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Influence of Laplacian Noise on the Performance of
Norm-Based Spectrum Sensors
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Abstract— Norm-based spectrum sensors may improve the
performance of the energy detector (ED) and absolute value
cumulating (AVC) detector in non-Gaussian environments, al-
leviating performance degradation due to impulsive noise, which
is modeled by heavy-tailed probability density functions. This
study assesses the performance of Norm-based detectors for
cooperative spectrum sensing under Laplacian noise, estimating
the probability of detection while holding a fixed probability
of false alarm across system parameters variations. Numerical
results confirm that robustness against impulsive noise varies
with the chosen norm.

Keywords— Cognitive radio, dynamic spectrum access, Lapla-
cian noise, spectrum sensing.

I. INTRODUCTION

One of the most evident concerns in the development of en-
abling technologies for future mobile communication networks
relates to the scarcity of resources, particularly, regarding to
the appropriate use of frequency spectrum [1]. The massive
number of connected devices along with the multitude of avail-
able services require careful spectrum management to optimize
its utilization, promoting stable and reliable connectivity in an
increasingly challenging communication scenario [2]. How-
ever, with the current fixed-band allocation policy in place,
two limitations are experienced [3]: the spectrum scarcity,
associated with the absence or shortage of new available
bands; and spectrum underutilization, linked to the fact that
the user holding the right to use the band does not use it
continuously.

An enabling technology that arises as an alternative to this
reality is dynamic spectrum access (DSA) [2], which can be
implemented through secondary networks of cognitive radios
performing spectrum sensing and submitted to a dynamic-band
allocation policy. A secondary user (SU), unlike the primary
user (PU), is not the holder of the right to use a specific
spectrum band, but, by performing spectrum sensing, becomes
capable of monitoring the frequency spectrum and observing
occasions of shared use, whether overlapped or not with the
use of the PU [4]. It is worth noting that such activity aims
not to compromise the transmissions made by the PUs.

Spectrum sensing is a binary hypothesis test in which one
seeks to identify whether the signal detected by the SU was
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generated under hypothesis H0 or under hypothesis H1 [4].
These hypotheses refer, respectively, to the absence and to
the presence of the primary signal in the band of interest.
This process can be performed by a single SU or by a group
of them, known as cooperative spectrum sensing (CSS). Due
to the generation of more reliable decisions regarding the
occupancy state of the monitored band [5], CSS is usually
preferred over the individual mode.

In this work, centralized CSS with data fusion is adopted,
where the received signal samples are collected, processed
and sent, by each SU, to a fusion center (FC) responsible
for treating them in order to form a test statistic T , which
is compared with a decision threshold λ. If T > λ, H1

is accepted; otherwise, H0 is accepted. The performance
evaluation is conducted through two main metrics: probability
of detection, Pd, indicating the probability of detecting the
presence of the primary signal in the sensed band when it is
actually present; probability of false alarm, Pfa, which shows
the probability of detecting the presence of the primary signal
when, in fact, it is not.

Multipath propagation, various types of interference, and
noise can degrade spectrum sensing performance [4]. Regard-
ing noise, not only its omnipresent component in communica-
tion systems, the additive white Gaussian noise (AWGN), but
also the various manifestations of impulsive noise, can degrade
system performance [6], [7].

In the literature of spectrum sensing, there is a concern in
studying suitable test statistics for environments contaminated
by impulsive noise in order to establish a good balance be-
tween complexity and performance. The Norm-based detector,
also known as the generalized energy detector (GED) [8],
improved ED [9] or p-norm detector [10], [11], arises from the
fact that an arbitrary exponent p ∈ R+, depending on its value,
encompasses all spectrum sensors found in the following
literature review. For instance, this detector generalizes the
ED, where p = 2, and, potentially, enhances its performance
in non-Gaussian environments.

A. Related work

An adaptation of the ED test statistic, presented in [4], has
demonstrated its optimal performance considering a determin-
istic PU signal under AWGN. Despite being straightforward
to implement, ED is constrained by the requirement to know
the noise variance.

