
XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

Effect of the SNR Model in the Performance
Assessment of Cooperative Spectrum Sensing

Luiz Renault Leite Rodrigues and Dayan Adionel Guimarães

Abstract— This work investigates the impact of different signal-
to-noise ratio (SNR) models on the performance assessment of
spectrum sensing algorithms under varying signal and noise
levels. Through analytical derivation and simulations, we demon-
strate that the choice of SNR model can significantly influence
perceived detection performance, particularly in environments
with random noise power. Our results highlight that using an
inadequate or poorly described SNR model can lead to inaccurate
conclusions. These findings emphasize the critical importance of
both selecting an appropriate SNR model and clearly stating it
when evaluating spectrum sensing systems.

Keywords— Cognitive radio, cooperative spectrum sensing,
dynamic spectrum access, signal-to-noise ratio.

I. INTRODUCTION

Spectrum sensing is a fundamental component in cognitive
radio (CR) networks, playing a critical role in identifying
vacant frequency bands to enable dynamic spectrum access
(DSA). Accurate assessment of spectrum availability ensures
optimal utilization of limited spectral resources and prevents
harmful interference with licensed primary users (PUs).

Various models have been proposed in the literature to
characterize the received signal and the noise at a CR receiver,
each with distinct implications for evaluating the effectiveness
of spectrum sensing algorithms. The choice of appropriate
models significantly impacts performance metrics such as
detection probability, false alarm rate, and overall system
efficiency. Common signal models range from simplified
theoretical assumptions, such deterministic models, to more
complex, realistic statistical models, representing different en-
vironmental conditions and propagation characteristics, which
in turn influence the accuracy of sensing outcomes.

This work investigates how the signal-to-noise (SNR) model
may substantially affect the performance assessment of spec-
trum sensing algorithms. Through both analytical reasoning
and simulation-based experiments, we show that different SNR
definitions can lead to divergent conclusions about algorithm
effectiveness.

A. Related Work

Numerous studies have emphasized the critical role of
the SNR in the performance evaluation of spectrum sensing
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algorithms. A foundational contribution is the concept of the
SNR wall, which establishes a lower bound on detection
performance in the presence of noise uncertainty [1].

The impact of fading channels on detection performance has
also been extensively studied. For instance, in [2] the behavior
of energy detection across various fading environments was
analyzed, including additive white Gaussian noise (AWGN),
Rayleigh, Nakagami-m, and Rician channels. The findings
confirm that detection probability is strongly influenced by
the underlying channel characteristics.

Cooperative spectrum sensing (CSS) has been proposed
to mitigate the limitations of individual sensors in low-SNR
regimes. However, [3] indicates that CSS may offer only
marginal improvements when the SNR is below critical thresh-
olds, especially if noise variability is not properly modeled.

To address the variability of real-world conditions, advanced
approaches have emerged that incorporate SNR estimation and
adaptation. In particular, multistage sensing schemes such as
those proposed by [4] adapt their detection strategies based on
estimated SNR values, showing pronounced improvements in
both detection accuracy and computational efficiency. These
approaches rely heavily on the reliability of the SNR model.

Recent studies have also increasingly acknowledged that
the noise power in wireless environments is often random,
which directly impacts the reliability of spectrum sensing
performance evaluations. In [5], the authors design a de-
tector under the assumption that noise is a random process
with unknown characteristics, without precisely defining the
resulting SNR. Similarly, the work in [6] models the noise
variance as an uncertain and varying quantity, leading to a
performance evaluation framework where the actual SNR is
not fixed, but implicitly dependent on a range of possible noise
power values. In [7], the detection method deliberately avoids
relying on a known noise power, effectively operating without
an explicit SNR definition. Likewise, [8] employs a dynamic
noise floor estimation technique, acknowledging that noise
power changes over time and that any fixed SNR assumption
would be unrealistic.

Despite the demonstrated influence of SNR modeling on
spectrum sensing assessment, a significant number of pub-
lications either do not specify the adopted SNR model or
implicitly assume deterministic conditions. This omission can
lead to inconsistent or misleading performance comparisons
across studies.

B. Problem Description
Let PRX , PN ≥ 0 be random variables representing the

instantaneous powers of the received signal and noise, respec-
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tively. We consider two models for defining the SNR:

SNR1 = E[PRX ]
E[PN ] , and SNR2 = E

[
PRX

PN

]
,

denoted respectively as Model 1 and Model 2. In general
terms, Model 1 defines the SNR as the ratio between the
expected signal power and the expected noise power, and
Model 2, in contrast, defines the SNR as the expected value
of the instantaneous signal-to-noise power ratio.

