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Abstract: This paper presents a survey of performance metrics applicable to spectrum
sensing and spectrum hole geolocation within the context of dynamic spectrum access
(DSA) in cognitive radio networks. While grounded in binary hypothesis testing, the review
emphasizes metrics specialized for sensing reliability, interference risk, spatial accuracy,
and network efficiency. The work also highlights trade-offs among metrics and provides
guidelines for their practical application. A key contribution of this work is to provide
researchers and practitioners with a comprehensive set of evaluation tools, extending well
beyond the applicability of the conventional probabilities of detection and false alarm.
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1. Introduction
Spectrum sensing [1–11] is widely acknowledged as a fundamental process for en-

abling dynamic spectrum access (DSA) [12]. It involves monitoring the radio-frequency
(RF) spectrum to identify available frequency bands, allowing secondary users (SUs) to
share the spectrum with primary users (PUs), thereby enhancing the efficiency of spec-
trum utilization.

An available frequency band is often referred to as a spectrum hole, or white-space. It
is a segment of the RF spectrum temporarily unoccupied by any licensed user or PU within
a defined geographic region and time interval. In essence, it represents the space and time
information on frequencies available for unlicensed SUs to employ for communication
purposes without risking interference with the incumbent PUs.

The notion of spectrum holes emerges from the dynamic nature of RF usage and the
environmental characteristics that affect signal propagation. While specific portions of the
spectrum are allocated to licensed users, these users may not be active across all allocated
bands at every moment and location. Consequently, certain areas and time periods often
have portions of the spectrum that remain unused or underutilized, giving opportunities
for secondary users to access these frequencies for their own communication needs.

When a secondary terminal searches for a vacant band to enable DSA, the spatial
alignment of the spectrum hole with the terminal’s location is essential. As long as the
terminal remains in a fixed position, a detected spectrum hole is beneficial only if it
corresponds to that precise location; otherwise, it has no utility. Misalignment between the
detected spectrum hole and the terminal’s location can result in unintended interference
with the primary network.

It is important to emphasize that the declaration of a spectrum hole depends not only
on the activity status of the PU transmitter but also on the propagation characteristics
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within the coverage area. Even if a PU transmitter is active, certain regions within its
coverage area may experience diminished signal strength or attenuation due to factors
such as distance, terrain, and obstructions. Consequently, SUs might still be able to operate
within these regions without causing harmful interference to the primary communication
system, as the PU network may not reliably reach these areas. This creates potential access
opportunities for SUs without disrupting authorized services.

The detection of a spectrum hole in time, frequency and space can be formulated
as a statistical decision process. Generally, statistical decision theory offers a structured
approach for making decisions under conditions of uncertainty, a methodology integral
to various disciplines, including economics, engineering, and applied sciences, where
decision-making relies on data with inherent variability.

Statistical decision theory is a foundational element of mathematical statistics, par-
ticularly within the domain of statistical inference. It provides a rigorous framework for
formalizing decision-making under uncertainty by employing probabilistic and statisti-
cal models to evaluate the potential consequences associated with different courses of
action. The modern formulation of this theory was introduced by [13], who conceptualized
decisions as actions linked to their possible outcomes through a loss function. Signifi-
cant advancements have since been made, notably by [14], who extended the Bayesian
decision-theoretic approach, and by [15], who developed methods for comparing statisti-
cal experiments.

In the context of spectrum sensing, statistical decision theory is frequently employed
in the design of test statistics that support the associated binary decision process. Although
a range of performance metrics can be used to evaluate such a decision-making process,
spectrum sensing research typically emphasizes the use of two principal metrics: the
probability of detection, Pd, and the probability of false alarm, Pfa. The former denotes
the probability of correctly identifying an occupied channel, while the latter represents the
probability of incorrectly identifying a vacant channel as occupied.

While these two metrics are widely used in the literature and are sufficient in many
scenarios, other metrics can be employed to provide a broader evaluation of spectrum
sensing performance. Motivated by this consideration, the present study reviews a large set
of metrics commonly used in binary decision processes and explores their adaptation and
applicability to the context of spectrum sensing. Moreover, the survey also addresses the
important process of spectrum hole geolocation, which refers to the localization of vacant
bands in the spatial domain. Metrics tailored to this process are also discussed herein.

1.1. Related Work

The foundational survey presented in [1] introduces the concept of dynamic spec-
trum access, discussing spectrum sensing techniques, spectrum management, and the
architecture of cognitive radio networks. The survey by [2] categorizes spectrum sensing
techniques, including energy detection, matched filtering, and cyclostationary feature
detection, while also addressing cooperative sensing and challenges such as noise uncer-
tainty and sensing time. Ref. [3] delves into the fundamental limits of spectrum sensing,
exploring detection performance under various channel conditions and proposing solu-
tions to key challenges. The survey paper [4] provides an in-depth analysis of cooperative
spectrum sensing methods, discussing various cooperation strategies, their benefits, and
associated challenges, while exploring the trade-offs between sensing performance and
cooperation overhead.

Wideband spectrum sensing techniques, including sub-Nyquist sampling and com-
pressive sensing, are discussed in [5], which addresses the challenges of high sampling rates
and computational complexity. A comprehensive overview of spectrum sensing techniques,
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including energy detection, autocorrelation, Euclidean distance, wavelet, and matched
filter-based methods, highlighting their advantages and limitations, is provided in [6].

The extensive review in [7] covers narrowband and wideband sensing techniques,
including compressive sensing and machine learning approaches, and addresses challenges
such as hardware limitations and spectrum mobility. An in-depth analysis of wideband
spectrum sensing algorithms, emphasizing sub-Nyquist approaches and their applicability
in cognitive radio networks, is presented in the survey [8]. The survey in [9] explores
recent advancements in spectrum sensing, emphasizing full-duplex paradigms, machine
learning enhancements, and applications in IoT and 5G systems, while also outlining future
research challenges.

The tutorial paper [10] provides an in-depth examination of spectrum sensing meth-
ods, including energy detection, matched filtering, and cyclostationary feature detection,
highlighting their theoretical foundations, practical applications, and performance metrics
such as detection probability, false alarm rate, and the SNR wall. Finally, the survey in [11]
examines both traditional and modern spectrum sensing techniques, including machine
learning-based methods, discussing their applicability in 5G cognitive radio networks.

1.2. Contributions and Organization of the Paper

This survey reviews a large set of metrics commonly used in binary hypothesis testing
and explores their adaptation and applicability to spectrum sensing. Moreover, the survey
also addresses the process of spectrum hole geolocation, which refers to the localization of
vacant bands in the spatial domain. Metrics tailored to this process are also discussed.

Despite the substantial contributions provided by the aforementioned surveys and
tutorials, none address performance metrics in spectrum sensing with the comprehensive
depth found in the present work. While previous references primarily emphasize tech-
niques, methods, theoretical foundations, or implementation challenges, this work uniquely
offers an extensive and structured analysis exclusively focused on spectrum sensing and
spectrum hole geolocation performance metrics. This includes detailed discussions on de-
tection probability, false alarm rates, ROC curves, geolocation accuracy, and computational
efficiency, thereby establishing a robust framework essential for the precise evaluation and
comparison of spectrum sensing methodologies across various application scenarios.

The remainder of the paper is organized as follows. Section 2 introduces the statistical
basis for binary decision-making in spectrum sensing. Section 3 addresses performance
metrics applied to spectrum sensing. Section 4 presents geolocation metrics. Section 5
provides numerical examples and interpretations. Section 6 concludes the paper and
outlines future directions.

2. Statistical Foundations for Spectrum Sensing
This section addresses the basics of statistical detection theory [16–19] applied to the

spectrum sensing context.

2.1. Binary Hypothesis Testing in Spectrum Sensing

Spectrum sensing is commonly formulated as a binary hypothesis testing problem [20–22].
A secondary user must decide whether a primary user signal is present or absent in a
frequency band, based on a sequence of observed signal samples. The hypotheses are
defined as H0 (the spectrum is idle, i.e., the PU signal is absent), and H1 (the spectrum is
occupied, i.e., the PU signal is present).

