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ABSTRACT The effective realization of dynamic spectrum access (DSA) subsumes that, when a secondary
terminal seeks a vacant band, the geolocation of the candidate spectrum hole coincides with the position of
the terminal. Otherwise, stemming from a spectrum hole detection not corresponding to the terminal location,
harmful interference to the primary network may occur. Non-cooperative spectrum sensing can inherently
deliver accurate spectrum hole geolocation, as it corresponds to the position of the spectrum sensor. However,
performance is degraded due to propagation-induced phenomena in the environment. While the performance
of cooperative spectrum sensing is less prone to such phenomena, the accurate geolocation of the spectrum
hole is compromised. This is because a vacant band is determined by a collective of spectrum sensors whose
dispersed spatial distribution prevents from achieving high resolution concerning where in space the band
is in fact vacant. This article delves into the problem of spectrum hole geolocation for DSA. As a solution,
it is introduced a cooperative spectrum sensing scheme based on overlapped-clustering, integrated with a
database-driven Internet of Things-enabled DSA framework. It is shown that the proposed solution achieves
a high rate of correct estimations of spectrum hole geolocation, with small variance and under diverse system
conditions.

INDEX TERMS Cognitive radio, dynamic spectrum access, dynamic spectrum sharing, spectrum sensing.

I. INTRODUCTION
The escalating demand for novel telecommunications ser-
vices has emerged as the primary catalyst for more advanced
technologies. This is evident in recent efforts, particularly in
the context of the fifth generation (5G) communication net-
works, the Internet of things (IoT), and ongoing discussions
and research on the sixth generation (6G) communication
networks [1], [2].

To materialize many envisioned telecommunications ser-
vices, particularly in the realm of wireless systems, it is
imperative to overcome the bottleneck posed by the
scarcity of radio-frequency (RF) spectrum. This scarcity
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is attributed to the prevailing fixed spectrum allocation
policy, which confers to the incumbent (primary user,
PU) network the exclusive right to use specific frequency
portions. Consequently, as wireless communication systems
proliferate, only a limited amount of free bands remain
available.

There is a widely accepted belief that the fixed spectrum
allocation policy may prove inadequate for accommodating
further expansions in wireless communication systems.
A paradigm shift is needed, wherein spectrum sharing
becomes the novel approach. This concept is encapsulated by
dynamic spectrum access (DSA) techniques. DSA capitalizes
on the under-utilization of many spectral bands already
allocated to PU networks, potentially enabling sharing with
secondary user (SU) networks [3], [4].
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In a scenario of shared spectrum, SU transmissions
can occur in two primary ways: simultaneously with PU
transmissions, provided no harmful interference is inflicted
upon the PU network (referred to as underlay sharing), or in a
non-interfering basis, by opportunistically occupying unused
licensed bands (known as interweave sharing). This article
deals with the interweave spectrum sharing approach.

The cognitive radio (CR) concept [5] has emerged within
this spectrum-sharing context. ACR transceiver possesses the
capability to acquire cognition about the surrounding envi-
ronment and the network, adapting operational parameters
to optimize performance targets. Among various cognitive
attributes, a CR can identify vacant bands for opportunistic
access through a technique known as spectrum sensing [1],
[6], [7], [8], [9]. In few words, spectrum sensing is the
technique for monitoring the RF spectrum to identify vacant
spectral bands, commonly referred to as spectrum holes or
white-spaces.

Spectrum sensing can be made by each SU, independently
of the other SUs, which characterizes a non-cooperative
spectrum sensing (NCSS) approach. When NCSS is adopted,
a given SU, even if it is reachable by the primary network
signal in terms of the distance from the transmitter, it may be
incapable of detecting the signal. This situation can happen,
for instance, if the sensed signal is subjected to severe fading
or is blocked by obstacles between the PU transmitters and
the SU receivers. In such situation, an SU might initiate
transmission on an occupied frequency band, resulting in
interference with primary network devices. To address, or at
least mitigate this issue and counteract the adverse effects
of multi-path fading and shadowing, an alternative to NCSS
is the adoption of cooperative (or collaborative) spectrum
sensing (CSS).

As the nomenclature implies, CSS involves a collective
effort from a group of SUs to determine the occupancy status
of the sensed band, thereby enhancing PU signal detection
capabilities. There are two primary forms of CSS: distributed
detection with distributed decision, and distributed detection
with centralized decision. In the case of distributed decision
CSS, the SUs exchange the spectrum sensing informa-
tion, which includes local decisions or received samples.
Subsequently, a collective decision is made, often through
consensus, regarding the occupancy status of the sensed
frequency band. Conversely, in centralized decision CSS
the spectrum sensing information is conveyed to a fusion
center (FC), which can be the base station (BS) of the
secondary network or a specialized SU. The FC processes this
information to arrive at a global decision concerning the state
of the sensed band. The resulting decision is then broadcast to
the SUs via control channels. Access to the unoccupied band
is made through a multiple access technique tailored to the
secondary network.

Centralized decision CSS is categorized based on how the
spectrum sensing information is transmitted to, and processed
by the FC, a process known as fusion. Decision fusion occurs
when local decisions on spectrum occupancy are transmitted
to the FC. In this case, the logic decision rule k-out-of-m is

often applied, declaring a busy frequency band if at least k out
of the m cooperating SUs decide that the band is busy. On the
other hand, data fusion takes place when the samples received
by the SUs, or quantities derived from these samples are sent
to the FC, where a test statistic is formed and compared with
a decision threshold to yield the final decision [7].

A. PROBLEM DESCRIPTION
A spectrum hole or white-space, refers to a portion of the
RF spectrum that is temporarily unused or unoccupied by
any licensed or primary users within a specific geographic
area and time period. In other words, it represents frequencies
within the spectrum that are available for secondary or unli-
censed users to utilize for communication purposes without
causing harmful interference to the existing primary users.

The concept of spectrum holes arises due to the dynamic
nature of radio frequency usage and signal propagation
characteristics of the environment. While certain portions of
the spectrum are allocated to licensed users, these users may
not be continuously active in all allocated frequency bands at
all times, and throughout the entire coverage area. As a result,
there are often periods and locations in which portions of the
spectrum become opportunities for secondary users to access
for their own communication needs.

When a secondary terminal is seeking for a vacant band
for DSA, the spectrum hole geolocation information must
be in agreement with the position of that terminal. While
the terminal stays at a given position, a spectrum hole that
is detected is only useful if it refers to that position, not to
any other. Stemming from amismatch between spectrum hole
detection and terminal location, detrimental interference with
the primary network may occur.

It is worth emphasizing that the declaration of a spectrum
hole not only depends on the state of the PU transmitter,
but also is affected by the propagation characteristics of
the coverage area. Even if a PU transmitter is active, it is
possible for certain areas within the coverage region to
experience weak signal strength or attenuation due to factors
such as distance, terrain, and obstacles. Hence, in scenarios
where the PU transmitter’s signal strength diminishes
significantly beyond a certain distance or due to obstructions,
SUs may still be able to utilize the frequency spectrum
within these areas without causing harmful interference to
the primary communication system. This is because the
PU network may not be capable of operating in these
locations, creating opportunities for SUs to access the
spectrum resources without causing disruption to authorized
services.

Non-cooperative spectrum sensing inherently ensures
precise spectrum hole geolocation, as it corresponds directly
to the position of the spectrum sensor. Nevertheless,
the spectrum sensing performance may suffer due to
propagation-induced phenomena within the environment,
like signal shadowing and multi-path fading. Conversely,
cooperative spectrum sensing exhibits greater resilience to
environmental phenomena but compromises the precision of
spectrum hole geolocation, owed to the fact that a vacant band
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is identified collectively by a distributed set of spectrum sen-
sors, whose dispersed spatial arrangement hinders achieving
high resolution regarding the actual geolocation of the vacant
band.

The problem described herein can be named spectrum
hole localization in the spatial domain, since spectrum hole
localization in the frequency and time domains is not a
problem because frequency and time information is inherent
to the spectrum sensing task. In other words, the instants and
frequencies selected for spectrum monitoring are defined on-
the-fly by the network, as a normal task in the operation of
spectrum sensing. Thus, hereafter, the term spectrum hole
geolocation (SHG) refers solely to the spatial information
associated with the absence of the primary signal throughout
the secondary network area. Roughly speaking, SHG can
be linked with a primary signal coverage (from the SUs’
perspective) analysis whose result is updated according to the
pace of spectrum sensing.

