
XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

Geolocation of Vacant Bands for Dynamic Spectrum
Access via Non-Cooperative Spectrum Sensing
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Abstract— Accurate geolocation of vacant bands is an essential
metric to timely and secure channel use in dynamic spectrum
access systems. Non-cooperative spectrum sensing (NCSS) offers
a promising solution by directly linking sensing decisions to
sensor locations. This study employs NCSS within a database-
driven internet of things framework, where scattered sensors
perform individual detections and their positions are gathered
via Voronoi-based spatial interpolation. Results show that high
geolocation accuracy and low variance can be achieved even
under unfavorable propagation conditions, supporting efficient
and reliable spectrum use.

Keywords— Dynamic spectrum access, spectrum sensing, spec-
trum hole geolocation, internet of things.

I. INTRODUCTION

The limited availability of radio frequency spectrum, partic-
ularly in wireless systems, represents a significant impediment
to the implementation of diverse telecommunications services.
This phenomenon can be attributed to the prevailing fixed
allocation policy, which confers exclusive access to specific
frequencies to designated primary users (PUs). This scenario
may lead to spectrum underutilization by PUs or scarcity due
to limited availability of new bands. The increasing demand for
advanced services, driven by the evolution of fifth-generation
(5G) networks, the proliferation of the internet of things
(IoT), and the anticipated deployment of sixth-generation (6G)
technologies, underscores the pressing need for more efficient
spectrum utilization [1], [2].

To effectively implement these technologies, it is necessary
to move beyond the fixed spectrum allocation model. Dynamic
spectrum access (DSA) schemes have been put forth as a
potential solution. These schemes allow secondary networks
to exploit underutilized frequency bands without causing in-
terference by strategically accessing available spectrum [3].

In this framework, cognitive radio is presented as a piv-
otal technology for implementing DSA, allowing for the
opportunistic access of free bands. These systems adapt their
behavior according to the environment through autonomous
and intelligent processes [4].
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Spectrum sensing, one of the key techniques enabled by
cognitive radio, seeks to discriminate between two hypothe-
ses in the sensed frequency band by formulating a binary
hypothesis test: H0, which indicates the absence of the PU
signal, and H1, which indicates its presence. This process is
evaluated using two basic metrics: probability of detection, Pd,
and probability of false alarm, Pfa. Pd measures how effective
the spectrum sensing algorithm is at correctly detecting a
signal when H1 is true, while Pfa indicates the probability
of making a mistake in deciding H1 when H0 is actually true.
An algorithm is considered optimal if it maximizes Pd for a
given value of Pfa using a fixed number of samples [5].

In spectrum hole geolocation (SHG), binary decisions, i.e.
H0 or H1, from spectrum sensing are fundamental. Spectrum
holes arise when the PU transmitter is inactive or in shadowed
regions within its coverage area. The spectrum hole geolo-
cation detection rate (SHGDR) is used to assess accuracy,
not as a probability of detection, but as the percentage of
correct matches between actual and estimated SHG across the
coverage area.

The accuracy of this metric depends on the sensing scheme
adopted. In some settings of cooperative spectrum sensing
(CSS), multiple distributed secondary users (SUs) share their
local observations and apply decision fusion, which helps
mitigate propagation effects such as shadowing and fading,
thereby increasing detection reliability. However, this cooper-
ation comes at the cost of spatial precision, as the geographic
dispersion of the sensing nodes reduces the accuracy in lo-
cating spectrum holes. Conversely, non-cooperative spectrum
sensing (NCSS) involves individual sensing and decision by
each SU. Although the NCSS is more susceptible to the
aforementioned propagation phenomena, which may hinder
the detection of PU signals in certain areas and potentially
result in interference when a PU reoccupies a frequency
band mistakenly deemed vacant, this spectrum sensing scheme
enables a direct correspondence between the sensing decision
and the physical location of the sensor, thereby ensuring more
accurate geolocation of spectrum holes [6].