Let X be a random variable representing the received signal observation, whose
statistical distribution depends on the underlying hypothesis. Under H0, X∼ f0(x); under
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H1, X∼ f1(x). A decision rule δ(x) maps an observed value x to one of the hypotheses,
that is,

δ(x) =

H0 if x ∈ R0,

H1 if x ∈ R1,
(1)

where R0 and R1 are the decision regions. The reliability of this decision process is
characterized by two types of statistical errors [23]: in Type I Error (false alarm), H0 is true,
but δ(X) = H1 with probability

α = Pr[δ(X) = H1|H0] =
∫
R1

f0(x) dx. (2)

In Type II Error (missed detection), H1 is true, but δ(X) = H0 with probability

β = Pr[δ(X) = H0|H1] =
∫
R0

f1(x) dx. (3)

The probability of missed detection, Pm = β, is the probability that the test fails to
detect the presence of a PU signal when the spectrum is occupied.

The probability of detection is defined as Pd = 1 − Pm = 1 − β, and the probability of
false alarm as Pfa = α. The trade-off between them plays a crucial role in DSA: reducing
false alarms increases spectrum utilization, while minimizing miss detections helps avoid
interference to licensed users [2].

The quantity 1 − β is also sometimes referred to as the statistical power of a
test. Formally, it is the probability of correctly rejecting H0 when H1 is true, that is,
Power = 1 − β = Pr[δ(X) = H1|H1].

2.2. Neyman–Pearson Criterion

The Neyman–Pearson (NP) framework provides a basis for constructing optimal
decision rules for hypothesis testing under constraints [18,20,21]. It establishes that, for a
fixed significance level α, the most powerful test, i.e., the one that maximizes Pd, is based
on the likelihood ratio [24]

Λ(x) =
f1(x)
f0(x)

. (4)

According to the NP lemma, the optimal decision rule is

δ(x) =

H1 if Λ(x) > η,

H0 otherwise,
(5)

where η is a decision threshold (or detection threshold) chosen to ensure that Pr[δ(X) =

H1|H0] = α.
This rule underlies classical spectrum sensing strategies, particularly energy detection

in additive white Gaussian noise (AWGN), where X corresponds to the energy of the
received signal over a sensing window. In such cases, the PDFs f0(x) and f1(x) are derived
from central and non-central chi-square distributions, respectively, and η is set to meet
regulatory or design constraints on Pfa.

2.3. Bayesian Approach to Spectrum Sensing

The Bayesian approach [14,25–27] to spectrum sensing incorporates prior probabilities
about spectrum occupancy into the decision process. Let Pr(H0) and Pr(H1) denote the
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prior beliefs about the absence or presence of the PU signal in the sensed band. Given an
observation x, Bayes’ theorem yields the posterior probabilities

Pr(H0 | x) =
Pr(H0) f0(x)

Pr(H0) f0(x) + Pr(H1) f1(x)
, (6)

Pr(H1 | x) =
Pr(H1) f1(x)

Pr(H0) f0(x) + Pr(H1) f1(x)
. (7)

The Bayesian decision rule selects the hypothesis with the higher posterior probability,
which is equivalent to minimizing the expected loss under a specified cost function. With a
symmetric 0, 1 loss function, the decision reduces to

Pr(H1) f1(x)
Pr(H0) f0(x)

> 1, (8)

which corresponds to a likelihood ratio test with an adjusted threshold incorporating
prior information.

Bayesian detectors are especially suitable in cooperative sensing or spatially correlated
environments, where historical data or models can be used to update priors dynamically.
Although optimal in the Bayesian sense, these detectors require accurate prior knowledge,
which may not always be available or easily estimable in practice.

3. Performance Metrics for Spectrum Sensing
In the context of a binary hypothesis test, several metrics are commonly used to

evaluate performance of spectrum sensing [28]. These metrics provide insights into the
accuracy, precision, and reliability of the test in distinguishing between the null and
alternative hypotheses.

3.1. Confusion Matrix

A confusion matrix is a performance measurement tool used to evaluate classification
models [29]. In the context of spectrum sensing, it assesses the effectiveness of a spectrum
sensing algorithm in detecting the presence or absence of the PU signal in a given frequency
band. For binary classification in spectrum sensing, the confusion matrix can be structured
as shown in Table 1, where we have:

• TP (true positives): correct detection of a PU signal when it is present.
• FN (false negatives): missed detection of a PU signal when it is actually present.
• TN (true negatives): correct identification of spectrum availability when no PU signal

is present.
• FP (false positives): false detection of a PU signal when the spectrum is actually idle.

Table 1. Confusion matrix.

Predicted Busy Predicted Idle

Actual busy True positives (TP) False negatives (FN)

Actual idle False positives (FP) True negatives (TN)

Several metrics are derived from the confusion matrix to evaluate the performance of
spectrum sensing, as shown in the sequel.
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3.2. True Positive Rate

The true positive rate, TPR, also known as sensitivity or recall [30], can be interpreted
as the estimate of the probability of detection, Pd. This rate measures the proportion of
occupied channels correctly identified by the spectrum sensor, that is,

TPR =
TP

TP + FN
. (9)

A high TPR corresponds to a high probability of detecting active PUs, which is crucial
for avoiding harmful interference to licensed users.

3.3. True Negative Rate

The true negative rate, TNR, which is also referred to as specificity, measures the
proportion of idle channels that are correctly identified as vacant, that is,

TNR =
TN

TN + FP
. (10)

A high TNR implies that the sensor accurately identifies opportunities for transmission
without mistaking them for occupied bands. This is especially important to ensure efficient
use of the spectrum.

3.4. False Positive Rate

The false positive rate, FPR, can be interpreted as the estimate of the probability of false
alarm, Pfa. This rate measures the fraction of idle channels that are incorrectly classified as
occupied, that is,

FPR =
FP

FP + TN
. (11)

In DSA systems, a high false positive rate reduces spectrum efficiency by under-
utilizing available spectrum. This metric is complementary to the specificity, that is,
FPR = 1 − TNR.

3.5. False Negative Rate

The false negative rate, FNR, can be interpreted as the estimate of the probability of
missed detection, Pm. This rate corresponds to the proportion of occupied channels that are
incorrectly classified as idle, that is,

FNR =
FN

TP + FN
. (12)

In spectrum sensing, this metric quantifies the risk of interference to primary users,
since undetected PU activity may result in harmful secondary transmissions. Hence,
minimizing FNR is critical for regulatory compliance and coexistence.

These metrics can be empirically estimated using the confusion matrices obtained
from repeated sensing trials under known PU presence conditions, and they provide
complementary insights to the analytical performance metrics such as Pd and Pfa. They are
also fundamental for evaluating machine learning-based spectrum sensing approaches, in
which detectors are trained using labeled datasets.

In the evaluation of spectrum sensing strategies, especially when empirical data or
classification-based approaches are used, several metrics provide insight into decision
reliability beyond detection and false alarm probabilities. Among them, accuracy, positive
predictive value (PPV), and negative predictive value (NPV) can be adopted in performance
analysis. These metric are addressed in the next three subsections.
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3.6. Accuracy and Balanced Accuracy

The accuracy [30] is defined as the proportion of correct classifications, both idle and
occupied spectrum states, over the total number of sensing instances, that is,

Accuracy =
TP + TN

TP + TN + FP + FN
. (13)

While accuracy provides an overall measure of correctness, it may be misleading
in spectrum sensing applications where the class distribution is highly imbalanced. For
instance, if the primary user activity is rare and the idle state dominates. In such scenarios,
a detector biased toward predicting spectrum as idle may achieve high accuracy while
failing to fulfill its interference avoidance role. To address this, the balanced accuracy metric
averages the true positive rate and true negative rate, that is,

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
. (14)

This metric is particularly informative when the costs of missed detections and false
alarms are asymmetric.

3.7. Positive Predictive Value

The positive predictive value (PPV), also referred to as precision [30], quantifies the
reliability of decisions indicating that the spectrum is occupied. It is given by

PPV =
TP

TP + FP
. (15)

A high precision implies that most positive (PU-present) decisions are correct, re-
ducing the likelihood of false positives and thus minimizing underutilization of available
spectrum. This is essential in DSA systems aiming to maximize spectral efficiency without
excessive conservatism.

