistic assumptions about the system model, such as
distance-dependent received signal powers, nonuniform noise
levels among the SUs’ receivers, and a consistent process for
calibrating the signal-to-noise ratio (SNR).

The remainder of this article is organized as follows. Sec-
tion II describes the models for signals, noise and channel.
The test statistics of the detectors listed in this section are
presented in Section III. Section IV is devoted to numerical
results and discussions, with Section V concluding the work.

II. SIGNAL, NOISE AND CHANNEL MODELS

The model for centralized CSS with data fusion adopted
herein is based on [9], [10], but with important improvements
in the computation of the SNR and in the way of determining
the powers of the received signals at the SUs, likewise in [17]
and [18]. Spectrum sensing is performed by m cooperating
SUs, each collecting n samples of the primary signal during a
sensing interval. The collected samples are transmitted to the
FC through an error-free control channel, forming the sample
matrix Y € C™*", which is given by

Y =hx'+V, (D)

where the vector x € C™*! contains the samples of the pri-
mary signal, which are modeled as complex Gaussian random
variables with zero mean, which relates to modeling modulated
signal envelope fluctuations. The channel vector h € C™*! is
formed by elements h; representing the channel gains between
the PU transmitter and the ¢th SU, for ¢ = 1,...,m. The
variation of these gains over time models the fading effect
produced in the signal due to multi-path propagation and
the mobility of the SUs. It is defined that h = Ga, where
G is a gain matrix to be defined later, and a € Ccmx1
is a vector formed by complex Gaussian random variables
a; ~ CN[\V/K/(2K +2),1/(K + 1)), with K = 10K*/10
being the Rice factor of the channels between PU and SUs,
and K® = 10log;,(K) in dB.

Based on measurements reported in [16], it was concluded
that K®) is a random variable that can be well characterized
by a Gaussian distribution with mean px and standard devia-
tion o g, both in dB, i.e., K® ~ N[ux, ox]. Typical values
of ux and o are determined according to the propagation
characteristics imposed by the environment [16]. For example,
in urban areas, typically px = 1.88 dB and o = 4.13 dB.
In rural or open areas, ux = 2.63 dB and ox = 3.82 dB.
Suburban regions are commonly associated with px = 2.41
dB and o = 3.84 dB [16].

The present modeling also allows for the received signal
power levels at the SUs to be unequal and time-varying due to
the different distances between the PU transmitter and the SUs,
as well as due to the variation of these distances in different
sensing events caused by the movement of the SUs. In this
case, the previously mentioned gain matrix G € R™*™ is
given by G = diag(\/p/Px), where p = [Pr1, ... Pxm]T is
the vector of PU signal powers received by the m SUs, with
[-]T denoting transposition. Py is the PU’s transmission power
in watts, and diag(-) returns a diagonal matrix whose diagonal
is formed by the elements of the vector in the argument.

The log-distance path loss prediction model [19] is utilized
here to calculate the received signal power by the ith SU, in
watts, as given by

Pri =P ()", @

where dj is a reference distance in the far-field region of the
transmitting antenna, d; is the distance between the PU and
the 7th SU, and 7 is the path loss exponent. All distances are
given in meters.

Differences and variations in noise powers at the SUs’
receivers may occur due to temperature variations, differences
between the front-ends, and undesired signals entering the
receivers and acting as noise [17]. To model such condition,
the elements of the ith row of the matrix V € C™*" given in
(1) are zero-mean Gaussian random variables with variance

o7 = (14 pu;)o?, 3)

where wu; is a realization of a uniform random variable U; in
the interval [—1, 1], 52 is the average noise power at the SUs,
and 0 < p < 1 is the fraction of variation of the noise power
o? around &2

The instantaneous signal-to-noise ratio at the SUs, , is a
random variable because it depends on 01-2 and d;, which are
random. In light of (2) and (3), a realization of ~ is given by