To the best of the authors’ knowledge, the real-time spec-
trum hole geolocation problem has not yet been addressed
within the context of dynamic spectrum access. This omission
is somewhat surprising and may stem from a common, yet
not necessarily accurate, implicit assumption: that a band
declared vacant by spectrum sensing is considered available
across the entire secondary network. Such an unrealistic
approach assumes that any secondary user can access the
declared vacant band whenever the primary user’s transmitter
is inactive.

The DSA approach considered herein aims at a more
realistic scenario: a given SU terminal needs to establish
communication over a vacant PU network band that is
unused either because all PU transmitters are off, or the
location of the SU terminal corresponds to insufficient
PU signal coverage due to the propagation characteristics
of the environment. As an example, consider a primary
outdoor wireless communication network. The outdoor-to-
indoor path-loss is capable of producing spectrum holes
inside a building, even if the PU transmitter is on. Similarly,
an outdoor signal-shadowed region in the PU network
coverage area can be regarded as spectrum holes, from the
SU network perspective.

B. RELATED WORK
Solutions for shared spectrum access leveraging the prop-
agation characteristics of the environment already exist.
These approaches rely on spectrum availability databases,
which secondary users query to identify vacant channels.
Such solutions have been adopted by regulatory authorities
worldwide and are incorporated into standards such as IEEE
802.22 [10], IEEE 802.11af [11], and the IETF protocol to
access white-space (PAWS) [12].

In 2014, the Federal Communication Commission (FCC)
designated several database administrators, among which
five have been approved: Spectrum Bridge, Inc.; Iconectiv;
Keybridge Global, LLC; Google, Inc.; LS Telcom, Inc. and
RadioSoft, Inc. RadioSoft has been subsequently acquired by
LS Telcom, Inc., but kept in operation [13], [14], [15]. Google

has ended its television white-space (TVWS) project in
2018 to prioritize a solution targeted to the citizens broadband
radio service (CBRS), managing a spectrum portion reserved
to the US Federal Government to avoid interference with the
US Navy radar systems and aircraft communications [15],
[16], [17].

The main drawbacks of such database-assisted spectrum
sharing approaches are: (i) the reliability of the spectrum
availability information depends on the accuracy of the
signal coverage prediction used to feed the database; (ii) the
spectrum availability data does not necessarily correspond to
up-to-date information, owed to the fact that it is not feasible
to perform real-time coverage prediction [18], [19].

In [15], a comprehensive review of various DSA solutions
based on spectrum sensing alone, database alone, and
the combination of these two approaches are presented.
A promising solution based on such combination is proposed
as an attempt to circumvent the above-mentioned drawbacks.
It makes use of a supporting IoT network in which some
IoT devices are equipped with spectrum sensors, forming
the so-called spectrum sensing IoT (SSIoT) devices. These
SSIoTs are responsible for frequent spectrum sensing, and
for updating a spectrum availability database that is then
queried by the SUs when a vacant PU band is needed.
Note that, as a drastic paradigm shift, the spectrum sensing
task is transferred from the SUs to the supporting network
of SSIoT devices, alleviating the complexity and energy
consumption of the SU terminals. Moreover, the solution
proposed in [15] allows real-time update of the spectrum
availability information, which is crucial for implementing
DSA when the primary network has a high rate of channel
occupation and release. Additionally, thanks to the transfer
of sensing tasks to the SSIoTs, the implementation of modern
integrated sensing and communications technologies (ISAC)
is alleviated [20].1 Indeed, the same result obtained from
ISAC is indirectly achieved by the reception of information
on spectrum occupancy retrieved from the database within
normal control communication.

The DSA approach proposed in [15] has been adopted
as the enabling technique for the overlapped-clustering
spectrum hole geolocation solution proposed in this study.
Thus, this solution significantly diverges from previous
studies, offering a novel perspective to enhance spectrum
sharing capabilities in wireless communication systems.

C. CONTRIBUTION AND ORGANIZATION OF THE ARTICLE
From above, it can be concluded that the sole utilization
of spectrum sensing, either in its NCSS or CSS form,
is not enough to attain, simultaneously, high detection
performance and accurate SHG. In the case of NCSS,
performance is penalized whereas SHG may be accurate.
In CSS, performance can be improved with respect to NCSS,

1ISAC enables the simultaneous use of wireless systems for both
high-data-rate communication and environmental awareness tasks such as
detecting, localizing and tracking objects, or even creating high-resolution
maps of the environment. Thus, spectrum sensing can be included under the
broader umbrella of ISAC principles, but it is not the primary focus of ISAC.
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but SHG becomes inaccurate. Thus, the database-driven
IoT-enabled DSA technique described in [15] arises as a
promising supporting architecture to solve the SHG problem.

This article proposes an SHG strategy for CSS, in which
the spectrum sensing task is performed by a support IoT
network, possibly having fixed and mobile nodes, whose
SSIoT devices are clustered, and CSS is performed in the
cluster level. The details of this technique are given in
Section III, but, in summary, the SSIoT devices are classified
into overlapped clusters defined around the crossing points
of a regular rectangular grid in the area of interest. A single
cluster can be activated at a time for spectrum sensing,
with sequential clusters’ activation allowing for sequentially
scanning the coverage area for constructing the spectrum
availability map in the spatial domain. Alternatively, all
clusters can be activated at the same time to speedup the
construction of themap, at the cost of a large control overhead
peak.

The map is built from the spectrum sensing decisions
linked with each cluster around each of the grid crossing
points. The SHG is given by the coordinates of the crossing
points where the decision is in favor of a vacant band. The
resolution of the map is governed primarily by the thickness
of the grid, which is a design variable of the technique.
On the other hand, the performance of spectrum sensing
is mainly determined by the cluster size, which is also a
design variable. By controlling these variables, a trade-off is
established between CSS performance and accuracy of the
SHG information.

In summary, this work proposes a novel overlapped-
clustering strategy integrated with a support network of
IoT-based spectrum sensors. The proposed framework
employs data-fusion and decision-fusion cooperative spec-
trum sensing whose results feed a database of spectrum
occupancy information in real-time, aiming at identifying
propagation-induced and non-propagation-induced spectrum
holes throughout the primary network coverage area for the
purpose of driving dynamic spectrum access.

The remaining sections of this article are organized as
follows. Section II briefly describes the database-driven
IoT-enabled DSA framework. Section III is devoted to
the overlapped-clustering technique. The sensing channel,
signal, noise, and spectrum sensing models are described in
Section IV. Numerical results are presented and discussed
in Section V. The conclusions and opportunities for further
research are addressed in Section VI.

II. DATABASE-DRIVEN IOT-ENABLED DSA
A. OVERVIEW
The well-known conventional CSS approach is the one
that applies distributed detection with centralized decision
(see Section I). In this approach, it is noteworthy that the
SU terminals need to be equipped with spectrum sensing
capability, which increases their complexity and energy
consumption, possibly increasing either their cost or physical
dimensions, and perhaps reducing portability. Moreover,

all control tasks related with spectrum sensing must be
implemented and managed by the secondary network.

The database-driven DSA solution proposed in [15] is
illustrated in Fig. 1 in a simplified way. The spectrum sensing
task is performed by SSIoT devices instead of SUs. An SSIoT
is simply a device formed by connecting an ordinary IoT node
to a spectrum sensing (SS) module, through a standard wired
or wireless interface [9], [15]. Notice in Fig. 1 that not all IoT
devices are SSIoTs.

FIGURE 1. Architecture of the database-driven Internet of things-enabled
dynamic spectrum access framework.

The IoT device and the SS module are equipped with
their own antennas, distinguishing themselves through prac-
tical characteristics, primarily their bandwidth and central
operating frequency. For instance, the IoT network may
operate in a specific frequency range, while spectrum sensing
is conducted within the secondary network’s operating
frequency range.

The SSIoT devices are responsible for scanning the RF
spectrum and relaying the acquired sensing information to
an IoT gateway. The gateway gathers IoT-related data from
a group of closely positioned IoT devices, also acting as an
aggregator that can offload specific responsibilities from the
nodes, particularly those related with the security of both IoT
and SSIoT devices. This approach simplifies the IoT devices
and helps protecting against malicious attacks.

The gateway establishes communication with the IoT
network, which may or may not be part of the Internet.When-
ever requested, the spectrum occupancy database accesses
this network to refresh the pool of accessible channels for
DSA purposes. Additionally, the database has the capability
of analyzing ongoing and historical activities within the
primary network. This enables the provision of spectrum
usage predictions and other pertinent information, enhancing
the effectiveness of the quest for unoccupied frequency
bands. The database management function is responsible for
managing all tasks related to the spectrum market.