In contrast to approaches based on CSS, such as the one
proposed in [6] the present work focuses exclusively on NCSS,
where each SSIoT node performs autonomous sensing without
information exchange. This individual sensing is integrated
into a database-driven DSA framework, with the objective of
analyzing the geospatial accuracy in spectrum hole estimation
without resorting to cooperative mechanisms. In this manner,
the feasibility of NCSS in the construction of spectrum avail-
ability maps from local and sparse decisions is studied, and
its impact on metrics such as the spectrum hole geolocation
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detection rate is evaluated.

A. Related Work, Contributions and Paper Structure

Although CSS improves detection reliability, some studies
have identified limitations that affect its spatial accuracy.
As noted in [7], cooperation may lose effectiveness under
spatially correlated shadowing, leading to redundant observa-
tions. Moreover, issues such as sensing delay, decision latency,
high energy consumption, and vulnerability to attacks further
compromise performance.

To mitigate these challenges, database-driven approaches
have been incorporated into regulatory standards like IEEE
802.22 [8] and IEEE 802.11af [9], allowing SUs to query
spectrum availability based on their location [6]. However, the
accuracy of these databases depends on prediction models that
often fail to reflect real-time conditions [10].

A hybrid alternative is reviewed in [11], combining sens-
ing and databases via IoT-based spectrum sensors (SSIoTs),
which periodically update the database and offload sensing
from SUs. This approach, adopted in [6], supports spectrum
hole geolocation through overlapping clustering and enhances
sharing efficiency.

In contrast to the extensive attention received by CSS,
NCSS has been less explored as a viable alternative for
SHG. Despite the existence of proposals that employ energy
sensing, cyclostationary techniques, or deep learning methods,
the majority of these have focused on the analysis of global
sensing metrics as Pd and Pfa without explicitly addressing
the construction of spatial maps of spectrum availability.

The present study proposes, as its main contribution, an
alternative solution that employs the NCSS approach and
is predicated on the spatial interpolation of individual node
decisions, within the same conceptual framework proposed in
[11] and utilized in [6], with the distinctive feature of entirely
eliminating inter-node cooperation, a characteristic that is not
only coherent with the nature of non-cooperative sensing,
but also removes the need for data exchange or decision
fusion among nodes, thereby simplifying implementation and
reducing communication overhead.

The remainder of this paper is organized as follows: Sec-
tion II describes the system model adopted in this work.
Section III details the proposed SHG method. Section IV
presents the numerical results, including SHG performance
metrics under different configurations. Finally, Section V
draws conclusions and outlines directions for future research.

II. SYSTEM MODEL

This section delineates the models employed to represent the
transmitted and received signals, the noise, the sensing chan-
nel, and the detection technique, which have been selected on
the basis of their realism and suitability to practical scenarios.
Subsequent to the non-cooperative approach, models inspired
by those presented in [12], which are widely recognized in the
context of spectrum sensing, are employed.

We consider a network composed of N1 SSIoTs, randomly
distributed over a square region of side L. Each SSIoT
performs spectrum sensing individually, without exchanging

information with other nodes. At each sensing interval, the
signal received by the i-th SSIoT, yi ∈ Cn×1, is modeled as

yi = hix
T + vi (1)

where x ∈ Cn×1 is the PU signal transmitted vector. The
complex samples vector of the PU signal is generated as a
QPSK sequence with oversampling, such that the samples
exhibit non-zero correlation due to the temporal redundancy
introduced. hi ∈ C is the channel gain between the PU and the
i-th SSIoT, and vi ∈ Cn×1 represents thermal noise, modeled
as additive white Gaussian noise (AWGN).

The channel hi captures the propagation effects and is
modeled as

hi = Giai (2)

where ai represents the multipath fading component and Gi

is the local mean gain that accounts for distance-dependent
path-loss and shadowing. The fading component ai is assumed
to follow a Rician distribution, in which the Rice factor Kij

is modeled as a Gaussian random variable with mean µK

and standard deviation σK , both in dB and dependent on the
propagation environment. According to experimental findings
reported in [13], urban areas typically exhibit µK = 1.88 dB
and σK = 4.13 dB. This formulation enables a realistic rep-
resentation of the propagation conditions in dynamic wireless
environments.