Assuming that PRX and PN are independent, Model 2
becomes

SNR2 = E[PRX ]E
[

1
PN

]
.

The two models yield identical values only when
E [1/PN ] = 1/E[PN ], which holds true if PN is deterministic.
Otherwise, due to the convexity of the reciprocal function and
Jensen’s inequality, we have

E
[

1
PN

]
≥ 1

E[PN ] ⇒ SNR2 ≥ SNR1.

To understand the implications of this inequality, four
scenarios are considered: i) Both PRX and PN are random,
yielding SNR2 ≥ SNR1. ii) Both PRX = pRX0

and PN = pN0

are constant, yielding SNR1 = SNR2 = pRX0
/pN0

. iii) PRX

is random and PN = pN0
is constant, also yielding SNR1 =

SNR2 = E[PRX ]/pN0 . iv) PRX = pRX0 is deterministic and
PN is random, yielding SNR2 ≥ SNR1.

These results show that the choice of SNR model can
affect performance assessments whenever the noise power is
random - a typical case in wireless systems subject to hardware
variability or environmental effects. Surprisingly, many works
in the literature do not explicitly define which SNR model
they use, leading to ambiguities and difficulties in comparing
results across studies.

C. Contributions and organization of the article

Our goal in this work is to quantify the discrepancies that
may arise in the performance of spectrum sensing algorithms
when different SNR models are assumed, filling the gap in the
literature concerning proper SNR modeling and consequences.

As a byproduct, simulation files were made publicly avail-
able1 to aid future comparisons in spectrum sensing algorithm
performance and SNR model effects.

The remaining of paper is organized as follows. Section II
presents the definitions for the system model, which includes
the primary user signal, channel and noise models, SNR
expressions for the system model, and the detector algorithms.
The numerical results are presented in Section III, and Section
IV summarizes the findings and proposes additional topics for
further investigations.

II. SYSTEM MODEL

The network and system model are based on [9]. The
network topology is formed by a set of m secondary users
(SUs) distributed uniformly on a circular region with radius
r, centered at (0, 0), and a fixed PU transmitter located at
(PUx, PUy).

1The source code is available at github.com/luizrenault/snrmodel

A signal is transmitted from the PU with power PTX ,
and is affected by the wireless channel, producing a received
signal with power PRXi

, which is then added to a noise
signal with power PNi

, resulting in a signal-to-noise ratio
SNRi, i = 1, . . . ,m, for each ith SU, before presented to
the spectrum sensing algorithm for the spectrum occupancy
inference. The model components are described as follows.

A. Signal Model

The transmitted signal is composed by n complex samples
representing a quaternary phase-shift keying (QPSK) mod-
ulation scheme with Ns samples per symbol and a sam-
ple rate of 1/Ts. This results in a n × 1 signal vector
x, encompassing n/Ns transmitted symbols. In this sense,
the average transmitted signal power can be calculated by
PTX = 1

n

∑n
j=1

∣∣xTXj

∣∣2, with xTXj
, j = 1, . . . , n being the

individual complex samples and |·| denoting the absolute value
operator.

B. Channel Model

As in [9], the channel model incorporates distance-
dependent received signal levels, spatially correlated shadow-
ing and multipath fading characterized by an environment-
dependent random Rice factor.

The channel affects the transmitted signal as a complex gain
that changes both magnitude and phase of the signal samples.

Let h be the m × 1 channel gain vector with elements
given by hi = g

1/2
i s

1/2
i ai, where gi = (d0/di)

η is the
real gain for the log-distance path loss model, d0 is the
reference distance in which the transmitted signal power PTX

is known, di is the exact distance from the PU to the ith
SU, η is a dimensionless, environment-dependent path loss
exponent, si is the spatially correlated shadowing gain, and
ai = CN (

√
Ki/(Ki + 1), 1/(Ki+1)) is a complex Gaussian

random variable, with Ki = 10K
dB
i /10 and KdB

i being the Rice
factor in dB for the particular channel formed by the PU and
the ith SU, modeled as a real Gaussian random variable with
mean µdB

K and standard deviation σdB
K , which are determined

according to the environmental characteristics.
The gain si = 10s

dB
i /10 models the log-normal signal

shadowing component that affects the ith SU. It is modeled
as a Gaussian random variable with zero mean and standard
deviation σdB

s , also dependent on the environment. The realiza-
tion of a specific value of sdB

i to achieve the spatial correlation
requirements is detailed as follows.