The acquisition of spectrum usage information is per-
formed either on-demand or through continuous querying of
the database, which may occur during the regular control
communication between SU terminals and their base station.

The database-driven IoT-enabled DSA solution just
described takes advantage of the high density and large
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coverage area of typical IoT networks, allowing for the
construction of a fine-grid spectrum occupation database that
can be updated in an approximate real-time fashion.

B. FIXED VERSUS MOBILE SSIOT NODES
An IoT network composed exclusively of fixed SSIoT
devices can be employed in the current SHG strategy.
However, incorporating mobile nodes can enhance the
accuracy of the SHG process by refining the information on
SHGs through temporal variations in the spatial distribution
of the SSIoT devices. Furthermore, the mobility of SSIoTs
offers adaptability to the dynamics of the primary network,
particularly in scenarios involving mobile PU transmitters.
Examples include temporary networks for emergency public
safety communications, military tactical communications,
temporary broadcast facilities, and wireless microphone
transmissions during events. Examples of fixed IoT nodes are
smart home appliances, industrial sensors, and infrastructure
monitoring systems. Mobile IoT nodes include devices like
connected vehicles, wearable technology, and mobile health
monitors.

As of 2023, fixed IoT nodes constitute the majority of
IoT deployments. This dominance is attributed to extensive
applications in sectors like smart cities, industrial automation,
and home automation, where stationary devices takes place.
For instance, the consumer segment, which includes many
fixed devices, accounted for approximately 60% of all IoT
devices in 2023 [21].

Looking ahead, the prevalence of fixed IoT nodes is
expected to persist. Projections indicate that the number of
IoT devices will nearly double from 15.9 billion in 2023 to
over 32.1 billion by 2030, with the consumer segment
maintaining its significant share [21]. However, mobile IoT
nodes are anticipated to experience substantial growth, driven
by advancements in technologies such as 5G/6G and edge
computing. These developments facilitate applications in
autonomous vehicles, logistics, and mobile health monitor-
ing. For example, the integration of 5G is expected to enhance
the capabilities of mobile IoT devices, enabling faster data
transfer and more reliable connections [22].
Thus, while fixed IoT nodes currently dominate the

landscape and are projected to remain prevalent, the rapid
expansion of mobile IoT applications suggests a trend toward
a more balanced distribution between fixed and mobile nodes
in the near future.

III. OVERLAPPED-CLUSTERING
Clustering is a well-known strategy in the context of
cluster-based spectrum sensing [23], where the SUs are
grouped to form clusters, and spectrum sensing is performed
by all cluster members, which send the sensing information
to a cluster head (CH) where the cluster-level decision is
made. The CHs’ decisions associated with all clusters are
then forwarded to the secondary network FC, where the
final decision upon the occupation state of the sensed band
is arrived. In this approach, it is noteworthy that a single

decision is made for the entire coverage area, meaning that
SHG information is meaningless.

Fig. 2 shows a hypothetical square coverage area of
a secondary network; the half-lengths of the sides are
normalized to 1 for simplicity. A number of N = 100 SUs
pertaining to the secondary network are shown as circular
dots, which are uniformly distributed over the area. In this
example, the SUs are grouped according to the k-means
clustering algorithm [24], yielding c = 9 non-overlapped
clusters with possibly different numbers of members. For
a clear visualization, the clusters are bounded by their
corresponding convex hulls.2 This figure is intended to show
the result of a typical clustering algorithm adopted in the
context of cluster-based spectrum sensing.

FIGURE 2. Conventional cluster-based CSS with k-means clustering
applied to 100 SUs, yielding 9 disjoint clusters. Notably, the clusters may
have different numbers of members.

In opposition to the common clustering strategy previously
described, clustering is adopted here to create smaller sensing
areas in order to allow for detecting possibly different
channel occupation states throughout the coverage area. The
database-driven IoT-enabled DSA solution explained in the
previous section is adopted as the driving architecture.

The same normalized network coverage area and node
positions depicted in Fig. 2 are once again shown in Fig. 3.
However, the N = 100 nodes are now SSIoT devices
pertaining to the supporting IoT network, instead of SUs,
and the overlapped-clustering approach is being used to form
the clusters, instead of the k-means algorithm. A regular
square grid is shown in dashed lines, in this case having
G2

= 9 crossing points, where G is the number of horizontal
or vertical grid lines, which is hereafter referred to as
the grid tightening parameter. Each of the c = G2

=

9 clusters is formed by the m = 20 SSIoT nodes closest to
the corresponding grid crossing point. Due to intersections
among clusters, it may happen that some SSIoT devices are
not part of any cluster. These devices are more likely to
be located near the borders of the coverage area, and their

2A convex hull is the smallest convex set that contains a given set of points
in a Euclidean space. In simpler terms, it is the smallest convex polygon that
encloses all the given points without any indentations.
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number tends to increase as the proportion of SSIoT nodes
with respect to the number of clusters is increased.

As briefly described in Section I-C, spectrum sensing is
made in a cluster level basis, meaning that a decision upon the
occupation state of the sensed band is made by each cluster,
independently of the others clusters’ decisions. Specifically,
the m SSIoTs belonging to a given cluster collect samples
of the received PU signal in the band of interest. The signal
samples acquired by the m SSIoTs in the case of data fusion
CSS, or the SSIoTs’ decisions in the case of decision fusion
CSS are then sent to the FC (notice that there is no cluster
head), through the IoT network. This FC can be located
in any convenient place, as defined by the IoT network
administrator. The FC subsequently makes a decision lined
with each cluster, and stores the corresponding channel
occupation state in the database, along with frequency range
and geolocation information of the associated grid crossing
point, which is an information known in advance.

The above-described process is made for all clusters,
sequentially or simultaneously. The choice of sequential
or simultaneous sensing depends on the trade-off between
the needs in terms of spectrum sensing updating speed,
and control traffic in the IoT network. At the end of a
round of sensing events throughout the entire coverage
area, a spectrum availability map in the spatial domain can
be constructed. Thus, an estimated SHG is given by the
coordinates of the crossing point where the decision is in
favor of a vacant band.

FIGURE 3. Overlapped-clustering applied to N = 100 SSIoT nodes,
yielding c = G2 = 9 clusters with intersections. Each cluster has
m = 20 members. Black dots are nodes that do not belong to any cluster.
This figure is better viewed in color.

Based on Fig. 3, one can infer that the resolution of the
spectrum availability map is governed primarily by the grid
tightening parameter, G. Since the number of crossing points
is G2, the map resolution increases as G increases. For a
given value of G, larger clusters are formed if the number m
of SSIoTs in cooperation is increased, which also increases
the overlap among them. Nonetheless, it is known from the
spectrum sensing literature that a larger number of nodes
in cooperation improves the spectrum sensing performance,
but in diminishing-return fashion, that is, the addition of

more SSIoTs in cooperation yields progressively smaller
increments in the spectrum sensing performance.

Thus, by controlling G and m, a trade-off is established
between CSS performance and accuracy of the SHG infor-
mation, as demonstrated in Section V.
In terms of scalability, one can see Fig. 4 as part of a

wider or denser network of spectrum sensors. For example,
a network havingN = 400 SSIoT nodes can be thought as the
concatenation of four figures similar to Fig. 3, one occupying
each quadrant of a square. In this case, the new grid tightening
parameter is G4 = 2G1 + 1 = 7, where the subscript 1 refers
to the original basis network (i.e., with G1 = 3) and the
subscript 4 refers to the new network with 4 times more nodes
(i.e., N4 = 4N1) and 4 times larger area, or with node density
4 times higher. In general, if Ns = sN1, then

Gs =
√
s (G1 + 1) − 1, (1)

where the scaling factor s is a perfect square number, i.e.
it is an integer that can be expressed as the square of another
integer. Note in Fig. 4 that the number m = 20 of cluster
members has been maintained with respect to the value
considered in Fig. 3.

FIGURE 4. Overlapped-clustering applied to N = 400 SSIoT nodes,
yielding c = G2 = 49 clusters with intersections. Each cluster has
m = 20 members. Black dots are nodes that do not belong to any cluster.
This figure is better viewed in color.