The gain Gi is defined based on the average received signal
power Pr,i as

Gi =

√
Pr,i

Pt
(3)

where Pt is the PU transmission power. The expression for
Pr,i, in dBm, follows a path-loss model with log-normal
shadowing, proposed in [14], as

P dBm
r,i = 10 log10

(
103Pt

(
d0
di

)η)
+ Si, (4)

so that di is the distance between i-th node and the PU
transmitter, d0 is a reference distance, η is the path-loss
exponent, and Si is a random variable representing log-normal
shadowing with spatial correlation, as described in [15]. To
model long-term signal variations caused by environmental
obstructions, the shadowing term Si is defined as a spatially
correlated log-normal variable. Based on the exponential decay
function of Euclidean distance and the spatial correlation
parameter λ, a correlation matrix is built following the method
in [16]. Correlated shadowing values are then generated by
applying Cholesky decomposition to this matrix and multiply-
ing it by a vector of independent and identically distributed
standard Gaussian variables, assigning each node i its value Si

according to its location. This model provides a realistic spatial
distribution of signal attenuation and supports the simulation
of coverage irregularities, such as spectrum holes caused by
the propagation environment.

In practice, thermal noise levels are not uniform due to
environmental and hardware-related variations. Thus, the noise
variance at i-th node is modeled as a random variable fluctu-
ating around the average value σ̄2, given by
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σ2
vi = (1 + ζui) σ̄

2 (5)

where ui ∼ U [−1, 1] and ζ ∈ [0, 1) controls the degree of
variability. This model accounts for realistic noise differences
across devices.

Since both the received signal power and the noise level may
vary across nodes, an average link quality metric is defined
using the expected signal-to-noise ratio (SNR). It is computed
as the product of the expected received power and the expected
inverse of the noise variance given by

SNR = E[Pr,i] · E
[

1

σ2
vi

]
(6)

This global metric characterizes the average system per-
formance and enables comparison between different sensing
strategies under statistically equivalent conditions.

A. Sample Covariance Matrix and Pietra-Ricci index Detector

As the proposed scheme relies on a single vector of n
samples per node, this vector is first centered by subtracting
its mean. Then, it is divided into K = n/M consecutive non-
overlapping segments of equal length M , where M denotes
the desired order of the sample covariance matrix (SCM). Each
of these segments represents a portion of the original vector
and is used to estimate the local SCM at node i, which is
given by

Ri =
1

K

K∑
k=1

zTi,kzi,k, (7)

where zi,k ∈ CM×1 denotes the k-th segment of the centered
vector. This procedure allows for a robust estimation of
the SCM from a single observation vector, preserving the
statistical structure required for the subsequent computation
of the decision statistic.

Once the covariance matrix Ri is estimated, the Pietra-Ricci
Index Detector (PRIDe) is used to make a local decision at
i-th node, due to its effectiveness in terms of performance,
complexity, and latency [17], [18], [19].

Let ri,z,k denote the (z, k)-th entry of Ri, for z, k =
1, . . . ,M . The average entry of the matrix is defined as

r̄i =
1

M2

M∑
z=1

M∑
k=1

ri,z,k. (8)

The PRIDe test statistic for i-th node is given by:

TPRIDe,i =

M∑
z=1

M∑
k=1

|ri,z,k|

M∑
z=1

M∑
k=1

|ri,z,k − r̄i|
. (9)

A decision regarding the occupation status of the sensed
band is made by comparing TPRIDe,i against a threshold γi
associated with a predefined Pfa. If TPRIDe,i > γi, the presence
of a PU signal in the sensed band is declared; otherwise, the
band is considered free.

III. PROPOSED METHOD

The proposed method utilizes a NCSS strategy to perform
SHG. In this strategy, each spectrum sensing device makes
local decisions. The PRIDe detector is used to determine the
presence or absence of the primary signal in the sensed band.