The circular SU coverage area is circumscribed by a square
region divided into v × v small squares (sub-regions) with
sides equal to 2r/v. For each sub-region, a shadowing gain
sdB
cx.y

, x, y = 1, . . . , v, is computed using SdB
c = LSdB

u L
T,

where SdB
c is the matrix formed by the elements sdB

cx,y
, SdB

u is
a v×v matrix with zero-mean uncorrelated Gaussian samples
with standard deviation σdB

s , L is the lower triangular matrix
from the Cholesky decomposition of the matrix Σ described
below, and [·]T denotes matrix or vector transposition.

The matrix Σ ∈ Rv×v is constructed using the negative-
exponential correlation model, having elements Σx,y =
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exp (−δx,y/Λ), where δx,y = |x− y|
√
2 is the distance be-

tween the matrix elements indexed by (x, y) and the diagonal,
and Λ is the correlation length. The value of Si is selected
based on the sub-region where the ith SU lies [9].

The resulting signal samples at the input of the SU receiver
are given by xRXi,j

= hixTXj
, i = 1, . . . ,m, j = 1, . . . , n,

which are arranged on the m× n matrix XRX = hxT.

C. Noise Model

In order to model the inherent differences between physical
receivers and undesired random interfering signals on the
surroundings (discerned as noise), a non-uniform time-variant
noise is considered herein.

Let W be the m× n noise matrix with elements wi,j , i =
1, . . . ,m, j = 1, . . . , n, which are complex noise samples in
the ith SU receiver. It is assumed that wi,j are zero mean
Gaussian random variables with variance σ2

i = (1 + ρui)σ
2,

where σ2 is the average noise variance across all SUs, 0 ≤ ρ <
1 is the parameter that accounts for the fractional variation of
the noise power around the average σ2, and ui is a uniform
random variable in [−1, 1], evaluated for each SU. Then, the
noisy received samples are given by X = XRX + W.

D. SNR Models

The SNR models described in Section I-B can be particu-
larized for this system model as shown in what follows.

SNR1 = E[PRX ]
E[PN ] ,with

E[PRX ] = PTXE
[(

d0

di

)η

si |ai|2
]

, and

E[PN ] = σ2, (1)

Since the log-distance path loss, the spatially-correlated
shadowing and the multipath fading are mutually independent,
E[PRX ] can be expressed as

E[PRX ] = PTXE
[(

d0

di

)η]
E [si]E

[
|ai|2

]
, (2)

with E
[
|ai|2

]
= 1. From [9], we have

E
[(

d0

di

)η]
= 1

πr2d−η
0

∫ 2π

0

∫ r

0

[
(z cosθ − PUx)

2

+ (z sinθ − PUy)
2
]− η

2

z dz dθ,

(3)

E [si] = exp
(

σdB
s

2ln2(10)
200

)
. (4)

In the case of Model 2, it follows that

SNR2 = E
[
PRX

PN

]
= E[PRX ]E

[
1
σ2

]
, (5)

since the received signal and noise are independent. The first
term is equivalent to the upper term of SNR Model 1, and the
second term is [9]

E
[
1

σ2

]
=

{
1
σ2 for ρ = 0
1

2σ2ρ
ln
(

1+ρ
1−ρ

)
for 0 < ρ < 1

. (6)

The different models affect the system in the sense that they
are used to link the average noise power and other parameters,
like transmitted power, to establish a predefined SNR condition
on computer simulations and analytical derivations.

The desired average signal-to-noise ratio, SNR, for both
models can be obtained by making the transmitted power
constant, evaluating E [PRX ] using expressions (2)-(4) and
calculating the average signal noise power as

σ2
SNR1 = E[PRX ]

SNR
, (7)

σ2
SNR2 = E[PRX ]

SNR
, (8)

σ2
SNR2 = E[PRX ]

SNR
1
2ρ ln

(
1+ρ
1−ρ

)
(9)

for SNR Model 1, for SNR Model 2 and ρ = 0, or for SNR
Model 2 and 0 < ρ < 1, respectively. This will make the
average noise power to be adjusted, so that when the noise is
added to the received signal, the resulting SNR is the intended.

E. Detectors and Data Fusion Scheme

The system model is modular and flexible, allowing the
assessment of both Cooperative Spectrum Sensing (CSS),
with m matching the number of SUs, and Non-Cooperative
Spectrum Sensing (NCSS), with m = 1. Since the main
interest resides where the noise power is a random variable,
and in the system model this is the case when m > 1 and
ρ ̸= 0, only CSS is considered herein.