3.8. Negative Predictive Value

The negative predictive value (NPV) measures the reliability of decisions indicating
that the spectrum is idle. This metric is calculated as

NPV =
TN

TN + FN
. (16)

High NPV reflects that most decisions allowing SU transmission are accurate, implying
a low probability of harmful interference with PUs. This is particularly critical in environ-
ments with low signal-to-noise ratio (SNR), where missed detections (false negatives) are
more likely.

These metrics are particularly useful in the analysis of data-driven sensing algorithms,
such as those based on supervised learning or adaptive detection, where confusion matrices
from labeled datasets serve as the basis for empirical performance evaluation.

3.9. F1 Score

The F1 score is a composite metric that captures the trade-off between precision (posi-
tive predictive value) and recall (true positive rate), particularly useful in the assessment of
spectrum sensing methods under class imbalance, such as scenarios where PU transmis-
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sions are infrequent compared to idle spectrum periods [30]. It is defined as the harmonic
mean of precision and recall, that is,

F1 = 2 · Precision × Recall
Precision + Recall

. (17)

In spectrum sensing, the F1 score offers a balanced measure of performance when
both false alarms and missed detections carry significant consequences. High F1 scores
indicate that a sensing strategy performs well in terms of detecting occupied bands (recall)
and avoiding false alarms (precision), which is particularly important in dynamic spectrum
access where both spectrum efficiency and protection of incumbents are critical.

This metric is especially applicable when evaluating sensing algorithms using empiri-
cal data or learning-based models, as it provides a single-value summary that reflects the
interplay between spectrum utilization and interference mitigation.

In spectrum sensing, the performance of detection algorithms can be visualized using
graphical tools such as the receiver operating characteristic (ROC) curve [29,30] and the de-
tection error trade-off (DET) curve [31]. These curves provide complementary insights into
the trade-offs between different types of decision outcomes, particularly when adjusting
detection thresholds. These curves are addressed in the following.

3.10. ROC Curve and AUC

The ROC curve plots the true positive rate (TPR, which is related with the probability
of detection, Pd) against the false positive rate (FPR, which is related with the probability
of false alarm, Pfa) for various decision threshold values. It visually captures the trade-off
between detecting the presence of a PU signal and avoiding false alarms, as illustrated
by Figure 1.

Figure 1. Examples of ROC curves.

The spectrum sensing performance can be assessed by the shape and position of the
ROC curve relative to the ideal point at the top-left corner and the dashed diagonal (called
line of no discrimination, or line of random guess). A well-performing sensing algorithm
yields an ROC curve that bends sharply toward the top-left corner, indicating high detection
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capability with low false alarms. The diagonal represents random classification behavior,
where Pd = Pfa. All curves lying above this line indicate detectors with some degree of
discriminative power. In Figure 1, typical shapes of ROC curves are shown. They can be
interpreted as follows:

• ROC curve 1: represents the best performance among those shown, which can
be achieved as a result of the cooperation gain in cooperative spectrum sensing
(CSS) [10,32]. It achieves high detection probability (Pd) even at low false alarm rates
(Pfa), indicating both high sensitivity and specificity.

• ROC curve 2: also demonstrates good performance, with a Pfa lower bound that is
typical of a CSS with decision fusion under the OR combining rule and errors in the
report channel [10].

• ROC curve 3: related to ROC 4, it shows the performance of a single SU, i.e., the local
ROC in a CSS scenario.

• ROC curve 4: it also shows the performance of a single SU in CSS with decision fusion,
but it represents the equivalent local performance as seen by the fusion center (FC)
due to errors in the report channel [10].

The increase in the SNR is the most commonly adopted alternative for improving the
performance of a given spectrum sensing technique. This improvement can also come from
changes in other system parameters, such as an increase in the number of samples collected
by the SUs or an increase in the number of SUs in cooperation. Different sensing techniques
can also perform differently under the same conditions [10].

The area under the ROC curve (AUC) serves as a scalar summary of overall perfor-
mance: the closer the AUC is to 1, the better the classifier is at distinguishing between
idle and occupied spectrum conditions. The approximate AUC values for the ROC curves
shown in Figure 1 are: ROC 1: AUC ≈ 0.96; ROC 2: AUC ≈ 0.87; ROC 3: AUC ≈ 0.84;
ROC 4: AUC ≈ 0.81; line of random guess AUC = 0.5. These AUC estimates highlight the
relative ranking of performance and illustrate how the ROC curve shape translates into
detection effectiveness.

3.11. DET Curve

The DET curve is an alternative to focus on the trade-off between error probabilities.
It plots the false negative rate (FNR,which relates with the missed detection probability, Pm)
against the false positive rate (FPR, which is related with the false alarm probability, Pfa),
often using a normal deviate (probit) scale on both axes. The probit scale is a numerical
transformation that maps probabilities between 0 and 1 to real numbers called Gaussian
deviates. It is defined by the inverse of the CDF of the standard normal distribution. For a
given probability p, the probit value is Φ−1(p), where Φ−1 is the standard normal quantile
function. This transformation expresses probabilities as corresponding z-scores under a
normal distribution. The result is a symmetric scale centered at zero). This transformation
stretches the regions of low error probabilities, making it easier to distinguish between
classifiers with high accuracy, a situation common in well-calibrated spectrum sensing
systems. This allows near-linear DET curves when the detection errors are Gaussian-
distributed and helps highlight performance in low-error regions.

Figure 2 illustrates typical shapes of four DET curves, each corresponding to a different
detector or sensing configuration. These DET curves correspond to the ROC curves shown
in Figure 1, and can be interpreted as follows:

• DET curve 1: corresponds to the best trade-off between missed detections and false
alarms. The curve lies closest to the lower-left corner, indicating very low Pm for a
wide range of Pfa. It likely represents a highly discriminative detector (or system
configuration) operating under high-SNR regime.



Sensors 2025, 25, 3770 10 of 28

• DET curve 2: exhibits a performance slightly worse than the previous one, with higher
FPR and FNR. It suggests a system with moderate accuracy. Its steep descent suggests
that a relatively small increase in Pfa leads to a substantial reduction in Pm.

• DET curve 3: represents a moderate-performance situation with a balanced trade-
off between false alarms and missed detections. The curve’s shape indicates that it
performs consistently, though less optimally than the situations depicted by the DET
curves 1 and 2.

• DET curve 4: this is the least effective detector (or sensing configuration) shown. It lies
farther from the origin, indicating that it incurs higher error rates across all thresholds.
This curve may correspond to a detector under poor SNR conditions.

The dashed diagonal line represents the line of symmetry between Pfa and Pm on the
probit scale. The text annotation in the figure notes that for Gaussian distributions, the
slope of the DET curve reflects the ratio of standard deviations under hypotheses H0 and
H1. A more linear DET curve is consistent with normally distributed decision variables,
and the slope gives insight into the signal discrimination difficulty.

Overall, the DET curves provide a clear and scale-sensitive visualization of detection
system performance, particularly in low-error regimes where ROC curves may saturate.

Figure 2. Examples of DET curves.

A DET curve attains some advantages relative to a ROC curve. Firstly, it provides
better visualization at low error rates: in high-accuracy sensing systems, the ROC curve
tends to saturate near the top-left corner, while the DET curve, by using a Gaussian scale,
spreads this region, enabling finer differentiation among detection performances. The DET
curve also make it explicit the error trade-off representation: because both axes represent
error probabilities, the DET curve offers a direct interpretation of how reducing false alarms
may increase missed detections, and vice versa, information that is critical for designing
DSA systems that balance spectral efficiency with PU protection. Lastly, a DET curve
shows linear trends under Gaussian assumptions: if detection statistics exhibit Gaussian-
distributed errors, the DET curve approximates a straight line, simplifying comparative
analysis and threshold optimization.

Table 2 summarizes the main characteristics of ROC and DET curves in spectrum sensing.
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Table 2. Comparison between ROC and DET curves.

Feature ROC Curve DET Curve

Axes Pd vs. Pfa Pm vs. Pfa

Scale Linear Normal deviate (probit)

Shape Convex, top-left Near-linear for Gaussian errors

Interpretability Detection vs. false alarms Error trade-off visualization

Use case General performance overview Emphasis on error balancing

Ultimately, the choice between ROC and DET visualizations depends on the an-
alytical focus: ROC curves highlight detection capability, while DET curves highlight
error resilience.

