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Performance of Inequality Index Detectors
Implemented with Direct-Conversion Receivers

Luiz Gustavo Barros Guedes and Dayan Adionel Guimarães

Abstract— Inequality index-based detectors represent promis-
ing techniques for cooperative spectrum sensing in cognitive radio
networks. While schemes such as the Gini index detector (GID),
Pietra-Ricci index detector (PRIDe), Atkinson index detector
(AID), and Theil index detector (TID) have been studied, prior
work typically assumes ideal conditions with conventional re-
ceiver models. The impact of impairments from direct-conversion
receivers (DCR), including quantization, clipping, and DC-offset,
remains underexplored. This work addresses that gap by eval-
uating these detectors under both conventional and DCR-based
models. Results show that PRIDe is the most robust, while TID
is particularly sensitive to realistic distortions.

Keywords— Cooperative spectrum sensing, cognitive radio,
inequality index detectors, direct-conversion receiver.

I. INTRODUCTION

The exponential growth in demand for new wireless com-
munication systems and services, whether in current or future
generations of mobile networks, has brought renewed attention
to two fundamental limitations in spectrum utilization [1].
First, spectrum scarcity arises from the lack of availability
of new frequency bands. Second, spectrum underutilization
occurs due to the intermittent activity of primary users (PUs),
who hold exclusive rights to use specific bands under tradi-
tional fixed spectrum allocation policies. These challenges mo-
tivate the development of dynamic spectrum access (DSA) [2]
techniques, wherein secondary users (SUs), for example, op-
portunistically access temporarily unoccupied portions of the
spectrum without causing harmful interference to the PUs.

One of the enabling technologies for DSA is spectrum
sensing [3], a fundamental capability in cognitive radio net-
works. In this context, SUs autonomously monitor a particular
frequency band to identify potential transmission opportuni-
ties. Spectrum sensing is typically formulated as a binary
hypothesis testing problem: the null hypothesis, H0, assumes
the absence of PU signal within the sensed frequency band,
whereas the alternative hypothesis, H1, assumes its presence.
This sensing approach can be performed individually by a sin-
gle SU or collectively by a group of SUs through cooperative
spectrum sensing (CSS). Owing to its potential to improve
detection accuracy in the presence of fading and shadowing,
CSS is generally favored over individual sensing strategies.
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In a CSS with data fusion, cooperating SUs independently
collect signal samples and report them to a central entity
known as the fusion center (FC). The FC processes the
received data to compute a global test statistic, T , which is
then compared against a decision threshold, λ. If T < λ,
then hypothesis H0 is accepted; otherwise, H0 is rejected.
The performance of spectrum sensing systems is quantitatively
characterized by two primary metrics: the probability of detec-
tion, Pd, which measures the likelihood of correctly detecting
an active PU; and the probability of false alarm, Pfa, which
corresponds to erroneously detecting a PU signal when it is
actually absent.

Apart from the effects of wireless channel propagation,
noise and interference, performance degradation in spectrum
sensing is influenced by the impairments imposed by the
architectural design of the receiver [4], [5]. Notably, many
models employed in the spectrum sensing literature simplify
the receiver structure, often neglecting realistic aspects of
signal processing encountered in practical implementations.
This motivates the need for performance analysis under more
realistic receiver architectures, which can better capture the
operational constraints and impairments of actual cognitive
radio systems.

Among diverse detection techniques, detectors based on
inequality indices have emerged as promising alternatives for
spectrum sensing design. Originally from economics, indices
such as Gini [6], Pietra-Ricci [7], Atkinson [8], and Theil [9]
offer a novel perspective by capturing statistical asymmetries
in the received signal. However, their performance has been
evaluated, in these works, only under the conventional receiver
model. This study extends the analysis by assessing and
comparing the performance of inequality-based detectors in
centralized CSS with data fusion under both conventional and
DCR-based receiver models.