The absolute value cumulating (AVC) detector has been
proposed in [12], where it is claimed as the most suitable
technique for spectrum sensing under impulsive noise. A
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proper justification is demonstrated in [7], considering Lapla-
cian impulsive noise with fixed noise power and absence of
fading. In [9], it has been derived an improved ED applying
an arbitrary exponent 0 < p < 2 in the absolute value of each
sample retrieved from the received signal. The authors have
verified that the optimal p value is associated to the amount of
collected samples by each SU, the targeted Pfa and the signal-
to-noise ratio (SNR). Through variations of these parameters,
in Laplacian noise environments, the optimal value for p was
found being, indeed, upper bounded by 1, which is the AVC
particularization.

In [10], it has been proposed, for one SU with multiple
antennas or multiple SUs with only one antenna, robust Lp-
norm detectors, which do not require any a priori information
related to the PU signal, performing well in a variety of non-
Gaussian noise scenarios in the low SNR regime. In this
detector, p ∈ R+. Its results overcome ED performances
under both short-tailed and heavy-tailed noises. According to
the authors, due to the relevance in the context of cognitive
radio, the following three non-Gaussian noise models have
been chosen: Gaussian mixture noise, generalized Gaussian
noise and co-channel interference.

A novel detector based on fractional lower order moment
(FLOM) for CSS under αS impulsive noise is addressed
in [13], for 0 < p < 1. The lack of closed-form expressions
for the probability density function (PDF) of an αS random
variable has prevented the derivation of closed-form expres-
sions. The study exhibited in [14] aimed to accomplish the
exact performance analysis of FLOM-based detectors, deriving
closed-form expressions for an specific SαS distribution.

The work reported in [15] adapts a class of non-cooperative
spectrum sensing with multiple antennas named combining
order statistics (COS). This scheme exploits nonlinear com-
bining strategies accompanied by the enhanced ED, which
contains the flexibility of using p ∈ R+, aiming to mitigate
the effects of impulsive noise and various fading types. The
SαS distribution has been considered for modeling impulsive
noise.

B. Contributions and paper organization

There are two main contributions of this work:
• Performance assessment of Norm-based detectors under

Laplacian noise for several values of p;
• Analysis of the influence of implementing the COS

scheme in combination with the ED, AVC, Lp-Norm
and FLOM Norm-based detectors in Laplacian noise
environments.

The remainder of this paper is organized as follows:
Sections II, III and IV describe, respectively, the Laplacian
noise characterization, the signals and system models and the
Norm-based test statistics employed in the spectrum sensing
performance evaluation addressed in Section V. Section VI
concludes the work.

II. LAPLACIAN NOISE MODEL

Noise is considered impulsive when it sporadically exhibits
significantly high amplitude levels and short duration in time.

Due to its higher probability of occurrence of such levels,
unlike AWGN, its samples tend to follow probability distribu-
tions that unveil heavy tails.

Several models characterize the statistical behavior of noise
with impulsive characteristics [16]. What can differentiate one
from another is, for example, the presence or absence of
correlation between samples, the frequency with which outliers
occur, and complexity. In this work, we employ the Laplacian
impulsive noise model [17, p. 16], widely used for manifesting
heavy tails and thus modeling scenarios with the presence
of AWGN added to the aforementioned peaks. The PDF of
Laplacian noise samples is given by

fL(l) =
1

2b
exp

(
−|l|

b

)
, (1)

in which b > 0 refers to the scale factor. Since the mean value
is fixed, the higher the value of b, the higher the elevation
of the tail of the PDF. Figure 1 shows a comparison among
Laplace PDFs for different values of b and the Gaussian PDF
of reference.

Fig. 1: PDFs of Gaussian and Laplace distributions for zero mean, different
values of b and σ2 = 2 for all functions.