3.12. Decision Error Probability

The decision error probability, Perror, is the weighted average of the false alarm and
missed detection probabilities, that is,

Perror = PfaPr(H0) + (1 − Pd)Pr(H1), (18)

where Pr(H0) and Pr(H1) are the prior probabilities of hypotheses H0 (spectrum idle) and
H1 (PU signal present), respectively. The first term of (18) accounts for the error probability
associated with false alarm events, and the second term accounts for the error probability
associated with missed detection events.

In practical applications, Perror can be estimated from observed sensing outcomes as

Perror =
FP + FN

TP + TN + FP + FN
, (19)

which corresponds to the proportion of incorrect sensing decisions.
Both the AUC and the Perror are particularly useful metrics when it is desired to

combine Pfa and Pd in a single metric, which is attractive, for instance: (i) when a ROC curve
cross another one, a situation that makes it difficult to establish performance comparisons;
(ii) when it is desired to reduce the amount of performance measurement values reported
in an article or other equivalent scientific document, due to space constraints; (iii) when
looking for easier visualization and fast interpretation of results.

3.13. Positive Likelihood Ratio

Likelihood ratios [33] are statistical measures that quantify how a sensing decision
modifies the belief about the presence or absence of a PU signal in the sensed band. In the
context of spectrum sensing, they serve to evaluate how informative a sensing outcome is in
distinguishing between occupied and idle spectrum states, especially when a probabilistic
interpretation of outcomes is required.

The positive likelihood ratio (PLR) is defined as the ratio of the true positive rate to
the false positive rate, that is,

PLR =
TPR
FPR

. (20)

This metric indicates how much more likely a detection (i.e., a decision that a PU signal
is present) corresponds to an actual occupied channel state rather than a false alarm. A
high PLR implies that positive sensing outcomes are strongly indicative of true PU activity,
which supports cautious spectrum access decisions aimed at minimizing interference.
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3.14. Negative Likelihood Ratio

The negative likelihood ratio (NLR) is defined as the ratio of the false negative rate to
the true negative rate, that is,

NLR =
FNR
TNR

. (21)

This metric describes how likely a sensing decision indicating spectrum availability
corresponds to a missed detection, as opposed to a correct classification. Lower NLR values
are desirable, as they imply that negative decisions (PU signal absent) are more reliable,
reducing the risk of transmitting over an occupied band.

Likelihood ratios are particularly useful in probabilistic reasoning frameworks such
as Bayesian spectrum sensing, where they help to update prior beliefs about spectrum
occupancy based on observed sensing outcomes. For instance, they can be integrated into
decision fusion schemes in cooperative sensing or used to adjust sensing thresholds under
varying noise and channel conditions.

Unlike simple accuracy-based measures, likelihood ratios do not depend on the preva-
lence of PU activity and are therefore more robust for performance evaluation in environ-
ments where class imbalance is pronounced. As such, they are valuable for quantifying the
discriminatory power of sensing algorithms in both analytical and empirical studies.

3.15. Matthews Correlation Coefficient

The Matthews correlation coefficient (MCC) is a scalar performance metric that quan-
tifies the quality of binary classifications, considering all four elements of the confusion
matrix: true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN) [34]. In spectrum sensing, MCC provides a balanced measure that reflects the reliabil-
ity of sensing decisions under varying conditions of signal presence and noise, including
heavily imbalanced datasets. The MCC is defined as

MCC =
TPTN − FPFN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (22)

It ranges from −1 to +1, with the following interpretations: MCC = +1 indicates
perfect classification (i.e., all decisions are correct), MCC = 0 indicates no better than
random guessing, and MCC = −1 indicates total disagreement between predictions and
actual spectrum occupation states.

The MCC is particularly advantageous in dynamic spectrum access scenarios where
the prevalence of primary user signals is much lower than that of idle spectrum, lead-
ing to imbalanced datasets. In such contexts, traditional accuracy metrics may appear
inflated due to the dominance of true negatives, whereas MCC correctly accounts for all
prediction outcomes.

In empirical evaluations, such as those involving datasets collected from real-world
or simulated sensing trials, MCC serves as a comprehensive indicator of classifier be-
havior across different operating points. It also supports fair comparison between sens-
ing algorithms that may be biased toward either avoiding false alarms or minimizing
missed detections.

Unlike metrics that focus on only one or two aspects of performance (e.g., Pd, Pfa, or ac-
curacy), MCC integrates detection capability and error trade-offs into a single interpretable
value. It is also robust under variations in class distribution, which is especially important
when evaluating adaptive or learning-based sensing methods operating under uncertain or
time-varying spectral environments.
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Therefore, the MCC is a valuable tool for assessing spectrum sensing performance,
especially in non-ideal conditions where simple metrics may fail to capture important
aspects of detection reliability.

3.16. Logarithmic Loss

The logarithmic loss, also known as log loss or cross-entropy loss, is a performance
metric that evaluates the quality of probabilistic predictions. In spectrum sensing, this
metric is particularly relevant when detection models produce probability estimates rather
than binary decisions. These estimates can be derived from soft-output classifiers, such as
logistic regression models, neural networks, or likelihood-based detectors.

Let the sensing model output a probability estimate p̂ for the presence of a PU signal,
where p̂ ∈ [0, 1]. For a single sensing instance with a true label y ∈ {0, 1} (0: idle, 1:
occupied), the log loss is defined as

LogLoss = −[y log( p̂) + (1 − y) log(1 − p̂)]. (23)

For a dataset of N sensing decisions, the total log loss is the average over all observa-
tions, that is,

LogLoss = − 1
N

N

∑
i=1

[yi log( p̂i) + (1 − yi) log(1 − p̂i)]. (24)

The log loss penalizes incorrect classifications, with a heavier penalty for confident
but wrong predictions. For example, predicting p̂ = 0.99 when y = 0 (i.e., predicting
spectrum as occupied when it is idle) incurs a much larger penalty than a less confident
wrong prediction (e.g., p̂ = 0.6 when y = 0). This characteristic makes log loss a sensitive
and informative measure of prediction quality in probabilistic detectors.

In machine learning-based spectrum sensing, where classifiers are trained using la-
beled data, the log loss serves both as a training objective (loss function) and a performance
metric. It encourages models not only to be accurate but also to calibrate their confidence
levels. This is critical in cognitive radio environments where misclassifications have asym-
metric costs, i.e., missed detections may lead to interference, while false alarms result in
underutilized spectrum.

While binary metrics like accuracy or precision consider only the final decision, log
loss evaluates the quality of the estimated probabilities. A model that predicts probabilities
close to the true conditional likelihoods will achieve a low log loss, even if a thresholding
rule would yield occasional classification errors. Therefore, log loss is a more informative
and discriminative tool in the evaluation of soft-output spectrum sensing models.

For practical spectrum sensing systems, the log loss is especially suitable in: (i) adap-
tive sensing systems that adjust thresholds based on confidence; (ii) cooperative sensing
frameworks where local sensors report probabilities to a fusion center; (iii) Bayesian detec-
tors that integrate posterior beliefs about PU signal presence.

3.17. p-Value

In the framework of spectrum sensing, the p-value is a fundamental concept in sta-
tistical hypothesis testing [23,35,36]. It quantifies the level of evidence provided by the
observed sensing data against the null hypothesis H0, which in this context typically repre-
sents the absence of the primary user signal. Specifically, the p-value is the probability of
obtaining a test statistic at least as extreme as the one observed, assuming that H0 is true.
Therefore, it reflects how compatible the observed sensing result is with the assumption
that the PU signal is not present in the monitored frequency band.
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Formally, let T denote the test statistic associated with the chosen detection rule, such
as the energy of the received signal over a sensing window. If an observed value T = t is
computed from the received data, then the p-value is

p-value = Pr(T ≥ t | H0), (25)

where the probability is calculated under the distribution of T assuming that H0 holds. This
formulation corresponds to a one-tailed test, which is common in spectrum sensing since
we are often interested in whether the observed energy or detection metric significantly
exceeds what would be expected under noise-only conditions.