The remainder of this paper is organized as follows: Sec-
tion II presents the system model, while Section III describes
the test statistics adopted for performance evaluation, which is
carried out in Section IV. Finally, Section V summarizes the
main conclusions drawn from this study.

II. SYSTEM MODEL

A. Conventional Receiver Model
This work adopts a centralized CSS model with data fusion,

where m SUs collaboratively perform spectrum sensing. Each
SU collects n samples of the PU signal during a sensing
interval and forwards them to a FC via error-free control
channels. The received samples at the FC are arranged in the
matrix Y ∈ Cm×n, modeled as
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Y = hxT +V, (1)

where x ∈ Cn×1 contains the PU signal samples, modeled as
zero-mean complex Gaussian random variables with variance
defined by the average signal-to-noise ratio (SNR) across
the SUs. This statistical model captures envelope fluctuations
commonly observed in modulated and filtered signals.

The channel vector h ∈ Cm×1 consists of elements hi

representing the fading coefficients between the PU and the
i-th SU. These gains vary over time due to SU mobility and
multipath propagation. The channel vector is expressed as

h = Ga, (2)

where a ∈ Cm×1 is composed of complex Gaussian random
variables ai ∼ CN [

√
κ/(2κ+ 2), 1/(κ+1)]. The Rice factor

κ is expressed in decibels as κdB = 10 log10(κ) and is
modeled as κdB ∼ N [µκ, σκ], where µκ and σκ, both in dB,
characterize the propagation environment [10].

To model heterogeneous and time-varying signal power
reception due to SU displacement and different distances to
the PU, the matrix G ∈ Rm×m is defined as

G = diag

(√
p

Ptx

)
, (3)

where p = [Prx1 , . . . , Prxm
]T contains the received power

values at each SU, and Ptx is the PU’s transmit power, in
watts. The received power at the i-th SU is estimated using
the log-distance path loss model [11]

Prxi
= Ptx

(
d0
di

)η

, (4)

where d0 is a far-field reference distance, di is the distance
from the PU to the i-th SU, and η is the path loss exponent.
All distances are in meters.

Variations in noise power across SU receivers are modeled
by the matrix V ∈ Cm×n, whose i-th row has zero-mean
complex Gaussian entries with variance given by

σ2
i = (1 + ρui)σ̄

2, (5)

where ui is a realization of a uniform random variable Ui ∼
U [−1, 1], σ̄2 denotes the average noise power, and 0 ≤ ρ < 1
controls the variability around the mean.

Given the randomness in both σ2
i and di, the instantaneous

SNR observed at the SUs is itself a random variable, expressed
as

γ =
1
m

m∑
i=1

Ptx (d0/di)
η

(1 + ρui)σ̄2 . (6)

The average SNR across all SUs is defined as SNR = E[γ],
the expected value of γ. As derived in [12], the closed-form
expression for this average SNR is

SNR =
ln
(

1+ρ
1−ρ

)
2ρmσ̄2

m∑
i=1

Prxi
. (7)

B. Direct-Conversion Receiver Model

The CSS framework discussed in [5] is built upon a realistic
representation of a direct-conversion receiver (DCR), which
reflects the signal processing chain typically employed in
practical radio front-ends. Although the internal circuitry of
the DCR is not detailed here, its operational principles define
the model shown in Fig. 1, which serves as the simulation
platform for centralized CSS schemes with data fusion. The
model explicitly accounts for essential baseband processing
steps carried out at the SUs and at the FC, including signal
filtering, residual DC-offset injection, automatic gain control
(AGC), noise whitening, analog-to-digital conversion (ADC),
computation of test statistic, and binary spectrum occupancy
decision.

Fig. 1. Simulation model for DCR-based CSS with centralized data fusion [5].

Each row yT
i of the received signal matrix Y, comprising

the samples collected by the i-th SU, with i = 1, . . . ,m, is
passed through a moving-average (MA) filter of length L.
This filtering stage approximates the cumulative impact of
transmitter, channel, and receiver filtering.