III. SIGNALS AND SYSTEM MODEL

The model chosen herein considers centralized CSS with
data fusion where m cooperating SUs perform spectrum
sensing, each one collecting n samples from the PU signal
during a sensing interval. Each SU has these samples available
to send directly to the FC via an error-free control channel.
The matrix Y ∈ Cm×n, formed in the FC, is given by

Y = hxT + (1− I)V + IL, (2)

where I specifies the presence of Laplacian noise in (2), if
I = 1, or its absence, if I = 0. The vector x ∈ Cn×1

contains the samples of the PU signal, which are modeled
as complex Gaussian random variables with zero mean and
variance determined by the average SNR across the SUs. This
setting is made to characterize fluctuations in the envelope of
modulated and filtered signals. The channel vector h ∈ Cm×1

is constructed by elements hi characterizing the channel gains
between the primary transmitter and the i-th SU, for i =
1, . . . ,m. Adjusting the values of these elements over time
allows modeling the fading effects imposed by the mobility
of the SUs and multipath propagation. It is established that
h = Ga, where a ∈ Cm×1 is a vector composed by complex
Gaussian random variables ai ∼ CN [

√
κ/(2κ+ 2), 1/(κ +

1)], with κdB = 10 log10(κ), in dB, being the Rice factor of the
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channels between primary and secondary users. It is modeled
as a Gaussian random variable κdB ∼ N [µκ, σκ], dependent
on the environment, considering both µκ and σκ in dB [18].

The present modeling accounts for unequal and time-
varying received signal power levels at the SUs, due to distinct
distances between the PU transmitter and the SUs, and the
movement of the SUs across different sensing events. In this
case, the matrix G ∈ Rm×m is given by G = diag(

√
p/Ptx),

where p = [Prx1, . . . , Prxm]T is the vector containing received
signal powers across the m SUs, with [·]T denoting trans-
position. Ptx is the PU’s transmission power in watts, and
diag(·) yields a diagonal matrix whose diagonal is built by
the elements of the vector in its argument.

The log-distance path loss prediction method [19] is used
here to determine the received signal power by the i-th SU,
in watts. The area-mean received power, at a given distance
di from the PU transmitter, is given by

Prxi = Ptx

(
d0

di

)η

, (3)

where d0 is a reference distance in the far-field region of
the PU transmit antenna and η is the path loss exponent. All
distances are given in meters.

To characterize variations in noise powers at the SUs’
receivers, the elements of the i-th row of the matrix V ∈
Cm×n, from (2), are zero-mean Gaussian random variables
with variance

σ2
i = (1 + ρui)σ̄

2, (4)

where ui is a realization of a uniform random variable Ui in
the interval [−1, 1], σ̄2 is the average noise power at the SUs,
and 0 ≤ ρ < 1 is the fraction of variation of the noise power
σ2
i around σ̄2. With Laplacian noise, the elements of the i-th

row of L ∈ Cm×n are independent and identically distributed
and the Laplace distribution models the noise samples. They
have zero mean and variance as given by (4).

Considering the randomness of σ2
i and di, the instantaneous

SNR at the SUs, γ, is also a random variable. Thus,

γ =
1

m

∑m

i=1

Ptx (d0/di)
η

(1 + ρui)σ̄2
. (5)

The average SNR of the SUs is given by SNR = E[γ],
where E[γ] is the expected value of γ. The final formula for
the average SNR across the SUs, established in [20], whose
details were omitted here for concision, is given by

SNR =
ln
(

1+ρ
1−ρ

)
2ρmσ̄2

m∑
i=1

Prxi. (6)

Notably, the noise model switches between Gaussian and
Laplacian based on I in (2). Thus, the noise statistics in (5)
and (6) correspond to either AWGN or Laplacian noise.

IV. NORM-BASED TEST STATISTICS

In a centralized CSS with data fusion, a Norm-based spec-
trum sensor has its test statistic described by

T (p) =

m∑
i=1

1

σi
p

n∑
j=1

|yij |p, (7)

where σi is the Gaussian or Laplacian noise standard deviation
at the i-th SU and yij denotes the j-th sample collected by the
i-th SU, composing the matrix Y defined in (2). The variable
p > 0 denotes the norm’s order. Table I displays Norm-
based spectrum sensors obtained from the literature review,
their possible exponent p ranges, with a specific p selected for
evaluation in this study.

TABLE I: Correspondence between the value of exponent p and the Norm-
based spectrum sensors.

Range of p Norm-Based Spectrum Sensor p selected
1 AVC 1
2 ED 2
R+ Lp-Norm 4
<1 FLOM 0.5

It should be noted that works dealing with Lp-Norm [10]
and FLOM [13] detectors, while employing the concept of
norm on received signal samples, do not precisely specify
the exponents of σi in (7). Here, we extend the configuration
followed by [4] for the ED and [7] for the AVC, maintaining
the same value of p for both |yij | and σi.