The calculation of a p-value in a sensing task follows three steps: (i) specify the
null distribution of the test statistic T under H0, which depends on the statistical prop-
erties of the noise; (ii) compute the test statistic T = t from the observed signal samples;
and (iii) evaluate the probability of observing a value at least as extreme as t under the
null distribution.

For instance, consider energy detection in AWGN, where the test statistic T follows
a chi-square or Gaussian distribution under H0, depending on whether a central limit
approximation is used. If T∼N(0, 1) under H0 and the observed value is T = 2.5, the
p-value for a one-tailed test is

p-value = Pr(T ≥ 2.5 | H0) = 1 − Φ(2.5) ≈ 0.0062, (26)

where Φ denotes the cumulative distribution function of the standard normal distribution.
In spectrum sensing applications, the p-value serves not only as a measure of statistical

significance but also as a tool for threshold selection and performance tuning. Detection
decisions are typically made by comparing the p-value to a pre-specified significance
level α:

• If p-value ≤ α, the null hypothesis H0 (no PU signal) is rejected, and the sensing
algorithm declares the presence of the PU signal.

• If p-value > α, there is insufficient evidence to reject H0, and the channel is assumed
to be idle.

Lower values of α correspond to stricter detection criteria, reducing the false alarm
rate at the potential cost of increased missed detections. Conversely, higher values of α

make the detector more sensitive but may increase false positives. Typical thresholds used
in practice are α = 0.05 or α = 0.01, depending on the regulatory or application-specific
constraints on interference risk.

Ultimately, the p-value encapsulates the probabilistic reasoning behind binary decision-
making in spectrum sensing and provides a link between theoretical detection models
and practical implementation via threshold tuning. It is particularly valuable when as-
sessing detection reliability under uncertainty or when designing systems that must adapt
dynamically to noise and fading conditions.

3.18. Detection Time

In cognitive radio systems operating under DSA, detection time plays a central role in
determining the responsiveness and agility of SUs. It refers to the average time required
by the sensing algorithm to reach a decision regarding the presence or absence of the PU
signal in a monitored frequency band.

Detection time is especially critical in rapidly varying spectral environments, where
spectrum occupancy may change frequently due to PU mobility or traffic bursts. A sensing
mechanism that responds too slowly may miss transmission opportunities or, worse, fail
to detect the reappearance of the PU signal in time to prevent harmful interference. Thus,
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minimizing detection time is essential to enable timely spectrum access while maintaining
coexistence with licensed services.

The average detection time depends on various factors, including the detection tech-
nique employed, the SNR, the choice of decision thresholds, and whether the method is
based on fixed-sample or sequential evaluation. For instance, classical energy detectors
operating with a fixed sensing window size provide predictable but potentially conserva-
tive detection times. On the other hand, techniques such as the sequential probability ratio
test (SPRT) or adaptive sensing schemes dynamically adjust the number of samples needed
based on the confidence level of intermediate observations, potentially reducing detection
time without compromising accuracy.

Reducing detection time can increase the portion of the transmission frame available
for secondary user data, thereby improving overall system throughput. However, this
benefit must be carefully balanced against the risk of performance degradation. Early
decisions based on limited signal observations may lead to higher probabilities of false
alarms or missed detections. As previously discussed in the context of accuracy and its
limitations under class imbalance, shortening the sensing duration can further exacerbate
these issues if not adequately compensated by robust detection algorithms.

3.19. Throughput of Secondary Users

In DSA systems, the effectiveness of a spectrum sensing strategy is ultimately reflected
not only in its statistical accuracy but also in its impact on system-level performance.
Among these broader performance indicators, the throughput achieved by SUs is of partic-
ular importance [28]. It measures the average data rate successfully transmitted by SUs
and serves as a practical indicator for the utility of the spectrum sensing.

The throughput of secondary users is directly influenced by the accuracy and timing
of spectrum sensing decisions. When sensing correctly identifies idle spectrum (true
negatives), secondary transmissions can proceed without causing interference to PUs,
contributing positively to throughput. However, when false alarms occur, i.e., the sensing
mechanism incorrectly identifies an idle channel as occupied, SUs refrain from transmitting
unnecessarily, resulting in underutilization of available spectrum and reduced throughput.

Moreover, missed detections, while not contributing directly to throughput, are asso-
ciated with interference and regulatory non-compliance. Therefore, designing a sensing
strategy that optimizes throughput must also respect constraints on the acceptable levels of
interference, often formalized as upper bounds on the probability of missed detection or
lower bounds on the probability of detection.

The achievable throughput also depends on the duration and frequency of the sensing
process. Since sensing typically consumes a portion of the transmission frame, there is
a trade-off between sensing time and transmission time. Longer sensing durations may
improve decision reliability but reduce the time available for data transmission. Conversely,
overly short sensing periods may lead to frequent false alarms or missed detections, again
harming throughput. This trade-off is particularly pronounced in frame-based systems,
where each frame begins with a sensing interval followed by a transmission phase.

In cooperative spectrum sensing scenarios, where multiple SUs report observations
to a fusion center, the coordination overhead and decision latency also impact through-
put. Fusion rules that are too conservative may increase false alarm rates, while overly
aggressive rules may increase interference risk, both affecting SU throughput.

The relationship between sensing performance and SU throughput can be formalized
through models that incorporate sensing time, detection probabilities, channel access
protocols, and traffic characteristics. For instance, if Tframe is the total frame duration, Tsense
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is the sensing time, and Pidle is the probability that the channel is correctly sensed as idle,
then the average throughput RSU may be approximated as

RSU = Pidle

(
1 − Tsense

Tframe

)
R, (27)

where R is the data rate during the transmission phase. This model captures how both
sensing reliability and sensing time influence SU throughput.

3.20. Interference to Primary Users

In DSA environments, the effectiveness of spectrum sensing must be evaluated not
only by how well it enables SUs to exploit spectrum opportunities but also by how reliably
it protects PUs from harmful interference. One of the most critical metrics from the perspec-
tive of PU protection is the level of interference resulting from missed detections, when
the sensing algorithm fails to detect the presence of the PU signal and allows secondary
transmissions to proceed erroneously.

The interference to primary users is directly tied to the false negative rate (or missed
detection probability) of the sensing mechanism. When a PU signal is present but not
detected, secondary transmissions can overlap with licensed transmissions, leading to
service degradation or violation of regulatory constraints. In practical systems, such
interference may manifest as reduced throughput, increased latency, or complete disruption
of the PU’s communication link. As such, minimizing interference is a fundamental
requirement in the design of spectrum sensing algorithms and is often enforced via strict
regulatory guidelines, such as minimum detection probabilities or maximum allowable
interference thresholds.

Quantitatively, the average interference level can be modeled as a function of the
probability of missed detection, Pm, the PU activity level, and the SU transmission behavior.
Let Pr(H1) be the probability that the PU signal is present during sensing. Assuming that
the SU transmits immediately upon sensing an idle channel, the probability of causing
interference is approximately

Pint = Pr(H1)Pm. (28)

This simple model highlights how reducing Pm is key to minimizing the likelihood
of SU-induced interference. However, there is typically a trade-off between interference
control and spectrum utilization: lowering Pm often requires increasing the detection
threshold or extending sensing time, which can increase the false alarm rate or reduce
SU throughput.

In more advanced systems, interference can also be characterized in terms of received
power at the PU receiver, interference-to-noise ratio (INR), or outage probability. These
physical-layer metrics are particularly relevant in heterogeneous or co-channel deployments
where SUs and PUs may operate in overlapping regions. In such cases, geographical
proximity, antenna patterns, transmission power, and propagation conditions must all be
considered when assessing the impact of sensing errors on PU performance.

Interference mitigation strategies include: (i) conservative threshold settings that re-
duce missed detections at the cost of more false alarms; (ii) cooperative sensing schemes
that combine observations from multiple SUs to improve detection reliability; (iii) sensing
protocols that adapt to PU signal characteristics or environmental dynamics; and (iv) ge-
olocation databases and spectrum occupancy maps that provide a priori knowledge of
PU activity.

Ultimately, interference to PUs represents a strict constraint on spectrum sensing
design and a critical aspect of DSA feasibility. While metrics such as the probability
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of detection, the probability of false alarm, and throughput reflect the SU perspective,
interference metrics ensure that sensing strategies remain viable in coexistence scenarios.
An effective sensing algorithm must therefore balance performance across both user classes,
maintaining low interference to PUs while enabling efficient and timely access for SUs.