1 m Py (do/d;)"
S “w 005 4
TS Zi:l (1+ pu;)a? @

Thus, the average SNR of the SUs is given by SNR = E[~],
where E[v] is the expected value of . To realize this SNR
model, it is firstly calculated the expected value of v/, defined
for 52 = 1 and {d,}. It can be shown [17] that it is given by

14+p 1 m
EfY]=ln|—=] — Pix; 5
[v] n(l_p>2pm§i_1 i (5)
for 0 < p < 1, and for p = 0 it is given by
1 m
/77 .
Efy]=—>" P (©)

As SNR = E[y] = E[y']/52, the calibrated noise power
becomes ,
52 E[y]

~ SNR’

This value of 52 is then plugged into (3), along with a

realization u; of the random variable U;, to determine 022,

the variance of the noise samples in the i¢th row of V. New

values of {o?} are calculated for each sensing event, providing
temporal variability to the noise levels.

)
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The matrix Y defined in (1) is formed at the FC from
the mn samples sent by the SUs. Under hypothesis Hi,
the primary signal is present in the sensed band, i.e., Y =
hxT + V. Under hypothesis H, the primary signal is absent,
leading to Y = V.

III. DETECTORS’ TEST STATISTICS
All detectors presented in this section make use of the
received signal sample covariance matrix (SCM) of order
m X m, which is computed at the FC and is given by
R=1YY", (8)

T n

where T denotes conjugate transposition.
The test statistic of the GRCR detector [8] is given by

Do Do i T
Torer = 1272 Lizi T )

i=1Tii

where r;; is the element on the ith row and jth column of R.
The GID [9], [17] and PRIDe [10], [20] test statistics are
respectively computed according to

2
Z?il |7:]

2 2
Dty 2y Iri =

m2
2 i |7l
m2 )
dimy [T — 7
where 7;, for i = 1,2,...,m?, is the ith element of the
vector r formed by stacking all columns of R, and ¥ =

mz
(1/m?) 320, s
The HR test statistic [11] is given by

det(R)

Tom = ) (10)

Y

TPRlDe =

Thr = mm——> (12)
[lizi 7
where det(R) is the determinant of R.
The VD1 detector [12] has a test statistic given by
Typi = log [det(E™'R)] , (13)

where E = diag(e), with diag(e) being the diagonal ma-
trix whose main diagonal corresponds to the vector e =

[e1, €2, ..., em], where e; = |R(i,:)||2 and || - || denotes the
Euclidean norm.
The test statistics of the eigenvalue-based detectors

GLRT [13], MMED [13] and AGM [14] are respectively
computed according to

A
TGLrT = 12:77111/\7 (14)
m Lai=1 "\
A
TvMED = )\717 (15)
LS
Tuou — 21 (16)

1/m’
(I, 2
where {\; > A2 > --- > \,,,} are the eigenvalues of R.
In the case of the LMPIT detector [15], the test statistic is

m m 9
Timer = Zi:l Zj=1|cij| ; amn
where c;; is the element on the ¢th row and jth column of the
matrix C = D™Y2RD~1/2, for i,j = 1,2,...,m, where D
is the diagonal matrix whose diagonal elements are d;; = 7.
The decision regarding the occupancy state of the sensed
band is made by comparing any of the test statistics above
with a predefined decision threshold 6, according to the desired
false alarm rate. In practice, this threshold is determined in the
system design phase. If 7" > 6, the decision is made in favor
of H1. Otherwise, H is chosen.

IV. NUMERICAL RESULTS

The cooperative spectrum sensing topology adopted in this
paper is exemplified in Fig. 1. It comprises a secondary
network with m SUs (m = 10 in this figure) that are uniformly
distributed in a circular coverage area with radius r meters.
A normalized » = 1 has been used in Fig. 1, with the PU
transmitter located at (x,y) = (1,1) meters. The FC, which
can be the base station of the secondary network, is located
at the center of the coverage area. In each sensing event,
new random positions of the SUs are determined, aiming at
simulating mobile SUs.