The overlapped-clustering strategy can give rise to a poten-
tial problem whose consequences must be accounted for:
inter-cluster decisions become more correlated as the cluster
overlapping area increases. Nonetheless, it is important to
note that the phenomenon of signal shadowing also produces
spatial correlation, thereby hiding the potential negative
impact of the correlation among inter-cluster decisions.
Furthermore, it is well-known that such shadowing-induced
spatial correlation can affect the performance of any spectrum
sensing strategy, unless the spacing between spectrum
sensors is sufficiently large to lower this correlation to a
negligible value. The extent of this problem is also analyzed
in Section V.

IV. SYSTEM MODELS
This section addresses the models for the transmitted and
received signals, the noise, the sensing channel, and the
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detection technique. The models have been chosen to be
realistic enough to confer reliability to the results and
discussions presented in Section V.

Notably, the most realistic models used in the context of
spectrum sensing are those considered in [23]. Herein, such
models are adapted to the overlapped-clustering strategy,
with an important increment in regard to the sensing
channel: besides distance-dependent received signal levels,
non-uniform noise power levels, and multi-path fading
with environment-dependent random Rice factor, a log-
normally distributed spatially correlated shadowing term is
incorporated into the received signal modeling.

A. SIGNAL, NOISE, AND CHANNEL MODELS
The CSS employs m SSIoTs in cooperation in each cluster.
Each of these SSIoTs is responsible for collecting n samples
of the PU signal during a given sensing interval. The samples
gathered by the SSIoTs belonging to the jth cluster, for j =

1, . . . , c, are grouped at the FC to form thematrixYj ∈ Cm×n,
which is given by

Yj = hjxT + Vj, (2)

where x ∈ Cn×1 is the vector containing the samples of
the transmitted PU signal. These samples are modeled
as zero-mean complex Gaussian random variables whose
variance is governed by the average SNR across all SSIoTs.

The sensing channel in (2) is modeled by the vector hj ∈

Cm×1, whose elements hi,j, i = 1, . . . ,m, represent the
channel gains between the PU transmitter and the ith SSIoT
of the jth cluster. These gains are assumed to be constant
during the sensing interval and independent and identically
distributed (i.i.d.) across subsequent sensing events. The jth
channel vector in (2) is defined according to

hj = Gjaj, (3)

where aj ∈ Cm×1 is a vector of complex-Gaussian ran-
dom variables ai,j ∼ CN [

√
Ki,j/(2Ki,j + 2), 1/(Ki,j + 1)],

and where Ki,j = 10K
dB
i,j /10, with K dB

i,j = 10 log10(Ki,j)
being the Rice factor, in dB, of the channel between the PU
transmitter and the ith SSIoT of the jth cluster.
In [25], it has been found that Ki,j can be modeled by

a Gaussian random variable with mean µK and standard
deviation σK , both in dB, determined according to the
environment. It is considered an urban area herein, for which
µK = 1.88 dB and σK = 4.13 dB [25].
Non-uniform received signal power levels across the

SSIoTs are assumed, owed to different distances between the
PU transmitter and the SSIoTs, and due to signal shadowing.
This condition is modeled by the diagonal gain matrix Gj ∈

Rm×m in (3), which is given by

Gj = diag
(√

pj
Pt

)
, (4)

where pj = [Pr1,j Pr2,j . . . Prm,j]T is the vector containing
the received PU signal powers across the m SSIoTs of the

jth cluster, Pt is the transmitted PU signal power, diag(·)
returns the diagonal matrix whose diagonal is the vector in
the argument, and [·]T denotes matrix or vector transposition.
Following the log-distance path loss model described

in [26], the local-mean signal power, in dBm, received by the
ith SSIoT of the jth cluster is given by

PdBmri,j = 10 log10

[
103Pt

(
d0
di,j

)η]
+ Si,j, (5)

where d0 is a reference distance in the far-field region of
the PU transmit antenna, di,j is the distance from the PU
transmitter to the ith SSIoT of the jth cluster, η is the
dimensionless, environment-dependent path-loss exponent,
and Si,j models the log-normal signal shadowing [27]
component affecting the ith SU of the jth cluster, being a
zero-mean Gaussian random variable, in dB, whose standard
deviation is σs dB. Obviously, the power given in (5), in watts,
becomes

Pri,j = 10−310
PdBmri,j

/10
. (6)

A specific value of Si,j in (5) can be viewed as a realization
of a location-dependent random variable that corresponds
to an element of a Gaussian random matrix Sc. Given the
secondary network coverage area, the realizations of Si,j
throughout the area form the whole matrix Sc, as described
in the sequel.

The row-wise and column-wise correlations between the
elements of Sc are governed by a covariance matrix 6 that
is formed according to the well-known negative-exponential
correlation model [28]. This model is characterized by the
correlation function ρ(δ) = exp(−δ/λ), where δ is the
distance between two points and λ is the correlation length
(also often referred to as the correlation distance). The
correlation length is the distance for which the shadowing
correlation coefficient falls to 1/e. Then, the elements of 6

are 6z,u = exp(−δz,k/λ), where δz,k is the distance between
the points defined by the row (z) and column (k) indexes
of 6. Hence, λ is a distance between points in the square
coverage areawith sides of length equal to the number of rows
or columns of 6.

Given a square matrix of uncorrelated normal random
variables, Su ∈ Ru×u, the Gaussian matrix Sc ∈

Ru×u with correlated values associated with the set of
spatially-correlated points is formed according to the trans-
formation

Sc = σsLSuLT, (7)

where L is the lower-triangular matrix retrieved from the
Cholesky decomposition of 6.
Fig. 5 shows the surface plot of Sc ∈ R50×50 in two

situations in terms of the spatial correlation. Fig. 5a adopts
λ = 1, meaning very small correlation between neighbor
values, whereas Fig. 5b considers λ = 40, which corresponds
to a high correlation. In both cases, σs = 7 dB. This figure
also shows 100 dots that represent possible positions of SSIoT
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nodes in the SU coverage area. The shadowing affecting these
nodes is associated with the dots’ vertical displacements.

Complementing Fig. 5, in Fig. 6 are shown the shadowed
areas, in white, that could lead to spectrum holes. In these
areas, the shadowing is less than or equal to −15 dB,
this value being arbitrarily chosen just for illustration
purpose. Fig. 6a corresponds to Fig. 5a, whereas Fig. 6b
is associated with Fig. 5b. Fig. 6 clearly demonstrates
that a spatially-correlated shadowing model is by far more
realistic than an uncorrelated one. The realistic aspect
of this model arises from the fact that obstacles located
in-between a wireless transmitter and a receiver create valleys
in the local-mean received signal power across an area, not
point-wise as in Fig. 6a.

FIGURE 5. Pictorial view of Sc for σs = 7 dB. Fig. 5a is for λ = 1; Fig. 5b
considers λ = 40. The shadowing values affecting 100 SSIoTs are also
shown as red dots. This figure is better viewed in color.

FIGURE 6. Pictorial view of shadowed areas. Fig. 6a corresponds to
Fig. 5a (uncorrelated shadowing), and Fig. 6b refers to Fig. 5b (correlated
shadowing).

Returning to the model described in (2), it is well-
established that the levels of thermal noise at the receivers’
front-ends are typically unequal in practice. This disparity
arises primarily from uncalibrated circuitry and nonuniform
ambient temperature. Additionally, the non-uniform noise
may exhibit time-varying characteristics, and undesired
interfering signals entering the receivers can mimic changes
in noise levels. To account for this non-uniformity, the
elements in the ith row of Vj ∈ Cm×n are modeled as
independent Gaussian random variables with zero mean and

variance

σ 2
i,j = (1 + ζu)σ̄ 2, (8)

where u is a realization of the random variable U that is
uniformly distributed in [−1, 1], σ̄ 2 is the noise variance
averaged across the SSIoTs, and 0 ≤ ζ < 1 is the fractional
variation of the noise power about the average σ̄ 2.