The computational burden of Norm-based detectors, setting
p as an integer value, primarily stems from nm multiplications,
resulting in a complexity of O(nm). Due to the fact that
(7) can be rewritten as T (p) =

∑m
i=1

1
σi

p

∑n
j=1 |yij |p =∑m

i=1
1

σi
p

∑n
j=1 exp(plog(|yij |)), when p is not an integer

number, the complexity of the test statistic involves evaluating
logarithms at a specific precision level q, and M(q) represents
the complexity of multiplying numbers with q digits [9], result-
ing in O(nmM(k)log(|yij |)). Additionally, the method used
to estimate the noise variance augments the computational
complexity. These detectors are semi-blind, as they do not
require information about the PU signal but utilize noise level
information.

The test statistic of the COS Norm-based scheme [15]
requires each SU to initially compute a local test statistic using
a Norm-based detection process as follows

ti =
1

σp
i

n∑
j=1

|yij |p, (8)

where ti is the output of the local test statistic reached by the
i-th SU. Having the vector t = [t1 t2 . . . tm] available, it is
sufficient to reorder it in ascending order, that is, t(1) < t(2) <
· · · < t(m), in which t(k) is the k-th order statistic in t. The
final expression for the COS Norm-based test statistic is

TCOS =

K∑
k=1

t(k), (9)

where K = 1, 2, . . . ,m. The notation COS Norm-based
(1, 2, . . . ,K) will be used to denote COS scheme with the
Norm-based detection and the test statistic in (9). For example,
if we consider m = 4, COS Norm-based (1,4) corresponds
to the selection and summation of t(1) and t(4) to form the
test statistic in (9), which will be compared to the decision
threshold. In other words, the smallest and largest values
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are selected for combination. As used in the following per-
formance assessment, COS Norm-based (4) builds the test
statistic only by the presence of t(4), which associates to
the selection of the largest value. Figure 2 depicts the block
diagram of the COS Norm-based detector.

yT
1

Local
Test

Statistic

t1

Ordering
and

Selection

t(1)

t(K)

Σ
T

λ

yT
m

Local
Test

Statistic

tm

Fig. 2: Block diagram of the COS Norm-based scheme.

V. NUMERICAL RESULTS

In this section, we present computer simulation results of
the centralized CSS with data fusion both in the absence and
presence of impulsive noise in terms of Pd values achieved
in accordance with the variation of some system parameters,
assuming Pfa = 0.1 [21], for ED, AVC, FLOM and Lp-Norm
detectors, inserted or not in a COS scheme. Each point on
a curve has been generated from 10000 Monte Carlo events
using the Matlab R2019a. The MATLAB code used to obtain
the results is available at [22].

Using the pure AWGN scenario as reference, the value of
the average SNR has been adapted, in part of the cases, so
that the respective best detector yields Pd ≈ 0.9 at the mid-
value of the system parameter being analyzed. Thus, variations
in Pd can be clearly perceived. When fixed, for a better
adequacy of situations more likely to occur in practice, the
system configuration parameters are: m = 4 SUs, which
corresponds to a small number of cooperative cognitive radios,
leading to an efficient utilization of control channel resources.
Additionally, in [7], for instance, results show that an increase
in the number of SUs occurs in a diminishing return fashion
of performance improvement; n = 300 samples to achieve the
targeted performance metrics; SNR = −10 dB, considering a
low SNR regime operation system; fraction of noise variations,
ρ = 0.5, which was arbitrarily chosen to model variations in
thermal noise power; path-loss exponent, η = 2.5, chosen to fit
a typical urban scenario; normalized coverage radius, r = 1 m;
reference distance for path-loss calculation, d0 = 0.001r;
Ptx = 5 W, adapting to practical requirements of power for
real PU transmitters; and random Rice factor, with µκ =
1.88 dB and σκ = 4.13 dB, considering urban area [18]. The
parameters related to the Laplacian noise have been calculated
and generated as described in Section II. The values of p for
each of the evaluated detectors can be retrieved from Table I.