5
Secondary natwork
coverage perimeler

1F \ aPU

Fig. 1: CSS topology for m = 10 SUs, normalized coverage radius r = 1
m, FC at (z,y) = (0,0), and PU transmitter at (z,y) = (1, 1).

The range of values of the Rice K-factor considered herein
is from —10 dB to 10 dB, justified by the fact that the majority
of measured values given in [16] are within this range for
urban, suburban and rural areas. Observing the values of px
and o given in Section II, it can be concluded that they have
a negative correlation, which can be justified by the fact that
lower values of px correspond to areas with high density and
a variety of obstacles between the PU transmitter and the SUs,
thus yielding a higher ox. On the other hand, higher values
of pg correspond to areas with small influence of obstacles,
leading to lower values of ox.

Fig. 2 shows a linear regression result applied to the mea-
surements reported in [16], from where the value of ok for a
given px was retrieved and used in the computer simulations.
Specifically, for px = [—10,—7.5,—5,—-2.5,0,2.5,5, 7.5, 10]
dB, which were the values adopted hereafter, it follows that
ox = [9.32,8.23,7.13,6.04,4.94,3.85,2.75,1.66, 0.56] dB.
Unless otherwise specified, the remaining parameters are:
number of SUs m = 6, SNR = —12 dB, path loss exponent



XLII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2024, OCTOBER 01-04, 2024, BELEM, PA

n = 2, coverage radius r = 1 km, reference distance dy = 1
m, PU transmit power Px = 5 W, PU transmitter located
at (1,1) km, number of samples n = 250, fraction of noise
variation p = 0.5, constant false alarm rate P, = 0.1.

. data paints
lingar regrassion |

K-factor standard deviation, dB
e

1 18 2 22242628

10 5 0 5 0
K-factor mean, dB

Fig. 2: Linear regression applied to the pairs of Rice K-factor means and
corresponding standard deviations reported in [16].

Each figure presented hereafter gives the probability of
detection, Py, as a function of the mean Rice factor, ug,
for two values of other important system parameters. Each
point on a curve has been generated from 20000 Monte Carlo
simulation runs, which corresponds to the same amount of
spectrum sensing events. The MATLAB code used to obtain
the results is available at [21].

Fig. 3 shows Py versus px for two values of the path loss
exponent, n = 2 and n = 4. It can be seen that the detectors
GID and PRIDe are quite sensitive to the Rice factor, with
the former being more sensitive than the latter. It can be seen
that both are by far more suitable to channels with higher
Rice factors than the other detectors. The sensitivities of the
detectors GRCR, HR, VD1 and LMPIT to the variation of the
Rice factor are quite small, and the detectors GLRT, MMED
and AGM attained poor performances for any value of pg,
which is credited to their high sensitivity to the variation of
the noise levels, in this case represented by p = 0.5. Most of
the detectors had their performances reduced from n = 2 to
n = 4, which is caused by larger discrepancies in the SNR
at the SUs when 7 is larger (recall that the SNR is fixed,
meaning that larger values of 7 yield lower values of the
noise powers, on average, to compensate for the lower average
received signal powers). The performance penalty caused to
the detectors GLRT, MMED and AGM is barely noticed due to
the fact that they are already very close to the worst situation,
ie., Py~ P, =0.1.

Fig. 4 shows Py versus px for two values of the noise level
variation fraction, p = 0 and p = 0.9. In terms of the influence
of the Rice factor, it can be seen a situation similar to the one
observed in Fig. 3. Once again, the GID and PRIDe unveil to
be more suitable to higher Rice factors. A performance penalty
can be observed in all detectors due to the increase of p from
0 to 0.9. The penalty is smaller in the case of the GRCR, GID,
PRIDe, HR, VD1 and LMPIT, whereas a drastic performance
loss is observed in the case of the GLRT, MMED and AGM.
In other terms, it can be said that the detectors GLRT, MMED

d
d
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—0— PRIDa
—A—HR
—— D1
——GLRT
—{— MMED
e AGM
—P—LMPIT