Let SNR be the signal-to-noise ratio averaged across all
SSIoTs of the supporting IoT network, that is,

SNR = E

[
Pri,j
σ 2
i,j

]
= E

[
Pri,j

]
E

[
1

σ 2
i,j

]
, (9)

where in the right-hand side it has been used the fact that
the received signal power can be considered independent of
the noise. Moreover, from the separation of the mechanisms
that govern the distance-dependent area mean power and the
local-mean shadowing, it follows that, in light of (5) and (6),
E

[
Pri,j

]
can be written as

E
[
Pri,j

]
= E [P(d)]E

[
10S/10

]
, (10)

where P(d) = Pt(d0/di,j)η replaces the area-mean received
power at a distance di,j = d from the PU transmitter to an
SSIoT, and S replaces Si,j to account for the same distribution
of the shadowing over i and j. Furthermore, stemming from
the fact that the distribution of the noise is the same over i and
j, these indexes can be dropped from σ 2

i,j, and the SNR can be
compactly written as

SNR = E [P(d)]E
[
10S/10

]
E

[
1
σ 2

]
. (11)

The three expectations in (11) are derived in Appendix A,
B and C, respectively yielding

E[P(d)] =
Pt

L2dη
0

∫ L

0

∫ L

0

[
(x − xt)2 + (y− yt)2

]−
η
2
dx dy,

(12)

E[10S/10] = exp

[
σ 2 ln2(10)

200

]
, (13)

and

E
[
1
σ 2

]
=


1

2σ̄ 2ζ
ln

(
1 + ζ

1 − ζ

)
, for 0 < ζ < 1

1
σ̄ 2 , for ζ = 0

(14)

From these expressions, σ̄ 2 is retrieved for a given SNR
according to (11) and the given expectations. Then, σ̄ 2 is
plugged into (8), along with the corresponding realizations
of the random variable U , resulting in the variance σ 2

i,j of
the noise samples in the ith row of the matrix Vj. In terms
of computer simulations, new elements of the set {σ 2

i,j} are
computed for each sensing event, conferring the time-varying
character to the noise power.

Returning to the spectrum sensing process, the matrix Yj
given in (2) is formed at the FC. Under the hypothesisH0 that
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there is a spectrum hole, then Yj = Vj. Under H1, it follows
that Yj = hjxT + Vj. The sample covariance matrix Rj of
order m × m associated with the jth cluster is subsequently
formed at the FC, yielding

Rj =
1
n
YjY

†
j , (15)

where † denotes complex conjugate and transposition. This
matrix is subsequently processed to form the test statistic of
any covariance-based detector.

B. DATA FUSION SPECTRUM SENSING MODEL
In each of the clusters throughout the SU coverage area,
a distributed-detection centralized data fusion CSS is adopted
to identify SHGs associated with the corresponding grid
crossing points (see Section III). The Pietra-Ricci index
detector (PRIDe) has been chosen as the test statistic, owed
to its appeal in terms of state-of-the-art metrics in regard to
performance, complexity and latency [29], [30], [31].
Given Rj, referring to the CSS in the jth cluster, the PRIDe

test statistic is computed at the FC as follows. Define rj,z,k
as the element in the zth row and kth column of Rj, for j =

1, . . . , c and z, k = 1, . . . ,m. The average of rj,z,k is

r̄j =
1
m2

m∑
z=1

m∑
k=1

rj,z,k . (16)

The PRIDe test statistic for the jth cluster is defined as

TPRIDej =

m∑
z=1

m∑
k=1

∣∣rj,z,k ∣∣
m∑
z=1

m∑
k=1

∣∣rj,z,k − r̄j
∣∣ . (17)

The determination of the occupancy state of the band
sensed by the jth cluster is based on a comparison between
TPRIDej and a decision threshold γj, predefined according to
the target probability of false alarm, Pfa. If TPRIDej > γj,
the jth cluster declares the presence of a primary signal.
Otherwise, the band is assumed to be vacant, and its
geolocation is determined based on the coordinates of the grid
crossing points associated with the clusters that declared it
vacant.

C. COMPUTATIONAL COMPLEXITY
The computational complexity of the PRIDe detector used for
cluster-level spectrum occupancy decisions is dominated by
the cost of calculating the sample covariance matrix of order
m×m from n samples per sensor, which isO(nm2) [29], [32].
Since the scalability of the overlapped clustering approach
grows linearly with the number of clusters, c, the overall
computational cost of the overlapped clustering method
with mPRIDe detection in each cluster is O(cnm2). Hence,
although the complexity growth rate is mainly dictated by the
number of SSIoTs per cluster, the overall computational cost
can become a limiting factor in networks with a very large
number of clusters.

V. NUMERICAL RESULTS
The network model utilized in this work is depicted in Fig. 7.
In this model, multiple SSIoTs are randomly distributed
across an area equal to or larger than the coverage region of
the secondary network. Both the SSIoTs and the secondary
network are situated outside the exclusion zone of the primary
network. This arrangement exemplifies a typical spectrum-
sharing scenario, carefully designed to prevent harmful
interference with the primary network [33]. The existence of
an exclusion zone is mimicked in the systemmodel described
in Section IV by means of a PU transmitter location distant
some amount (a multiple of side length L of the SSIoT
coverage) from the primary network coverage area.

FIGURE 7. Network model.

The identification of a signal level below which a spectrum
hole is declared depends on several factors, including
regulatory requirements, specific communication system
characteristics, and operational constraints. In this work,
a minimum SNR threshold of SNRth = −15 dB is adopted.
A spectrum hole exists if the primary signal level falls below
this threshold. This value reflects the minimum acceptable
quality of service (QoS) required for primary communication
systems operating within the spectrum band. For instance,
in wireless communication systems, a specific minimum
SNRth is necessary to ensure reliable data transmission with
acceptable error rates. Consequently, frequency bands with
signal levels below this threshold are deemed suitable for
secondary usage as spectrum holes.

A spectrum hole can arise in two distinct but comple-
mentary scenarios: (i) when the PU transmitter is declared
inactive, or (ii) when the PU transmitter is deemed active,
but shadowed regions exist within the primary network’s
coverage area where SUs can operate. To align with these
scenarios, the performance analysis in this section follows
a structured procedure: first, the PU transmitter’s state is
determined using a global hard-decision rule at the FC, which
aggregates local spectrum sensing decisions from all clusters.
The FC’s decisions are then used to estimate the global
probabilities of false alarm (Pfa) and detection (Pd). If the
PU transmitter is declared inactive, the entire coverage area
is assumed to be a spectrum hole. Conversely, if the active
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state is declared, the estimated spectrum occupation map is
generated based on the decisions made by individual clusters.

Spectrum holes are represented as square regions of side
length L, centered at grid intersections (see Fig. 3). These
squares correspond to clusters that have reported undetected
PU signals. The square’s side lengthmatches the grid spacing,
ensuring seamless connectivity between neighboring squares
without overlaps or gaps.

A. PSEUDO-CODE
Pseudo-code 1 served as the basis for constructing the
MATLAB codes included in the code pack provided in [34].
This pack comprises three main codes: the first, designed
mainly for didactic purposes and preliminary system assess-
ment, enables visual analysis of the actual and the estimated
SHGs, the overlapped-clustering process, and the receiver
operating characteristic (ROC) curves for both local (cluster-
level) and global decisions. A second code, derived from the
first, generates histograms of the spectrum hole geolocation
detection rate (SHGDR) and provides numerical values for
key local and global performance metrics. The third code
provides the visualization of the SHGDR as a function of
key system parameters. It also includes features for plotting
error bars and summarizing statistics related to the SHGDR.
Additionally, the pack contains MATLAB functions that
support the operations of the main codes.

As outlined in Pseudo-code 1, to reflect the coexistence of
fixed andmobile IoT nodes described in Section II-B, 100α%
of the SSIoT devices are designated as fixed nodes, while
100(1 − α)% of the SSIoTs are randomly positioned in each
sensing event to simulate mobility.

Step 10 of Pseudo-code 1 refers to the interpolation
Algorithm 1, which is designed to take into account
the shadowing correlation in the SHG estimation process,
ensuring that clusters’ decisions are not isolated when
surrounded by a majority of opposing decisions. Specifically,
if clusters’ decisions are represented as 1 for an occupied
band and 0 otherwise, the algorithm flips any 0 to 1 if it has
τ01 or more neighboring 1s, and flips any 1 to 0 if it has
τ10 or fewer neighboring 1s. To disable such interpolation,
the setting τ01 = 9 prevents any 0 from being flipped to
1 because no 0 can have at least 9 neighboring 1s, given that
themaximum possible neighbors is 8. Similarly, setting τ10 =

−1 prevents any 1 from being flipped to 0, as having at most
−1 neighboring 1s is an impossible condition. The impact of
this algorithm on decision patterns is further analyzed in the
next subsection.

Unless otherwise explicitly stated, the default system
parameter are those listed in Table 1.

B. PRELIMINARY RESULTS
This subsection presents a first set of numerical results to
validate the Monte Carlo simulation and the SHG estimation
process, and to allow for a batter understanding of the whole
system operation.