4. Metrics for Spectrum Hole Geolocation
When spectrum sensing is extended to determine the geolocation of spectrum holes

(areas where the spectrum is idle and available for secondary users), the assessment
involves additional metrics focused on the spatial accuracy of these detections. This
geolocation task is crucial in cognitive radio networks, as it helps secondary users make
informed decisions about where and when to access the spectrum without interfering
with the primary network. In the following are the key metrics for evaluating geolocation
accuracy in spectrum hole identification.

4.1. Geolocation Accuracy

In spectrum hole identification, geolocation accuracy plays a critical role in deter-
mining whether secondary users can safely and efficiently access idle spectrum without
interfering with primary users [37]. This metric, defined as the average spatial error in
locating spectrum holes, is numerically equivalent to the mean absolute error (MAE) in
two-dimensional space [38].

Let rtrue,i and rest,i denote the true and estimated coordinates of the i-th spectrum hole.
The geolocation error for each observation is given by the Euclidean distance

di = ∥rtrue,i − rest,i∥. (29)

Then, the geolocation accuracy (or MAE) over N estimates is computed as

Geolocation Accuracy = MAE =
1
N

N

∑
i=1

di. (30)

This metric provides a direct and interpretable measure of spatial localization perfor-
mance. It reflects how close, on average, the estimated spectrum hole locations are to their
true positions. Accurate geolocation helps secondary users avoid transmitting near PU
coverage areas, thereby mitigating interference.

4.2. Root Mean Square Error

A metric related to the geolocation accuracy is the root mean square error (RMSE) [38],
which is defined as

RMSE =

√√√√ 1
N

N

∑
i=1

d2
i . (31)

While RMSE and MAE are based on the same point-wise errors, RMSE penalizes larger
deviations more heavily, making it useful when the system must be especially sensitive to
outliers or worst-case performance.

Both MAE and RMSE are influenced by factors such as sensor placement, channel
conditions, the spatial density of measurements, and the geolocation method employed
(e.g., triangulation, fingerprinting, or regression models). In practice, they are essential
metrics for evaluating the fidelity of radio environment maps (REMs) and the viability of
spatial reuse in DSA systems.
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4.3. Localization Latency

In addition to spatial accuracy, the localization latency is another critical factor, par-
ticularly in time-varying spectral environments. It is defined as the time elapsed from
the detection of a potential spectrum hole to the completion of the geolocation estimation
process. In fast-changing scenarios, high latency may render otherwise accurate geolocation
results obsolete by the time they are acted upon. Therefore, minimizing localization latency
is vital for timely decision-making and maximizing SU agility.

Together, geolocation accuracy, RMSE, and localization latency provide a compre-
hensive view of the spatial and temporal effectiveness of spectrum hole identification
systems. These metrics are particularly relevant in mobile and high-density networks,
where accurate, fast, and interference-aware access decisions must be made in real time.

4.4. Spectrum Hole Geolocation Detection Rate

The spectrum hole geolocation detection rate (SHGDR) is a metric introduced in [39]
to quantify the overall spatial classification performance of a spectrum sensing system
in identifying whether each location within a coverage area is idle or occupied. Unlike
traditional detection probabilities that are computed per instance or per sensor, SHGDR
captures the correctness of spectrum availability assessments across the entire spatial
domain, integrating both geolocation and detection outcomes.

Formally, the SHGDR is defined as the ratio of correctly identified instances of spec-
trum hole presence and absence to the total number of evaluated spatial instances over
a region of interest. Let A denote the set of spatial grid points or cells covering the area,
and let each point i ∈ A have a true spectrum state si ∈ {0, 1} (0: occupied, 1: idle) and an
estimated state ŝi. Then the SHGDR is given by

SHGDR =
1
|A| ∑

i∈A
1{si=ŝi}, (32)

where |A| denotes the cardinality of the set A, and 1{·} is the indicator function, equal to 1
when the estimated and true states match, and 0 otherwise.

An SHGDR of 0.8 means that 80% of the points across the area have been correctly
classified in terms of spectrum hole availability. Importantly, SHGDR should not be
interpreted as the probability of detecting an individual spectrum hole. Instead, it reflects
the global spatial accuracy of a sensing-and-geolocation system when assessing the binary
spectrum occupancy state at each location in a map.

This metric is particularly useful in the evaluation of algorithms designed to build
spectrum occupancy maps or radio environment maps, where binary classification (idle vs.
occupied) is performed on a per-location basis. High SHGDR values indicate consistent
and spatially coherent detection outcomes, supporting reliable spectrum access decisions
for mobile or distributed secondary users. It also provides a natural basis for comparing
different spatial sensing strategies, such as centralized versus distributed geolocation, or
the impact of cooperative sensing on spatial classification consistency.

SHGDR is complementary to metrics like geolocation accuracy and RMSE. While
those measure the magnitude of localization errors, SHGDR focuses on the correctness of
binary decisions across space. Thus, it provides a high-level yet interpretable summary of
the sensing system’s spatial discrimination capability.

4.5. Interference-to-Primary Ratio in Geolocation

The interference-to-primary ratio (IPR) in geolocation is a metric used to quantify the
residual risk of SU transmissions interfering with PUs as a consequence of geolocation
inaccuracies [40]. This metric reflects how well a geolocation-enabled spectrum sensing
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system maintains spatial separation between secondary activity and regions of PU presence.
In practice, it captures the combined effects of geolocation error, decision thresholding, and
propagation variability on interference avoidance.

At a conceptual level, the IPR is defined as the proportion of SU transmission energy or
activity that unintentionally overlaps with the coverage area of active PUs, due to erroneous
estimation of spectrum hole boundaries or locations. Lower IPR values indicate that the
geolocation system is more effective at spatially isolating SU transmissions from PU regions,
thereby reducing harmful interference.

Let RPU represent the spatial domain occupied by active PUs, and RTX the region
where an SU initiates transmission based on its geolocation estimate. The interference-to-
primary ratio can be formally expressed as

IPR =
|RTX ∩RPU|

|RTX|
, (33)

where | · | denotes the area measure of the corresponding region. This formulation captures
the fraction of the SU transmission region that overlaps with the actual PU-occupied area.

In realistic deployments, the exact PU region RPU may not be perfectly known, so the
IPR may be estimated through simulation models, coverage maps, or measurements. The
metric is especially useful for evaluating geolocation systems in dense or sensitive spectral
environments, where minor misalignments can cause significant interference.

Minimizing IPR requires balancing multiple performance objectives: high geoloca-
tion accuracy, low localization latency, and spatially conservative decision-making. These
trade-offs are further constrained by deployment factors such as sensor density, environ-
mental propagation conditions, computational complexity, and access to prior spectrum
occupancy data.

Geolocation accuracy may be degraded by environmental factors such as multipath
propagation, shadowing, or interference from nearby emitters. To mitigate these effects,
advanced techniques are commonly employed, including: (i) cooperative geolocation,
where multiple distributed sensors contribute observations to refine spatial estimates;
(ii) machine learning-based localization, which can infer propagation patterns and exploit
training data to improve estimation; (iii) confidence-bound shaping, where SU transmission
boundaries are conservatively adjusted based on estimated uncertainty.

4.6. Other Coverage-Related Metrics

In the context of spectrum hole geolocation, other coverage-related metrics offer
additional insight into how reliably and comprehensively a sensing system identifies
spectrum availability across geographic regions. These metrics go beyond point-wise error
analysis by quantifying spatial consistency, confidence levels, and boundary precision, all
of which are crucial for enabling safe and efficient SU operation in DSA environments.

One key measure is the geolocation coverage [41], defined as the percentage of the total
geographic area where the estimated location of spectrum holes falls within a pre-specified
error margin of the true location. For instance, if 95% of the evaluated area has geolocation
errors less than or equal to 10 m, the geolocation coverage is reported as “95% within 10 m”.
This metric is particularly useful in practical deployments, where regulators or system
designers may impose spatial error tolerances for safe SU operation near the PUs.