In centralized CSS with data fusion, the matrix X is pro-
cessed by the Fusion Center (FC) to calculate the test statistic
for the specific detection algorithm chosen.

For the blind detectors assessed in this article, the sample
covariance matrix (SCM) of the received signal is computed as
R = 1

nXX† with |·|† denoting the conjugate and transposition
operation.

The expressions below summarizes the test statistics em-
ployed by the CSS schemes adopted in this article, where: ri,k
is the element on the ith row and jth column of R, ri is the
ith element of the vector r formed by stacking all rows of R,
r is the mean value of ri, 0 ≤ ϵ ̸= 1 is the inequality aversion
parameter, det(R) is the determinant of R, E is the diagonal
matrix in which the elements ei,i are the Euclidean norm of
the ith row of R, λ1 ≥ λ2 ≥ · · · ≥ λm are the eigenvalues of
R, and ci,j are the elements of the matrix C = D− 1

2 RD− 1
2 ,

with D being the diagonal matrix with elementsi,i = ri,i. The
detectors’ names are: Gini index detector (GID) [10], Pietra-
Ricci index detector (PRIDe) [11], Atkinson index detector
(AID) [12], Hadamard ratio (HR) detector [13], volume-based
detector number 1 (VD1) [14], scaled largest eigenvalue (SLE)
detector [15], arithmetic-to-geometric mean (AGM) detector
[16], maximum-minimum eigenvalue detector (MMED) [15],
locally most powerful invariant test (LMPIT) detector [17],
and mean-to-square extreme eigenvalue (MSEE) detector [3].

TGID =

∑m2

i=1
|ri|∑m2

i=1

∑m2

j=1
|ri − rj |

, TPRIDe =

∑m2

i=1
|ri|∑m2

i=1
|ri − r|

,

TAID =
1

r

(∑m

i=1

∑m

j=1
r1−ϵ
i,j

) 1
1−ϵ

, TMMED =
λ1

λm
,
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TAGM =

1

m

∑m

i=1
λi(

m∏
i=1

λi

) 1
m

, THR =
det(R)
m∏
i=1

ri,i

,

TSLE =
λ1∑m

i=1
λi

, TVD1 = log
[
det
(
E−1R

)]
,

TLMPIT =
∑m

i=1

∑m

j=1
|ci,j |2 , TMSEE =

λ1 + λm

2
√
λ1λm

.

III. SIMULATION RESULTS

This section presents the simulation results evaluating how
the two SNR models affect the performance assessment of
the listed detectors. Table I describes the standard param-
eter values used in the simulations, except when otherwise
explicitly specified. In spite of the SNR being a result of a
set of predefined system parameter, it was used to calculate
σ2, in order to ensure a desired signal-to-noise ratio on
the simulations. This was done using expressions (7)-(9),
depending on the SNR model under consideration. The value
of σ2 was the only difference between simulations carried out
to evaluate the performance of the detectors according to each
SNR model.

TABLE I: System parameters and standard values used in simulations.

Symb. Description Value
r SU operation area (OA) radius 1 km

PU(x,y) Position of the PU from SU OA center (1,1) km
m Number of SUs 5
n Number of received samples per SU m > 1 400
η Path loss exponent 2.5
d0 Path loss model reference distance 1 m
µk Rice factor mean value 1.88 dB
σk Rice factor standard deviation 4.13 dB
σs Shadowing standard deviation 7 dB
σ2 Average receiver noise power −28.9 dBm
v Number of row/columns of Σ, Sc and Su 50
Λ Shadowing spatial correlation length 25

PTX PU signal power at d0 5 W
Ns Number of samples per modulated symbol 3
ρ Noise level power variation parameter 0.99

Pfa Reference probability of false alarm 0.1
ϵ Inequality aversion parameter of the AID 0.1

Fig. 1 shows the analytical and measured values of SNR,
evaluated using Models 1 and 2. The analytical results was
obtained using equations (1)-(4) for Model 1 and equations
(2)-(6) for Model 2. The simulation performed an ensemble of
10000 iterations and the results were averaged. The parameter
set presented in Table I was adopted, except for ρ which varied
from 0 to 0.99.
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Model 2 (Anal tical)
              (Measured)

Fig. 1: Analytical and simulated SNR values for both models versus ρ.