Subsequent to the issuance of a binary decision by each
node, an association is established between the node and its
geographic position within the sensing area. A spatial map of
spectrum occupancy is created from these individual decisions.
In order to achieve this, the designated area is divided into
discrete regions using a Voronoi diagram, where each region is
connected to the closest node based on the Euclidean distance
principle. The decision made by a given node is assigned to
the entire region to which it belongs. Consequently, a binary
map is generated that differentiates between occupied and
unoccupied areas, based on the local decisions of the SSIoTs.
Furthermore, an interpolation logic is implemented to enhance
the spatial representation. In particular, if there are pairs of
nearby nodes that do not detect signal and meet a proximity
condition defined by a distance threshold, the intermediate
region is also considered to correspond to a spectrum hole.

Figure 1 presents, for instance, the spatial results obtained
in one round of sensing. Fig. 1a, illustrates the distribution of
the actual SHG, which are generated from the received power
threshold under realistic propagation conditions. Fig. 1b,
shows the estimated SHG map without interpolation, where
each Voronoi cell is directly colored according to the local
decision of the corresponding sensor. Fig. 1c presents the
estimated map with interpolation applied, in which nearby
undetected regions are grouped as spectrum holes, while
isolated cells are treated differentially to reduce interpolation
errors.
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(a) Snapshot of actual SHG. (b) Corresponding estimated SHGs.
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(c) Corresponding interpolated SHGs.

Fig. 1. Example of spatial results considering 600 scattered SSIoT devices.

The efficacy of the method depends on the chosen config-
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uration parameters. Sensor density impacts the spatial resolu-
tion and effective area coverage. The interpolation threshold
distance is related to the system’s ability to detect spectrum
holes between nearby nodes. The SCM order M significantly
affects the accuracy and stability of the local PRIDe statistic.
Additionally, the SNR directly influences the reliability of
individual decisions, while the decision threshold defines the
detector’s sensitivity and can greatly affect map quality.

This approach, predicated exclusively on individual deci-
sions and devoid of information exchange between nodes,
facilitates a scalable and efficient implementation in dense and
dynamic IoT networks.

IV. NUMERICAL RESULTS

The parameters utilized in the simulations are enumerated in
Table 1, and the codes used are provided in [20]. Here, a square
scenario was considered, in which the SSIoTs were randomly
distributed. Furthermore, a distance threshold is utilized in the
spatial interpolation process via the implementation of Voronoi
diagrams. The construction of the SCMs is executed from
subsets of observed samples, with the objective of ensuring
the estimation of the PRIDe test statistic is robust.

TABLE I. Main default system parameters.

Parameter Value
Total number of SSIoTs in the basis network, N1 500
Fraction of fixed SSIoT nodes, α 0.5
Side length of the coverage area, L 9000 m
Signal-to-noise ratio, SNR −5 dB
Noise variability factor, ρ 0.5
Number of sensing rounds 10000
Samples per SSIoT, n 1500
Path-loss exponent, η 2.5
Reference distance for path-loss, d0 0.1 m
Transmitter power, Pt 5 W
PU location, (xPU, yPU) (2L, 2L) m
Mean of the Rice factor, K̄ 1.88 dB
Standard deviation of Rice factor, σK 4.13 dB
Shadowing std. deviation, σs 7 dB
Correlation length of shadowing, Λ 0.8× rows
Order of the covariance matrix, M 15
Threshold for spectrum hole, Prx,th −100 dBm
Distance threshold for interpolation, dthresh 4/