Another important concept is the confidence ellipse (or more generally, the confidence
region) [37,41], which defines a probabilistic boundary surrounding an estimated location.
This region represents where the true position of the spectrum hole is likely to lie with a
certain confidence level, such as 95%. For two-dimensional localization, the confidence
ellipse is characterized by the covariance matrix of the position estimate and reflects the
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direction and magnitude of uncertainty. Smaller ellipses indicate higher precision in
localization, while elongated shapes may signal anisotropic error distributions caused by
directional propagation, sensor geometry, or environmental factors.

The CDF of the geolocation error [42] offers a full probabilistic description of posi-
tioning accuracy. It specifies, for any given distance threshold, the probability that the
geolocation error is less than or equal to that threshold. Plotting the CDF allows for visual
comparison of different algorithms or configurations and supports robust system design
by quantifying the likelihood of small, moderate, or large errors.

Another useful metric is the detection probability with spatial constraints, which extends
traditional detection probability by requiring not only that a spectrum hole be detected,
but that its estimated location lies within a specific spatial margin of the true idle region.
This spatially constrained probability provides a stricter and more application-relevant
evaluation criterion, especially in cases where geographic precision is essential, such as in
mobile DSA scenarios, exclusion zones, or proximity-based spectrum reuse policies.

Finally, the confidence in spectrum hole boundaries refers to the accuracy with which
the boundaries of idle regions are estimated, as opposed to single-point geolocation esti-
mates. In many practical settings, SUs make decisions based on whether their transmission
footprint overlaps with an occupied or idle region. Therefore, correctly delineating the
geographic extent of spectrum holes is fundamental to avoiding interference with PUs.
Boundary estimation accuracy is often evaluated using metrics such as boundary overlap
ratio, Jaccard index, or pixel-wise classification accuracy in mapped domains.

Together, these coverage-related metrics provide a multidimensional evaluation frame-
work for assessing not just how accurately spectrum holes are localized, but how reliably
and confidently they are represented across space. This is essential for translating geoloca-
tion performance into actionable, interference-safe decisions in real-world DSA systems.

Based on the previous discussions on several performance metrics suitable to spectrum
sensing, Table 3 provides a structured view of the metric landscape, clarifying the roles,
strengths, and limitations of each performance indicator.

Table 3. Taxonomy of performance metrics in spectrum sensing and spectrum hole geolocation.

Metric Domain Type Strength Limitation Use Case

Pd Sensing Accuracy Protects PUs By
Avoiding Interference May Raise Pfa If Too Sensitive Evaluate Detection Capability

Pfa Sensing False Positive Rate Highlights Over-Cautious
Sensing Reduces SU Throughput Threshold Tuning for

SU Access

Pm Sensing False Negative Rate Assesses Interference Risk Inversely Related To Pd Estimate Protection To PUs

Accuracy Both Overall Easy To Compute
And Interpret Misleading With Imbalance General

Performance Assessment

Balanced Accuracy Both Imbalance-Resistant Accounts For Skewed
Class Proportions

Less Informative About Error
Types

Used When PUs
Active Infrequently

F1 Score Both Error Balance Merges Pd And Precision Ignores TNs; Less Intuitive Balanced Performance Metric

ROC/AUC Both Threshold-Free Captures Performance
Trade-Offs

May Require
Probabilistic Output

Compare
Detection Algorithms

DET Curve Both Error Trade-Off Suits Gaussian Error Patterns Less Widely Used; Needs
Scale Transform Visualize Pfa vs. Pm Trade-Off

Throughput (SU) Sensing System Utility Reflects Real-World Efficiency Not Per-User; Ignores
Fairness

Optimize SU Access
Strategies

Geolocation Accuracy Geolocation Spatial Error Intuitive Distance Error
Metric Affected By Outliers Basic Localization Validation

RMSE/MAE Geolocation Aggregate Error Capture Average
Geolocation Error Mask Local Variations Statistical Quality Reports

Geolocation Coverage Geolocation Area Coverage Indicates Where Estimates
Are Precise Threshold-Dependent Define Usable Spatial Regions

Interference-To-PU Ratio Geolocation Interference Risk Reflects Spatial Safety Margin Requires Physical Modeling Ensure QoS For
Licensed Users
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5. Numerical Examples and Interpretations
This section presents numerical examples that illustrate the majority of the perfor-

mance metrics discussed throughout this survey. The examples are based on synthetic data
from both sensing and geolocation contexts. Some metrics were not covered, or their values
were simply derived from reasonable assumptions, due to the volume of data that they
would need to be computed and interpreted.

5.1. Sensing Scenario and Metric Computations

Consider a scenario in which a secondary user performs N = 200 sensing attempts.
The primary user signal is present in 60 of these trials. The sensing results that form the
confusion matrix are given in Table 4.

Table 4. Confusion matrix for the numerical examples.

Predicted Busy Predicted Idle

Actual busy TP = 52 FN = 8

Actual idle FP = 15 TN = 125

5.1.1. True/False Positive/Negative Rates

From (9)–(12), it follows that

TPR =
52
60

≈ 0.867, (34)

TNR =
125
140

≈ 0.893, (35)

FPR =
15

140
≈ 0.107, (36)

FNR =
8

60
≈ 0.133. (37)

These results mean that the sensing strategy correctly identifies 86.7% of occupied
spectrum slots and 89.3% of idle slots. False alarms occur in 10.7% of idle cases, and 13.3%
of active spectrum slots are missed.

5.1.2. Accuracy and Balanced Accuracy

From (13) and (14), we obtain

Accuracy =
177
200

= 0.885, (38)

Balanced Accuracy =
0.867 + 0.893

2
= 0.880. (39)

These results mean that the sensing algorithm produces correct binary decisions 88.5%
of the time. Balanced accuracy confirms that this performance is robust despite the class
imbalance between idle and occupied states.

5.1.3. PPV and NPV

Applying (15) and (16), we obtain

PPV =
52
67

≈ 0.776, (40)

NPV =
125
133

≈ 0.940. (41)
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These values mean that, among the times the detector indicates PU signal presence,
it is correct 77.6% of the time. When the output is idle, the result is reliable in 94.0% of
the cases.

5.1.4. F1 Score and MCC

Using (17) and (22), it follows that

F1 ≈ 0.818, (42)

MCC ≈ 0.741. (43)

The F1 score of 0.818 indicates a favorable balance between the ability to detect the
presence of the PU signal (recall) and the reliability of positive decisions (precision). This is
particularly relevant in spectrum sensing, where both missed detections and false alarms
carry operational costs.

The MCC value of 0.741 confirms a strong agreement between sensing outcomes and
true spectrum states, even under class imbalance conditions typically found in dynamic
spectrum access environments.

5.1.5. Decision Error Probability

From (19), we obtain the proportion of incorrect sensing decisions as

Perror =
23

200
= 0.115. (44)

The overall probability of a sensing error, either falsely detecting the presence of the
PU signal (false alarm) or failing to detect it when present (missed detection), is 11.5%. This
value reflects the rate at which the system produces incorrect binary decisions regarding
spectrum occupancy.

5.1.6. Likelihood Ratios

The positive and negative likelihood ratios are computed from (20) and (21), with the
rates coming from (34)–(37), yielding

PLR ≈ 0.867
0.107

≈ 8.10, (45)

NLR ≈ 0.133
0.893

≈ 0.149. (46)

The positive likelihood ratio PLR ≈ 8.10 indicates that the sensing algorithm is
about eight times more likely to produce a positive (PU-present) decision when the PU
signal is actually present than when it is absent. Conversely, the negative likelihood ratio
NLR ≈ 0.149 shows that a negative (PU-absent) decision is only 14.9% as likely to occur
when the PU signal is present as when it is absent. These values reflect strong discriminative
ability: the system’s positive decisions carry substantial evidential weight in favor of H1,
while its negative decisions significantly reduce the probability of H1 being true.

5.1.7. Logarithmic Loss

The computation of the logarithmic loss depends on the predicted probabilities as-
signed to each class rather than binary outcomes alone; see (23) and (24). Since the sensing
algorithm in this example produces hard decisions (i.e., presence or absence of the PU
signal), direct computation of log-loss is not possible without explicit probabilistic outputs.
Therefore, the exemplifying value of LogLoss ≈ 0.46 is provided as a plausible choice,
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consistent with a scenario in which the detector assigns high confidence to correct decisions
and avoids overly confident errors.