As expected, for ρ = 0 both models lead to the same SNR,
since in this case the noise power is deterministic and equal
to σ2. Being the signal power random due to system model,
this fits in the third scenario presented in Section I-B.

As ρ increases, noise power becomes random, fitting in the
first scenario described in the problem description. The result
is a constant SNR calculated using Model 1, and an increasing
SNR when Model 2 is applied, with SNR2 ≥ SNR1, as stated
in Section I-B.

This can be explained by the fact that the SNRs evaluated
using Models 1 and 2 for 0 < ρ < 1 differ by a factor of
1
2ρ ln

(
1+ρ
1−ρ

)
, which increases with ρ. For ρ = 0.99, used in the

remaining of the simulations, this difference is equal to 4.27
dB, enough to produce relevant discrepancies on the detectors’
performance results, as shown bellow.

To better illustrate those discrepancies, Fig. 2 displays the
probability of detection Pd for the evaluated detectors, under
the standard parameter set from Table I, except for a targeted
SNR varying from −15 to 5 dB. In spite of small variations
on the curve shapes due to particular simulation iterations, the
graph for SNR Model 2 can be seen as the one for SNR Model
1 shifted to the right by the amount of 4.27 dB in the SNR
axis.
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Fig. 2: Detection probability, Pd, for the standard parameter set, over targeted
SNR varying from −15 to 5 dB for SNR Model 1 (left) and Model 2 (right).

This is due to the fact that (9) produces higher average noise
power than (7), and, as a consequence, the detectors suffer
more from noise effects when SNR Model 2 is applied. This
can falsely lead to a better detector performance perception
when using SNR Model 1.

Additionally, certain detector performance characteristics
could be neglected in different simulation circumstances, like
in Fig. 3. Using SNR Model 1, it appears that the LMPIT
and the HR detectors are not affected when ρ is increased, but
they rather improve their performances. It also looks like GID,
PRIDe, AID and VD1 are less affected. On the other hand, in
Fig. 3 (right) it can be seen that they all lose performance in
a much greater extent.
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Fig. 3: Detection probability, Pd, for the standard parameter set, for 0 ≤ ρ <
1 for SNR Model 1 (left) and Model 2 (right).

This is explained by the fact that, as shown in Fig. 1, if
σ2 is kept constant while increasing ρ, the SNR increases if
Model 2 is taken into account, which in consequence makes
the probability of detection increase, a behavior also noted in
Fig. 2. To keep the SNR constant, the average noise power σ2

also needs to be increased, which degrades more the received
signal and lowers the detection probabilities.

Fig. 4 shows a case in which the detectors LMPIT and HR
are compared using a combination of the SNR models. The
probability of detection under standard system parameters for
varying η is plotted for both detectors. On the left-side graph,
the detectors’ performances were evaluated using SNR Model
1 for LMPIT, and Model 2 for HR. In this case, LMPIT
performs much better than HR. The center graph displays
an opposite result, with LMPIT being evaluated using SNR
Model 2, while HR applies Model 1.
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Fig. 4: SNR Model mismatch comparison for LMPIT and HR detectors, using
SNR Models 1 and 2 respectively, on the left, 2 and 1 on center, and all models
on the right, under standard simulation parameter set, for varying η.

In fact, when the same SNR model is used for both
detectors, their performances are found to be virtually the
same, as shown in Fig. 4, right. It is also noteworthy that
the detection probabilities for the SNR Model 1 are higher
than for Model 2 for both detectors, due to already discussed
reasons.

IV. CONCLUSIONS

This paper examined how different SNR modeling ap-
proaches affect the performance evaluation of spectrum sens-
ing detectors. Using analytical expressions and simulation-
based analysis, we showed that even under the same signal
and channel conditions, the use of different SNR models -

specifically when the noise is random - can result in substan-
tially different average SNR values.

These differences, in turn, influence key performance met-
rics such as the detection probability, potentially leading to
biased comparisons among spectrum sensing algorithms. Our
findings underline the importance of explicitly defining and
justifying the chosen SNR model when designing or evaluating
cognitive radio systems.

Notably, we found that many published works fail to specify
which SNR model is used, which hampers the reproducibility
and fair comparison of results across studies. To address this,
we also provided an open-source simulation code to encourage
transparency and standardized benchmarking.

Future work may explore the behavior of the SNR models
in scenarios where the signal and noise are not independent
or when both follow correlated or non-Gaussian distributions.
Additionally, developing guidelines or toolkits to standardize
SNR modeling in simulation frameworks could significantly
improve consistency in spectrum sensing research.
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