Pseudo-code 1
1) Define the values of the system parameters (see Table 1).
2) Place αN uniformly-distributed fixed SSIoT nodes on the SSIoT

coverage area, 0 ≤ α ≤ 1.
3) For each sensing round, Do:

2.1) Place (1 − α)N uniformly-distributed mobile SSIoT nodes on
the coverage area.

2.2) Apply overlapped-clustering to generate G2 clusters, each
having m nodes.

2.3) Compute the distances di,j from the PU transmitter to the ith
SU of the jth cluster, for i = 1, . . . ,m, j = 1, . . . ,G2.

2.4) Define a set of points in the coverage area, according to
the dimensions of Sc, and generate the correlated shadowing
matrix for all points, each point linked with a row and column
of Sc.

2.5) From Sc, extract the shadowing random variable, Si,j, accord-
ing to the coordinates of the N SSIoTs.

2.6) Compute Pri,j via (5) and (6).
2.7) Compute σ̄ 2 via (14) and related equations, then plug into (8)

to yield σ 2
i,j, which is used to generate the noise matrix Vj.

2.8) Using Yj = Vj compute Rj and TPRIDej under H0, and using

Yj = Yj = hjxT + Vj compute Rj and TPRIDej under H1.
Store TPRIDej underH0 and H1 for each sensing round.

2.9) Using equations (5) and (6), compute local-mean received
signal powers across all points in the coverage area (change i, j
to the coordinates of each point). Define the local-mean SNRlm
in each point as the quotient between the local-mean power and
the average noise variance σ̄ 2. Determine the actual spectrum
holes in every point where SNRlm ≤ SNRth.

End for (sensing rounds).
4) Estimate the empirical CDFs of TPRIDej under H0 and H1, from

where the clusters’ (Pfaj , Pdj ) are respectively calculated.
5) Compute the global (Pfa, Pd) by plugging the clusters’ (Pfaj , Pdj )

into Eqs. (12) and (13) of [23].
6) For debugging and cooperation gain analysis, plot the ROC curves

related to the clusters’ (Pfaj ,Pdj ), for j = 1, . . . ,G2, and to the global
(Pfa, Pd).

7) Find the clusters’ decision thresholds γj for the target local Pfa.
8) Compare TPRIDej with γj under H1 (PU transmitter on) to obtain

clusters’ decisions for each sensing round.
9) Compare TPRIDej with γj under H0 (PU transmitter off ) to obtain

clusters’ false alarm decisions for each sensing round.
10) Apply the k-out-of-c global decision rule and store all clusters’ and

global decisions.
11) Form the binary decision matrix D containing the clusters’ decisions

in every simulation run. Then, expand and interpolate D according
to Algorithm 1, yielding the matrices of estimated SHGs. If the PU
transmitter is deemed off, the entire coverage area is considered free
for secondary usage.

12) To assess the SHG estimations, do the logical complement of the
exclusive OR (XNOR) operation between the matrix of estimated
SHGs and the actual matrix of spectrum holes found in Step 2.9.
The metric SHG detection rate (SHGDR) in each simulation run is
defined as the average of all elements of the resultant matrix.

Fig. 8a provides a snapshot of the actual SHG, while
Fig. 8b and Fig. 8c show the corresponding estimated SHGs.
Fig. 8b incorporates Algorithm 1 for interpolating cluster
decisions, using parameters τ01 = 2 and τ10 = 0. In contrast,
Fig. 8c omits this algorithm, setting τ01 = 9 and τ10 =

−1. The strong resemblance between Fig. 8a and Fig. 8b
highlights the effectiveness of the SHG estimation process
and the interpolation provided by Algorithm 1. On the
other hand, Fig. 8c reveals noticeable gaps and isolated
spectrum holes where they should not exist due to the
spatially-correlated shadowing, demonstrating the necessity
of Algorithm 1 in handling such shadowing effect.
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Algorithm 1 Expansion and Interpolation of Matrix D
1) Input: Let D be the decision matrix of order G × G, which

contains the binary spectrum occupancy decisions made by the c =

G2 clusters.
2) Given the matrix D, flip to 1 all zeros that have τ01 = 2 or more

neighbor ones, and flip to 0 all ones that have τ01 = 0 neighbor
1. This step acts like an interpolation, turning isolated clusters’
decisions 0 into 1, and turning isolated clusters’ decisions 1 into 0.

3) Transform D into an expanded matrix De having the same order of
the matrix Sc of shadowing values, i.e. u× u. Each of the c bits in D
turns into a multiplicity of u/(G+1) equal bits in De, centered at the
crossing points of G2 grid lines. This step creates the square region
associated to the spectrum hole detected by each cluster.

4) Output: The SHG if formed by the union of the square regions where
clusters report an undetected PU signal, after interpolation, under the
condition of global decision for an occupied band (PU transmitter
deemed on).

TABLE 1. Main default system parameters.

Fig. 8 considers a base network configuration with N1 =

100 SSIoTs, grid tightening parameterG1 = 6, and a network
scale factor s = 16. This scaling results in a network of
N16 = 16N1 = 1600 SSIoTs, with G16 =

√
16(6 + 1) −

1 = 27, yielding c = G2
16 = 729 overlapping clusters,

each comprising m = 10 members. The remaining system
parameters are specified in Table 1.

Fig. 9 presents the local (at cluster levels) and global
performance in terms of ROC curves for SNR = −10 dB. The
analysis is based on a network configuration with N1 = 100,
G1 = 3 and s = 1, resulting in an SSIoT network with
N = N1 = 100 SSIoTs and c = G2

1 = 9 overlapping clusters,
each containing m = 10 members. The remaining system
parameters are detailed in Table 1. Local decision thresholds
were configured to achieve the local false alarm probability
of Pfa = 0.2 for all clusters, leading to local detection
probabilities of approximately 0.54, 0.53, 0.59, 0.54, 0.58,
0.65, 0.62, 0.65, and 0.68 for clusters 1 to 9, respectively.
The corresponding global metrics were Pfa ≈ 0.02 and
Pd ≈ 0.65.
The primary aim of Fig. 9 is to illustrate the local

performances, demonstrate the cooperation gain, and

FIGURE 8. A single snapshot of actual SHG (a) and the corresponding
estimated SHGs (b, c). The SHG in (b) adopts Step 2 of Algorithm 1,
whereas (c) does not. The estimated SHGs resulted from 27 × 27
10-member clusters formed from 1600 SSIoTs.

evaluate the global performance both from simulation and
theory. The intermediate global ROC curve in Fig. 9a
represents the actual global performance, which deviates
noticeably from the upper ROC curve. This discrepancy
arises from the fact that the theoretical expressions for global
probabilities of detection and false alarm from [23] assume
uncorrelated decisions under the k-out-of-c combining rule.
Thus, incorporating correlated shadowing into the channel
model introduces a significant deviation from the theoretical
predictions.

Unfortunately, the derivation of theoretical expressions
for these probabilities under correlated shadowing is highly
challenging, if not impractical. This difficulty arises from
the high complexity of modeling the correlation between
clusters’ decisions within the current network framework:
since each hard decision results frommultiple sensors that are
randomly distributed within a cluster, it becomes intricate to
generalize a model that captures the dependencies accurately.

Fig. 9b illustrates the scenario where λ = 1, representing
nearly uncorrelated shadowing. As a result, the clusters’
decisions are approximately uncorrelated. In this case, the
theoretical and empirical ROC curves derived under the
assumption of independent decisions align closely with
the simulated ROC, confirming the validity of the theoretical
model for uncorrelated scenarios.

Another important aspect to emphasize is the relationship
between the local and global probabilities of false alarm
and the corresponding probabilities of detection. The local
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FIGURE 9. Local and global performances of the overlapped-clustering
strategy.

decision thresholds adopted in Fig. 9 were determined to
achieve a local Pfa = 0.2 for all clusters, which led to a global
Pfa ≈ 0.02. This result highlights that the false alarm rate at
the cluster level must be sufficiently high to avoid a near-zero
global Pfa. Unless the global ROC curve is ideal (Pfa = 0 and
Pd = 1), a near-zero global Pfa will possibly result in a low
global Pd, because the operating point will fall away from the
knee of the ROC curve, in the left direction.

In practical terms, to ensure that the global Pfa and
Pd are close to the knee of the ROC curve, where the
trade-off between detection and false alarms is typically most
favorable, the local Pfa must be set significantly higher than
the expected global Pfa.