Fig. 3 shows Pd versus the exponent p of Norm-based
detectors in the absence and presence of impulsive noise.
A reduction, to varying extents, is observed in the values
of Pd as the value of the exponent p increases in both
scenarios. For values of p less than 2, there is a certain stability
and optimality in performance for the former scenario, as

expected, since p = 2 corresponds to the optimal detector
in the presence of pure AWGN. The curve starts to gradually
decline from this value. The latter scenario presents a steeper
decrease for lower values of p, returning a stable and quite
significant sensitivity for p > 2. It is observed that, in the
presence of Laplacian impulsive noise, higher p values tend to
perform poorly. In contrast, lower p values, despite significant
performance variation, outperform higher p values. The reason,
according to [13], is that the FLOM properties present in lower
values of p can mitigate heavy-tailed behavior of impulsive
noise by adjusting p as a value between 0 and 2, returning a
better performance in terms of Pd when compared to the ones
reached with higher values of p in this scenario.

Fig. 3: Probability of detection, Pd, versus exponent of Norm-based detectors,
p, for SNR = −8.5 dB: system under both Gaussian and Laplacian noises.
This figure is better viewed in color.

Fig. 4 shows Pd versus the k-th largest value selected after
"Ordering and Selection" in Fig. 2. From Fig. 4a, considering
pure AWGN, it can be seen that the ED tends to outperform
the other detectors, as expected, being closely followed by
the AVC, the L4-Norm and the FLOM (p = 0.5). The
performances of these detectors remain invariable since their
test statistics use not only the k-th largest value, but all values.
The COS Norm-based schemes show performance curves
tending to worsen as a smallest value is selected, i.e, with
the increase of k. The notable aspect is the proximity of the
performance achieved by selecting only the maximum value,
k = 1, to that one of conventional detectors using all values.

From Fig. 4b, considering the presence of Laplacian noise,
one notices a maintenance of the curve patterns concerning
the scenario with pure AWGN, except for the COS L4-Norm
detector, which showed high sensitivity to impulsive noise,
not benefiting from the variation of k. It is also observed that
the performance improvement is inversely proportional to the
value of the exponent p for p ≤ 1, with the FLOM (p = 0.5)
unveiling a performance improvement more pronounced than
that exhibited by the AVC. The ED and the L4-Norm returned
evident performance degradation, compared to the scenario
with pure AWGN, with the latter showing poor Pd. All Norm-
based COS schemes, in the presence of Laplacian impul-
sive noise, showed either improved or decreased performance
in line with their respective conventional detectors (without
COS). Once more, the notable aspect is the proximity of the
performance achieved by selecting the maximum value, k = 1,
to that of conventional detectors using all values.
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(a) (b)

Fig. 4: Probability of detection, Pd, versus k-th largest value: system under
Gaussian noise (left) and system under Laplacian noise (right). This figure is
better viewed in color.

VI. CONCLUSIONS

This work has assessed the performance of centralized
CSS with data fusion, under Laplacian impulsive noise. The
performances of the Norm-based detectors ED, AVC, FLOM,
Lp-Norm and COS Norm-based were compared under pure
AWGN and under Laplacian noise models.

Norm-based detectors which use p ≤ 1 tend to show
excellent performances under Laplacian noise, specially as
the value of p decreases. Conversely, the utilization of higher
values of p return Pd worsening. Thus, FLOM (p = 0.5)
and AVC (p = 1) detectors revealed great robustness against
Laplacian noise, whereas the ED and the L4-Norm behaviors
have shown expressive sensitivity, mainly, the latter.

The use of the COS scheme accompanied by Norm-based
detectors yielded two noteworthy outcomes: 1) Under Lapla-
cian noise, as a smaller value was chosen at the output
of the "Ordering and Selection" block provided in Fig. 2,
that is, for a larger k, the performance degradation was less
pronounced when compared to the pure AWGN scenario for
all detectors, except for the COS L4-Norm, which exhibited
negligible performance for any k; 2) Selecting the maximum
value (k = 1) yields performances very similar to conventional
detectors that use all values. Consequently, one may assess
the omission of the summing block in the COS scheme, using
only the maximum value at the output of the sorter as the test
statistic, thereby reducing some of its construction complexity.
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