Then, the signal is impaired by residual DC-offset compo-
nents, which emulate the incomplete cancellation of unwanted
DC levels that often result from local oscillator self-mixing
and strong in-band interferers [4]. These residual offsets are
modeled as additive zero-mean Gaussian noise with variance
σ2
dc. The severity of this impairment is quantified through the

signal-to-DC-offset ratio (SDCR), defined in dB as

SDCR = 10 log10

(
pavg
σ2
dc

)
, (8)

where pavg denotes the average signal power prior to DC
contamination, given by 1

m

∑m
i=1 Prxi

.
To normalize signal amplitudes across different SUs, an

AGC mechanism is applied. The gain applied at the i-th SU
is given by

gi =
fod

√
2n

6∥yi∥
, (9)

where ∥ · ∥ is the Euclidean norm, and fod characterizes the
variability in clipping levels found in practical ADCs.

Once AGC is applied, the signal is digitized and subjected to
a noise whitening [13], which serves to decorrelate the samples
affected by the earlier MA filtering. Given its sensitivity to
quantization, whitening is performed using high-resolution
samples. After whitening, the data is re-quantized at a lower
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resolution for transmission over a control channel to the FC,
thereby reducing the required bandwidth.

In the “Whitening and Quantization” block of Fig. 1, the
whitening operation is mathematically represented by a matrix
B ∈ Rn×n, applied to the AGC-adjusted and quantized signal
matrix. The whitening matrix is defined as

B = UL−1, (10)

where U is an orthogonal matrix derived from the singular
value decomposition of the autocorrelation matrix Q ∈ Rn×n,
and L is the Cholesky factor of Q.

The entries of Q are computed based on the autocorrelation
function of the MA filter’s impulse response, as follows

Qij = q|i−j|, (11)

for i, j = 1, . . . , n, with

qk =

1 − k

L
, if k ≤ L,

0, otherwise,
k = 0, 1, . . . , n− 1.

To ensure unit average power after filtering, the MA filter
coefficients are normalized as zl = 1/

√
L for l = 1, . . . , L.

III. TEST STATISTICS

The sample covariance matrix (SCM) estimates the covari-
ance structure of the received signal using a finite number of
samples. It captures linear dependencies among signal com-
ponents and, in the spectrum sensing scenario, is computed at
the FC as

R̂ =
1
n
YY†, (12)

where † denotes the Hermitian operator.
The test statistics for the Gini index detector (GID) [6]

and the Pietra-Ricci index detector (PRIDe) [7] are defined,
respectively, as

TGID =

∑m2

i=1 |ri|∑m2

i=1
∑m2

j=1 |ri − rj |
, (13)

TPRIDe =

∑m2

i=1 |ri|∑m2

i=1 |ri − r̄|
, (14)

where ri is the i-th entry of the vector r formed by column-
wise stacking of R̂, and

r̄ =
1
m2

m2∑
i=1

ri (15)

is the empirical mean of the SCM entries.
The Atkinson index detector (AID) [8] test statistic is

defined as

TAID =
1
r̄

 m∑
i=1

m∑
j=1

r1−ϵ
ij

 1
1−ϵ

, ϵ ∈ (0, 1) ∪ (1,∞). (16)

For the specific case ϵ = 0.5, the expression simplifies to

TAID =
1
r̄

 m∑
i=1

m∑
j=i

(2 − I)
√

|rij |+ ℜ(rij)

2

, (17)

where I = 1 if i = j and I = 0 otherwise, enabling
computational savings by exploiting the Hermitian symmetry
of R̂. The operator ℜ(·) retrieves the real part of its argument.

The Theil index detector (TID) [9] uses an entropy-based
formulation to quantify inequality among SCM entries. Its test
statistic is

TTID =

 m∑
i=1

m∑
j=i

(2 − I) |rij | log
(
|rij |
r̄abs

)−1

, (18)

where

r̄abs =

m∑
i=1

m∑
j=1

|rij | (19)

is the total absolute sum of the SCM entries, and I follows
the same definition as in (17).