C. STATISTICAL ANALYSIS
Before proceeding, it is important to further clarify the
definition of the spectrum hole geolocation detection rate.
An SHGDR of 0.8, for example, should not be interpreted as
an estimate of the probability of detecting a spectrum hole.
Rather, it means that 80% of the instances of spectrum hole
presence and absence over the whole coverage area have been
correctly identified. For further illustration, consider Fig. 8b
and Fig. 8c. An SHGDR of 0.8 implies that the gray andwhite
regions in Fig. 8b align with their counterparts in Fig. 8c with
80% accuracy.

That said, Fig. 10 gives the histogram of the SHGDR for
10000 sensing events. Themain system parameters are shown
in the figure, and the remaining ones are listed in Table 1. The
mean SHGDR is ≈ 0.85, with a variance of ≈ 0.005. Notice
the local Pfa = 0.3, yielding near-perfect global decisions.
The remaining figures of this section show the mean,

maximum, minimum and the variance of the SHGDR when
important system parameters are varied. For the sake of
conciseness, the results presented in this section are restricted
to the effect of those parameters that are directly related to the
overlapped-clustering approach. Nonetheless, the MATLAB
code [34] can be easily adapted to allow for the analysis of
other parameters as well.

Fig. 11 presents the SHGDR as a function of the SNR.
The SHGDR consistently improves as the SNR increases,

FIGURE 10. Histogram of the spectrum hole geolocation detection rate.

which is an expected outcome. The variance of the SHGDR
is notably low across all SNR values, indicating robust
SHG detection performance. For SNR values above −10 dB,
near-perfect global detection probability (Pd ≈ 1) and
negligible global false alarm probability (Pfa ≈ 0) have been
achieved, which suggests that the system is highly effective at
distinguishing between the states of the PU transmitter even
under challenging noise conditions. These near-perfect global
probabilities also bring certainty to a vacant spectrum being
caused by shadowed regions, not by the off state of the PU
transmitter.

FIGURE 11. Statistics of spectrum hole geolocation detection rate versus
SNR.

Fig. 12 shows the SHGDR as a function of the shadowing
standard deviation. The SHGDR decreases as σs increases,
with a particularly pronounced drop at higher values,
reflecting the increased uncertainty introduced by significant
shadowing effects. Despite this, the system maintains reason-
able performance, with low variance, global Pd > 0.96 and
near-zero Pfa for σs < 8 dB. This behavior underscores the
robustness of the system in handling moderate shadowing,
though extreme shadowing impacts accuracy due to the
performance loss of local spectrum sensing.

Fig. 13 illustrates the SHGDR as a function of the
total number of SSIoTs. The SHGDR improves slightly
and stabilizes as N1 increases. The initial improvement is
achieved until N1 reaches a value beyond which clustering
starts to leave SSIoTs outside any cluster (see Fig. 3). This
is because the chance of having SSIoTs not belonging to any
cluster increases as N1 increases and the number of clusters
is maintained. The mean SHGDR remains consistently
high, with minimal variance, indicating reliable performance
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FIGURE 12. Statistics of spectrum hole geolocation detection rate versus
standard deviation of the shadowing, σs.

across network sizes. The near-zero global Pfa and a global
Pd > 0.98 for N1 > 400 further affirm the system’s
effectiveness.

FIGURE 13. Statistics of spectrum hole geolocation detection rate versus
the total number of SSIoTs, N1.

Fig. 14 depicts the SHGDR as a function of the grid
tightening parameter, G1, which is the square root of
the number of clusters, c, when s = 1. The SHGDR
increases as G1 grows, reaching a plateau at higher values.
This trend reflects the benefits of increasing the spatial
resolution of clustering, which improves the system’s ability
to detect spectrum holes accurately. The variance remains
low, and the global probabilities indicate that the cooperative
decision-making process remains effective. For example,
near-zero global Pfa and a global Pd > 0.98 has been
achieved for G1 > 15. The observed stability in the
SHGDR suggests that beyond a certain cluster density, further
increasing G1 results in diminishing returns.

Since diminishing returns are attained by increasing the
cluster density, one should opt for the smallest number of
clusters that yields a desired SHGDR, since the control
overhead required to transmit the clusters’ decisions to the
fusion center grows linearly with the number of clusters.

The influence of the number of SSIoTs per cluster in the
SHGDR is demonstrated in Fig. 15. The SHGDR stabilizes
after an initial improvement asm increases. This trend reflects
the role of intra-cluster cooperation, where larger cluster sizes
enhance local decision reliability. The system demonstrates
low variance in SHGDR and Pd ≈ 0.99 around m = 15,
with negligible false alarms. The results suggest that beyond
a certain point, increasingm yields diminishing returns, as the

FIGURE 14. Statistics of spectrum hole geolocation detection rate versus
the square root of the number of clusters, G1.

benefits of additional sensors per cluster are limited by the
overall system configuration.

Moreover, one must recall from Section IV-C that the
computational complexity of the PRIDe detector grows as
O(nm2), meaning that large numbers of SSIoTs per cluster
are not attractive also from the computational complexity
perspective. Owed to the fact that computational complexity
is often direct proportional to latency, increasing m may
delay the computation of the decision on the spectrum
occupancy state. The increase of m for a fixed number of
clusters also increases the amount of control overhead to
send sensing information to the fusion center, which may be
undesirable.

FIGURE 15. Statistics of spectrum hole geolocation detection rate versus
the number of SSIoTs per clusters, m.

Fig. 16 shows the SHGDR as a function of the number
of samples per SSIoT, n. It can be noticed that when n
is around 150, the maximum value of the mean SHGDR
is attained. Surprisingly, larger values of n do not bring
performance improvements to the mean SHGDR, although
the probability of detection in each cluster consistently
increases with n, as expected. This confirms that increasing
n improves local detection, though not necessarily global
geolocation accuracy. The variance of the SHGDR also
attains its smaller value around n = 150. Zero global Pfa
and a global Pd > 0.93 have been achieved over all values
of n.

The influence of the shadowing correlation length, λ,
on the SHGDR is shown in Fig. 17. Small values of λ
produces small SHGDR, with this metric monotonically

VOLUME 13, 2025 13



D. A. Guimarães: Spectrum Hole Geolocation for Database-Driven IoT-Enabled DSA

FIGURE 16. Statistics of spectrum hole geolocation detection rate versus
the number of samples per SSIoT, n.

increasing as λ increases. The same pattern is observed in
regard to the dispersion of the SHGDR.

The behavior observed in this figure can be interpreted
in light of Fig. 6, where it can be seen that smaller
shadowing spatial correlations produce point-wise spectrum
holes, which are intentionally undetectable due to the action
ofAlgorithm 1. As λ increases, isolated point-wise spectrum
holes tend to become rarer, and Algorithm 1 starts acting as
intended, increasing the SHGDR.

The local probability of detection was around 0.91 for
λ = 0.01 (which is the smallest λ in Fig. 17), going to around
0.96 for the other values of λ. Zero global Pfa and a global
Pd > 0.99 have been achieved over all values of λ.

FIGURE 17. Statistics of spectrum hole geolocation detection rate versus
the shadowing correlation length, λ.

The results across all figures highlight the robustness and
reliability of the proposed system under varying conditions.
The low variance in SHGDR in all scenarios underscores
consistent detection performance, while the near-zero global
false alarm probabilities and high detection probabilities
demonstrate the effectiveness of cooperative sensing in
determining the state of the PU transmitter with accuracy.
However, the system exhibits high sensitivity to the SNR and
σs.

Lastly, the determination of an optimum set of system
parameters is not straightforward from the results presented
in this section, mainly because the influence of a given
parameter is dependent of the other parameters. Nonetheless,
an attractive set of parameters could be: SNR = −5 dB,
N = N1 = 500, G = G1 = 20 and m = 15, which were
those adopted to generate Fig. 10.

D. COMPLEMENTARY DISCUSSIONS
1) COMPARISON WITH EXISTING METHODS
To the best of the author’s knowledge, only one other
spectrum hole geolocation method exists besides the pro-
posed overlapped clustering approach, which is based
on propagation (or coverage) prediction. Comparing the
present method with a propagation prediction approach
would require real or hypothetical digital terrain data (e.g.,
digital elevation maps) and commercial coverage prediction
software. However, this would hinder statistical comparisons
unless numerous real scenarios were analyzed, making
such a comparison practically unfeasible. Additionally, since
coverage predictionmethods do not produce real-time results,
the comparison would be inherently unfair to the proposed
method.