√
N1/L2

Probability of false alarm, Pfa 0.2

Figure 2 illustrates the SHGDR distribution obtained using
the same configuration of 500 sensors as in Fig. 10 of [6],
where a CSS scheme based on overlapped clusters is em-
ployed. This alignment enables a direct comparison between
the two approaches. In the proposed NCSS framework, the
mean SHGDR reached approximately 0.772, with a variance
of 0.0054, indicating a broader dispersion relative to the
cooperative method, which achieved a higher mean SHGDR
of approximately 0.85 and a variance around 0.005. While
the CSS approach leverages spatial cooperation to mitigate
propagation effects and enhance detection accuracy, it also
introduces spatial ambiguity in spectrum hole geolocation
due to the aggregation of sensing data across clusters. In
contrast, the NCSS method maintains spatial fidelity by di-
rectly associating detections with sensor locations, albeit with

increased variability in detection outcomes. This distinction
underscores the inherent trade-off: CSS enhances detection
consistency at the expense of spatial precision, whereas NCSS
preserves location-specific accuracy but incurs higher variance.
As demonstrated in the subsequent analysis, increasing sensor
density in the NCSS framework can potentially bridge the
detection gap while sustaining spatial alignment, highlighting
its scalability in dense IoT scenarios.

Fig. 2. Histogram of the spectrum hole geolocation detection rate.

Fig. 3 presents the behavior of the SHGDR as a function of
the total number of SSIoTs, N1, while keeping the remaining
parameters shown in Table I constant. The mean SHGDR has
been found to maintain relative stability with values between
75% and 80%, suggesting a strong performance of the NCSS
scheme. As evidenced at the base of the figure and similarly
noted in Fig. 13 of [6], increasing the number of sensors
N1 leads to a gradual decrease in variance. Concurrently,
the SHGDR shows slight improvement and tends to stabilize
as N1 grows. This behavior reinforces the idea that greater
node density can enhance spatial accuracy, although with
diminishing returns beyond a certain threshold.

Fig. 3. SHGDR versus the total number of SSIoTs, N1.

Fig. 4 shows the behavior of the SHGDR as a function
of the SNR. Similar to Fig. 11 in [6], the average SHGDR
exhibits a noticeable increase as the SNR improves, ranging
from approximately 50% at −15 dB to nearly 79.3% at −3 dB.
This trend confirms the robustness of the NCSS scheme across
a wide range of noise conditions. Despite some fluctuations,
the variance values remain relatively low, and the gap between
maximum and minimum SHGDR tends to narrow, indicating
more consistent decision-making in such conditions.
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Fig. 4. SHGDR versus SNR.

Although, under identical conditions, the CSS scheme based
on overlapping clusters shows slightly superior performance,
by properly adjusting the operating parameters it is possible
to largely match the SHGDR of the proposed method. In
this way, a precision comparable to that obtained in [6] is
achieved, with the advantage of a much simpler deployment
and a less complex architecture.

V. CONCLUSIONS

The present paper put forth an alternative strategy for
geolocating spectrum holes in DSA systems. This strategy
is based exclusively on NCSS within a database-driven IoT
framework. The proposal’s elimination of sensor cooperation
results in a reduction of complexity, energy consumption, and
latency without compromising spatial accuracy. The simulation
experiment yielded results that demonstrated the efficacy of the
method under investigation. Specifically, the experiment incor-
porated various configurations of sensors and different SNRs.
The results of the simulation experiment demonstrated robust
performance, characterized by satisfactory average detection
rates and low variance. These outcomes serve to validate the
effectiveness of the method employed.

While CSS generally offers superior detection performance
due to diversity and collaboration, NCSS can be a better
choice in certain situations. NCSS is advantageous when CSS
suffers from spatially-correlated shadowing, high mobility, or
when rapid decisions are needed, as it avoids delays from
coordination and fusion. It also offers improved robustness
in networks with unreliable or malicious nodes and reduces
security and privacy risks by keeping data local. Overall, the
simplicity and independence of NCSS make it preferable in
specific challenging environments where CSS performance
degrades or complexity is a limiting factor.

Subsequent studies will entail the implementation of ma-
chine learning methodologies to enhance the spatial interpo-
lation of individual decisions, in addition to the integration
of adaptive mechanisms to dynamically adjust the system
parameters according to the environment. This solution sig-
nifies a substantial advancement in the direction of more
straightforward and extensible architectures for SHG in IoT
networks.
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