IV. NUMERICAL RESULTS

In this section, we present computer simulation results
for centralized CSS with data fusion, considering both the
conventional and DCR models. The evaluation is based on
the probability of detection, Pd, as a function of various
system parameters, assuming a fixed probability of false alarm
Pfa = 0.1 [14]. Results are provided for the GID, PRIDe,
AID, and TID detectors. Each point on the performance curves
was obtained from 10000 Monte Carlo runs, using MATLAB
R2024b. The simulation code used to generate the results is
publicly available in [15].

Using the conventional model under AWGN as a perfor-
mance baseline, the average SNR or the number of samples
collected per SU for each sensing interval, n, were adjusted in
some scenarios so that the best-performing detector achieves
Pd ≈ 0.9 at the midpoint of the parameter range under
study. This normalization facilitates a clearer comparison of
performance trends across different configurations.

Unless otherwise stated, the system parameters are fixed as
follows: m = 6 SUs, representing a small number of cooperat-
ing cognitive radios, which ensures efficient use of the control
channel; n = 250 samples per SU, chosen to satisfy the desired
detection performance; SNR = −10 dB, reflecting operation
in a low-SNR regime; noise power variation factor ρ = 0.5,
modeling thermal noise fluctuations; path-loss exponent η =
2.5, characteristic of urban environments; normalized coverage
radius r = 1 m; reference distance d0 = 0.001r for path-loss
computation; transmit power Ptx = 5 W, chosen to reflect
practical PU power levels; and a random Rice factor with
mean µκ = 1.88 dB and standard deviation σκ = 4.13 dB,
following urban channel measurements from [10].

Fig. 2 illustrates the variation of Pd as the SNR increases
from −20 to 0 dB. As expected, performance improves with
higher SNR values, following a same pattern for all detectors,
in both the conventional (left) and DCR (right) scenarios.



XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

Under the conventional model, TID shows the weakest per-
formance at low SNRs but eventually outperforms GID and
approaches AID for SNR ≥ −10 dB, while PRIDe becomes
the most effective at higher SNRs. Under the DCR model,
most detectors maintain similar trends with slight degradation;
however, TID experiences a significant performance drop due
to its reliance on logarithmic ratios between SCM entries and
their mean to measure inequality. Signal processing impair-
ments introduced by the DCR, such as clipping, quantization,
and DC-offset, reduce the variability of the SCM, diminishing
the discriminative power of the logarithmic function. Conse-
quently, TID becomes less capable of distinguishing between
hypotheses H0 and H1. In contrast, GID, which relies on
absolute differences, PRIDe, which measures deviations from
the mean, and AID, which applies square roots that mitigate
distortions, exhibit greater robustness to the DCR-induced
effects.

Fig. 2. Probability of detection, Pd, versus signal-to-noise ratio (SNR) in dB under
conventional (left-hand side) and DCR (right-hand side) models.

Fig. 3 shows the impact of the path-loss exponent η on
detection performance. Although the average SNR across users
is kept constant for all values of η by adjusting the noise power
accordingly, the effective SNR distribution becomes increas-
ingly unbalanced as η increases, due to growing disparities
in the received signal powers at individual SUs arising from
their varying distances to the PU transmitter. As propagation
conditions worsen, this imbalance reduces the efficiency of
cooperative detection. While GID, PRIDe, and AID exhibit
relatively robust behavior across the entire η range in both
models, TID suffers a significant degradation, especially under
the DCR model. This is due to its reliance on logarithmic
ratios to measure inequality, which become less discriminative
when the SCM entries show reduced variability, a condition
exacerbated by DCR-induced impairments such as clipping,
quantization, and DC-offset.