2) THE CHOICE OF CLUSTER-LEVEL DETECTORS
Any other detector suitable for CSS with data fusion can
replace the PRIDe without requiring modifications to the
overlapped clustering approach. The impact on spectrum hole
geolocation performance will depend on how the chosen
detector compares to PRIDe in terms of spectrum sensing
performance, potentially leading to either improvement or
degradation, according to the improvement or degradation of
the alternative detector with respect to PRIDe.

3) PRACTICAL FEASIBILITY
The practical feasibility of the overlapped clustering strategy
for spectrum hole geolocation assumes that a dense IoT
network (or a similar network) is already deployed and
that its administrator opts to leverage spectrum trading
revenues by adapting the network to accommodate the largest
possible number of SSIoTs. This presents themost significant
limitation for implementation, primarily due to hardware
constraints in converting a standard IoT device into an SSIoT.
Some directions towards the implementation of spectrum
sensors can be found in [31] and references therein.

Once the SSIoT network is deployed, the challenges asso-
ciated with implementing the spectrum sensing algorithm
become considerably smaller, primarily dictated by the
complexity of cluster formation and the fusion and processing
of spectrum sensing data. The next major hurdle is the
establishment of the spectrum market; potential approaches
for achieving this are explored in the seminal work [15].

4) THE CHOICE OF CLUSTERING ALGORITHM
The overlapped clustering strategy was designed with four
main objectives: 1) to provide sufficient spatial resolution
for accurate spectrum hole geolocation; 2) to achieve low
complexity, thus minimizing the computational cost of
the clustering process; 3) to facilitate the straightforward
definition of cluster locations; and 4) to ensure uniform
cluster sizes, enabling the reuse of the same spectrum
sensing algorithm across all clusters, which helps reduce
complexity. It is important to highlight that adopting
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alternative clustering methods may not necessarily align with
the proposed spectrum hole geolocation approach, potentially
increasing complexity and requiring modifications to the
overall geolocation strategy to accommodate the clustering
method rather than the other way around.

VI. CONCLUSION
This work proposed a novel approach to address the challenge
of spectrum hole geolocation in dynamic spectrum access
systems by leveraging an overlapped-clustering strategy
within a database-driven IoT-enabled framework. The results
demonstrated that the integration of cooperative spectrum
sensingwith overlapped clusters provides robust performance
in detecting spectrum holes while maintaining spatial resolu-
tion for accurate geolocation. The approach takes advantage
of the Pietra-Ricci index detector, whose low complexity
and high performance are favorable to the demands of
lowering energy consumption and processing burden of the
spectrum sensing information coming from a high number of
sensors.

The simulation results validated the effectiveness of the
proposed solution under varying system parameters, includ-
ing SNR, shadowing standard deviation, cluster density,
and SSIoT network size. The SHG detection rate exhibited
high mean values with low variance across all tested
scenarios, confirming the robustness and reliability of the
proposed technique. The interplay between cluster overlap
and shadowing effects was shown to have minimal adverse
impact, likely due to the highly-deleterious influence of
the shadowing standard deviation. Moreover, the results
highlighted the necessity of balancing local and global
decision thresholds to optimize detection performance.

While the proposed strategy demonstrated accuracy in
regard to the spectrum hole geolocation estimation, oppor-
tunities for further research remain. The following initiatives
could be explored:

• Assess the impact of interference on primary users when
secondary networks rely on spectrum hole geolocation
information derived from the proposed technique.

• Perform comparative studies with standalone (non-
cooperative) sensors, which could provide additional
insights into performance trade-offs, mainly related to
the total number of SSIoT nodes needed.

• Explore the use of unequal cluster sizes to address
inter-cluster performance disparities.

• Integrate artificial intelligence or machine learning for
adaptive parameter tuning, spectrum sensing optimiza-
tion or adaptive clustering, aiming at enhancing the
overall system performance.

• Evaluate the spectrum hole geolocation detection rate
as a function of other parameters, such as the flip
control parameters τ01 and τ10 inAlgorithm 1, the target
local Pfa, the hard-decision combining parameter k , the
path-loss exponent η, and the PU transmitter location
(xt, yt).

• Perform additional statistical analyses, for example the
analysis of variance (ANOVA), aiming at assessing the
interaction among system parameters.

In conclusion, the proposed overlapped-clustering strategy
represents a promising advancement for real-time spectrum
hole geolocation for dynamic spectrum access in current and
future wireless communication networks, providing a novel
framework to enable radio-frequency spectrum sharing.

APPENDIX A
EXPECTED VALUE OF P(D)
The received power at a distance d from the transmitter is

P(d) = Pt

(
d
d0

)−η

, (18)

where Pt is the transmit power, d0 is a reference distance, and
η is the path loss exponent.
The distance between the PU transmitter located at (xt, yt)

and an SSIoT located at (x, y) is given by

d =

√
(x − xt)2 + (y− yt)2. (19)

Since the SSIoTs are uniformly distributed over a square
area with side length L, the expected value E[P(d)] is
obtained by integrating P(d) over the square area and
normalizing by the area, that is,

E[P(d)] =
1
L2

∫ L

0

∫ L

0
Pt

(
d
d0

)−η

dx dy. (20)

Substituting the expression for d into the integral, then

E[P(d)] =
Pt

L2d−η
0

∫ L

0

∫ L

0

[
(x − xt)2 + (y− yt)2

]−
η
2
dx dy.

(21)

The double integral in the given expression, though
expressed in closed form, is analytically complex and
often requires numerical methods for evaluation. However,
numerical problems may arise, particularly when the PU
transmitter is located within the coverage area of the SSIoT
network. This issue stems from the term d−η, which increases
sharply as d → 0, especially for small values of η.
Such behavior results in large outliers that influence the
calculation, yielding instability. To address this numerical
issue, a Monte Carlo integration can be adopted [34],
although instabilities may still occur for d in the vicinity of
zero.

APPENDIX B
EXPECTED VALUE OF 10S/10

Given that S is a Gaussian random variable with zero mean
and standard deviation σs, its probability density function
(PDF) is

fS (s) =
1√
2πσ 2

s
exp

[
−

s2

2σ 2
s

]
. (22)

VOLUME 13, 2025 15



D. A. Guimarães: Spectrum Hole Geolocation for Database-Driven IoT-Enabled DSA

The expected value E[10S/10] can be calculated using
the definition of the expectation of a function of a random
variable, that is,

E[10S/10] =

∫
∞

−∞

10s/10fS (s) ds. (23)

Recognizing that 10s/10 = es ln(10)/10, and rearranging to
form a completing-the-square term in the exponent, then it
follows that

E[10S/10] =

∫
∞

−∞

1√
2πσ 2

s
exp

[
−

1
2σ 2

s

(
s2 −

sσ 2
s ln(10)
5

)]
ds.

(24)

Since

s2 −
sσ 2

s ln(10)
5 =

(
s−

σ 2
s ln(10)
10

)2
−

(
σ 2
s ln(10)
10

)2
, (25)

after some manipulations the integral can be written as

E[10S/10] = e

(
σ2s ln(10)

10

)2

2σ 2
s

∫
∞

−∞

e
−

(
s− σ2s ln(10)

10

)2

2σ 2
s

√
2πσ 2

s
ds. (26)

The integral now involves a shifted Gaussian PDF, which
integrates to 1. Then, it finally follows that

E[10S/10] = exp

[
σ 2 ln2(10)

200

]
. (27)

APPENDIX C
EXPECTED VALUE OF 1/σ2

The expected value of 1/σ 2
= 1/[(1 + ζU )σ̄ 2] is the

expected value of a function of the uniform random variable
U ∼ U[−1, 1], which is

E
[
1
σ 2

]
=

1
2σ̄ 2

∫ 1

−1

1
1 + ζu

du. (28)

Performing the substitution t = 1+ ζu, then dt = ζdu and
du = dt/ζ . When u = −1, t = 1 − ζ , and when u = 1,
t = 1 + ζ . Thus, it follows that

E
[
1
σ 2

]
=

1
2σ̄ 2ζ

∫ 1+ζ

1−ζ

1
t
dt. (29)

Since the integral of 1/t is ln |t|, then, after some simple
manipulations, it is found that

E
[
1
σ 2

]
=

1
2σ̄ 2ζ

ln
(
1 + ζ

1 − ζ

)
(30)

and

E
[
1
σ 2

]
=

1
σ̄ 2 (31)

for 0 < ζ < 1 and ζ = 0, respectively.
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