A log-loss of 0.46 reflects reasonably well-calibrated probabilistic outputs. The sens-
ing system assigns strong probabilities to correct classifications while limiting confidence
in incorrect ones. This level of loss suggests informative soft outputs, which are use-
ful in spectrum sensing applications involving threshold adaptation, decision fusion, or
Bayesian updating.

5.1.8. p-Value

In statistical hypothesis testing, the computation of the p-value depends on the exact
distribution of the test statistic and its observed value, which are not explicitly defined
in this numerical example. Therefore, p-value ≈ 0.032 is provided as a representative
outcome under a plausible scenario (e.g., a test statistic T = 1.85 from a standard normal
distribution), to illustrate how p-values support detection decisions in practice.

This result indicates that, assuming H0 is true, there is only a 3.2% probability of
obtaining a test statistic as extreme as the one observed. This supports rejecting H0 at the
5% significance level, suggesting that the sensed presence of the PU signal is statistically
meaningful and not likely to be due to random fluctuations.

5.1.9. Detection Time

In practice, the time required for a sensing algorithm to reach a decision depends on
multiple factors, including the detection method, sampling rate, processing delay, and
implementation platform. Since these implementation-specific details are not specified in
this example, an illustrative value is used to characterize a plausible decision time under
typical real-time sensing constraints. Hence, let us assume that the average detection time
is tavg = 18.5 ms.

A mean detection latency of 18.5 ms indicates that the sensing system operates with
low delay, making it suitable for dynamic spectrum access scenarios where spectrum
occupancy can change rapidly. This level of responsiveness supports real-time adaptation
while minimizing sensing overhead.

5.1.10. SU Throughput and PU Interference

The secondary user throughput can be computed from (27), or estimated as the propor-
tion of sensing instances in which the channel is correctly identified as idle, corresponding
to the number of true negatives. Similarly, the interference rate to the primary user is
estimated as the proportion of instances where the PU signal was present but not de-
tected, corresponding to the number of false negatives. These values are derived from the
confusion matrix provided earlier, yielding

Throughput =
TN
N

=
125
200

= 0.625, (47)

Interference Rate =
FN
N

=
8

200
= 0.04. (48)

The SU is granted reliable transmission opportunities in 62.5% of the sensing intervals,
enabling efficient spectrum reuse without compromising regulatory constraints. Mean-
while, interference with PU operations occurs in only 4.0% of the intervals, reflecting the
sensing algorithm’s effectiveness in minimizing harmful overlap. This balance is essential
in dynamic spectrum access scenarios where both spectrum efficiency and PU protection
must be simultaneously addressed.
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5.2. Geolocation Scenario and Metric Computations

This subsection illustrates spatial performance metrics using a synthetic example that
simulates the behavior of a spectrum hole geolocation algorithm. Assume that the true
locations of 10 spectrum holes are compared with the estimated ones, yielding the following
absolute position errors (in meters):

[4.6, 5.9, 6.7, 3.8, 8.2, 7.3, 6.1, 9.0, 5.5, 4.9].

These values are used to compute point-wise and distributional metrics of geolocation
accuracy, as follows.

5.2.1. RMSE and MAE

The root mean square error and mean absolute error are given by

RMSE =

√√√√ 1
10

10

∑
i=1

e2
i ≈ 6.42 m, (49)

MAE =
1
10

10

∑
i=1

|ei| ≈ 6.2 m. (50)

The geolocation algorithm exhibits moderate spatial error, with an average devia-
tion of 6.2 m (MAE) and a root mean square deviation of 6.42 m. The small difference
between RMSE and MAE suggests that the error distribution is relatively uniform, with no
significant outliers.

5.2.2. Geolocation Coverage and CDF

Let a fixed spatial error threshold of 8 m be used to evaluate spatial reliability. Among
the 10 estimates, 9 fall within this margin. Then, it follows that

Coverage (within 8 m) =
9

10
= 90%, (51)

CDF@6.5 m =
7

10
= 70%. (52)

The geolocation system achieves 90% coverage within an 8-m tolerance, meaning
that 9 out of 10 estimated locations lie sufficiently close to their respective ground truth
values. Furthermore, 70% of the errors are smaller than 6.5 m, indicating that the algorithm
consistently provides high spatial accuracy.

5.2.3. Confidence Region

The confidence region is approximated based on the spatial dispersion of the esti-
mated positions around their true values. For illustration, assume the radius of the 95%
confidence ellipse is approximately 9.2 m. This means that, with 95% confidence, the true
location of the spectrum hole lies within a 9.2-m radius around the estimated point. This
probabilistic bound offers spatial guarantees on location uncertainty, which can guide
regulatory protection zones and SU exclusion areas.

5.2.4. SHGDR and IPR

Suppose a 10 × 10 grid is evaluated for spatial labeling (idle or occupied), and the
spectrum hole geolocation classifier correctly labels 91 of the 100 spatial regions. Addi-
tionally, among 25 SU transmission zones, 3 unintentionally overlap with PU-protected
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areas. The spectrum hole geolocation detection rate and the interference-to-primary ratio
are respectively given by

SHGDR =
91

100
= 0.91, (53)

IPR =
3

25
= 0.12. (54)

The spectrum hole geolocation detection rate of 91% reflects high spatial classification
accuracy. The interference-to-primary ratio of 12% indicates that the geolocation errors led
to SU-PU overlap in only a small fraction of the active transmission zones, suggesting that
the system maintains good spatial separation between users while enabling spatial reuse.

6. Conclusions
This paper has presented a comprehensive survey of performance metrics for evaluat-

ing spectrum sensing and spectrum hole geolocation in the context of dynamic spectrum
access (DSA) in cognitive radio networks. Grounded in the principles of statistical decision
theory, the discussion covered a broad range of metrics, spanning binary hypothesis test-
ing, signal detection, and spatial geolocation, tailored to both algorithmic evaluation and
system-level considerations.

For spectrum sensing, fundamental metrics such as probability of detection, probability
of false alarm, and probability of missed detection were reviewed, along with aggregate
indicators like accuracy, balanced accuracy, and the F1 score. Trade-off visualizations using
ROC and DET curves were also highlighted as essential tools for threshold tuning and
classifier comparison. In addition, throughput and interference metrics were discussed to
emphasize the practical implications of sensing errors on both secondary and primary users.

In the geolocation domain, we examined metrics that quantify spatial accuracy and reli-
ability, including RMSE, MAE, geolocation coverage, confidence regions, and the spectrum
hole geolocation detection rate. These were complemented by interference-aware metrics,
such as the interference-to-primary ratio, which directly relate geolocation precision to
regulatory compliance and coexistence constraints.

The taxonomy table and comparative trade-off discussion provided a structured view
of the metric landscape, clarifying the roles, strengths, and limitations of each performance
indicator. A case study was also proposed to illustrate the combined use of sensing and
geolocation metrics in a simulated DSA scenario, presenting numerical examples and
interpretations of the associated metrics.

Overall, this survey serves as a reference for researchers and system designers seeking
to evaluate and optimize spectrum sensing and spectrum hole geolocation strategies. Future
work may extend this framework to include metrics for adversarial environments and
learning-based detection systems, which are increasingly relevant in the evolving landscape
of 6G and beyond.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC area under the curve
AWGN additive white Gaussian noise
CDF cumulative distribution function
CSS cooperative spectrum sensing
DET detection error tradeoff
DSA dynamic spectrum access
FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo
FC fusion center
FNR false negative rate
FPR false positive rate
IPR interference-to-primary ratio
INR interference-to-noise ratio
LR likelihood ratio
MAE mean absolute error
MCC Matthews correlation coefficient
MCTI Ministério da Ciência, Tecnologia e Inovações
NLR negative likelihood ratio
NP Neyman–Pearson
NPV negative predictive value
PLR positive likelihood ratio
PPV positive predictive value
PU primary user
REM radio environment map
RF radio frequency
RMSE root mean square error
ROC receiver operating characteristic
SHGDR spectrum hole geolocation detection rate
SNR signal-to-noise ratio
SPRT sequential probability ratio test
SU secondary user
TNR true negative rate
TPR true positive rate
TX transmission
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