Probability of detection, P
Probability of detection, P

Rice factor mean, Py indB Rice factor mean, e o in dB

@n=2 byn=4

Fig. 3: Probability of detection versus mean Rice factor, for two different
values of the path loss exponent.

and AGM are significantly less robust to variations in the noise
levels the the other ones.

d
d
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—{— MMED
e AGM
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Probability of detection, P
Probability of detection, P
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=10 -5 (v} S 10

Rice factor mean, Py indB Rice factor mean, e o in dB
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Fig. 4: Probability of detection versus mean Rice factor, for two different
values of the fraction of noise level variation around the mean.

Fig. 5 shows Py versus ux for two different positions of the
PU transmitter, namely (0,0) and (10, 10) km. Once again, it
can be seen a situation similar to the one observed in Fig. 3
and Fig. 4, in terms of the influence of the Rice factor, with the
GID and PRIDe unveiling to be more suitable to higher values
of the Rice factor. Except for the detectors GLRT, MMED and
AGM, whose performances are close to the worst case scenario
(Py = Py = 0.1), it can be seen that better performances are
achieved when the PU transmitted is located farther apart from
the SUs. Again, it must be emphasized that the average SNR is
the same for both Fig. 5a and Fig. 5b. Hence, larger distances
of the PU transmitter yield smaller differences in the received
signal levels at the SUs, which renders higher cooperation
gains to the spectrum sensing process.

Finally, the influences of m, n and SNR on Py have not
been added to this paper due to length restrictions but also
because it is well known that an increase in any of these
parameters produce performance improvement for all detec-
tors. In the case of m, it is also known that the performance
improvement follows a diminishing-return law; for instance,
the performance improvement when m changes from 4 to 8
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Fig. 5: Probability of detection versus mean Rice factor, for two different
locations of the PU transmitter.

is larger than when it goes from 8 to 16.

V. CONCLUSIONS

This paper examined the impact of the Rice factor on the
performance of state-of-the-art blind detectors for cooperative
spectrum sensing. Other realistic scenarios have been also
taken into account, like distance-dependent received signal
powers, nonuniform receiver noise, and a consistent signal-
to-noise ratio calibration procedure. The findings reveal sig-
nificant effects of the Rice factor on certain detectors, with
some of them showing resilience to Rice factor fluctuations.
Specifically, it has been shown that the detectors GID and
PRIDe are the ones that are more sensitive to variations in
the Rice factor, with the former being more sensitive than
the latter. Nonetheless, these detectors have unveiled excellent
performance in situations of high Rice factor. The detectors
GRCR, HR, VDI and LMPIT have attained relatively low
sensitivity to variations in the Rice factor, outperforming
the GID and PRIDe at low Rice factor regimes, but being
outperformed by the GID and PRIDe when the Rice factor
is above 0 dB, approximately. Although the detectors GLRT,
MMED and AGM demonstrated to have robustness against
Rice factor variations, useful performances were achieved only
in the unrealistic situation of uniform noise levels at the
receivers. This is because these detectors are known to exhibit
low robustness against variations in these noise levels.

Last, but not least, it must be emphasized that the choice
of the detector should be guided not only by its performance,
but also by its implementation complexity. In this case, de-
serve attention the detectors GRCR, GID, PRIDe and LMPIT,
whose test statistics are formed directly from the elements
of the received signal sample covariance matrix. Among
these detectors, the PRIDe is highlighted due to outstanding
performance at higher Rice factors, and good performance at
lower values of this parameter. Recently, a modified version of
the PRIDe detector, named mPRIDe [20], has been devised for
FPGA (field programmable gate array) and ASIC (application-
specific integrated circuit) designs, attaining performance met-

rics identical to the PRIDe, but having reduced computational
complexity, latency and chip area with respect to state-of-the-

art solutions reported to date.
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