Fig. 4 illustrates the impact of the mean of Rice factor,
µκ, on detection performance. It can be observed that µκ

begins to significantly influence Pd around −5 dB, which
corresponds to the point where the dominant line-of-sight
component of the received signal starts to prevail over the
scattered components. This leads to performance improve-

Fig. 3. Probability of detection, Pd, versus path loss exponent, η, under conventional
(left-hand side) and DCR (right-hand side) models.

ments across most detectors, although with varying intensities.
Under the conventional model (left), all detectors benefit from
the increase in µκ, with GID, PRIDe and AID showing
the most pronounced gains. Under the DCR model (right),
similar trends are observed for GID, PRIDe, and AID, albeit
with slightly reduced performance levels. The TID, however,
exhibits pronounced sensitivity to signal distortions, which
obscures the statistical structure of SCM, even as channel
conditions improve. Consequently, its performance remains
nearly constant and notably poor across different values of
µκ, indicating a lack of adaptability to variations in the Rice
factor.

Fig. 4. Probability of detection, Pd, versus mean of Rice factor, µκ, for SNR = −9 dB
under conventional (left-hand side) and DCR (right-hand side) models.

Fig. 5 illustrates the impact of two essential terms of the
DCR model. Figs. 5a and 5b show, respectively, the probability
of detection, Pd, as a function of the overdrive factor fod and
the SDCR. These two parameters were selected for analysis
due to their pronounced influence on detector performance, as
observed in preliminary evaluations.

Fig. 5a shows the behavior of Pd versus the overdrive factor,
fod, which controls the input signal amplitude relative to the
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ADC dynamic range. All detectors exhibit a mild concave
response, indicating a trade-off region. For small values of fod,
the input signal occupies only a limited portion of the quan-
tizer’s range, resulting in reduced resolution and performance
degradation due to insufficient quantization granularity. As fod
increases, performance improves until a saturation point is
reached, beyond which signal clipping begins to dominate,
again impairing detection. Unlike the other detectors, the TID
fails to respond to variations in fod, consistently performing
poorly. This underscores its vulnerability to quantization and
unsuitability for realistic ADC conditions.

Fig. 5b presents the variation of Pd versus the SDCR
under the DCR model. As expected, low SDCR values,
corresponding to stronger residual DC-offsets relative to the
received signal, result in poor detection performance across
all detectors. As SDCR increases, Pd improves steadily up
to approximately −5 dB, beyond which performance tends to
stabilize. This plateau suggests that for SDCR values above
−5 dB, the residual DC-offset becomes sufficiently small so
as not to significantly interfere with the detection process.
Among the detectors, PRIDe consistently achieves the highest
Pd, followed by AID and GID, which are similarly affected
by the offset. The TID again shows limited adaptability, fur-
ther confirming its susceptibility to DCR-induced distortions
and its reduced ability to exploit the underlying covariance
structure when corrupted by practical impairments.

(a) (b)

Fig. 5. Probability of detection, Pd, versus specific parameters of the DCR model:
overdrive factor fod (5a) and signal-to-DC-offset ratio (SDCR) (5b).

V. CONCLUSIONS

This study evaluated the performance of centralized CSS
with data fusion under both conventional and DCR receiver
models, focusing on the impact of signal processing impair-
ments and system parameters on inequality-based detectors,
namely GID, PRIDe, AID, and TID. The analysis considered
a fixed Pfa scenarios with varying SNR, path-loss exponent
η, mean Rice factor µκ, and DCR-specific parameters such
as overdrive factor fod and SDCR. While all detectors benefit
from increased SNR and favorable propagation, TID exhibited
a marked performance drop under DCR conditions due to its

reliance on logarithmic ratios, which are highly affected by
quantization, clipping, and DC-offset effects.

In contrast, GID, PRIDe, and AID demonstrated greater ro-
bustness, maintaining consistent performance despite receiver
impairments. The configuration of DCR-related parameters,
particularly fod and SDCR, also proved critical, with improper
tuning leading to significant degradation. Among the evaluated
schemes, PRIDe stood out as the most resilient detector,
followed closely by AID and GID, while TID was confirmed
as the most sensitive to realistic distortions. These results
underscore the importance of incorporating receiver-aware
modeling and accounting for hardware-induced impairments
in the design and evaluation of spectrum sensing systems.
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