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Influence of the Inequality Aversion Parameter on
the Performance of the Atkinson Index Detector
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Abstract— The Atkinson index detector (AID) was recently
developed for cooperative spectrum sensing. It is parameterized
by the inequality aversion parameter ϵ, which controls sensitivity
to data disparities. However, the original publication where the
AID was devised did not explore in detail the influence of ϵ in
the spectrum sensing performance. This paper addresses this gap
by making an in-depth analysis of ϵ in the performance of the
AID. It is demonstrated that ϵ = 0.1 yields better performances
in the majority of practical scenarios, while ϵ = 0.5 is the best
choice for low-complexity computation of the AID test statistic
and better performances over Rayleigh fading channels.

Keywords— Atkinson index detector, cognitive radio, dynamic
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I. INTRODUCTION

The proliferation of wireless communication systems in
recent years has led to a scarcity of available radio-frequency
(RF) spectrum. This scarcity is largely attributed to the im-
plementation of fixed spectrum allocation policies, in which
a network of primary users (PUs) holds exclusive rights to
operate over specific RF bands. However, recent studies have
shown that numerous allocated RF bands remain underutilized
across different regions and time periods, resulting in ineffi-
cient spectrum usage [1].

The RF spectrum scarcity is expected to worsen with the
continued expansion of the Internet of Things (IoT), the de-
ployment of 5G networks, and the anticipated development of
6G networks. These technological advancements will demand
wider bandwidths, thereby increasing the competition for an
already limited spectral resource [1].

One potential approach to improve spectrum utilization
involves the implementation of cognitive radio (CR) networks.
These networks are capable of identifying unoccupied bands
that arise due to the spatiotemporal variability in primary
network channel usage [2]. In such scenario, a dynamic spec-
trum access (DSA) policy can be adopted, enabling secondary
users (SUs) with cognitive capabilities to opportunistically
access idle frequency bands. The strategy adopted is known
as spectrum sensing, which relies on techniques that may or
may not incorporate spectrum occupancy databases to identify
spectral gaps [1], [3].
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While spectrum sensing performed individually by each SU
is susceptible to impairments such as multipath fading, signal
shadowing, and the hidden terminal problem, cooperative
spectrum sensing (CSS) mitigates these effects by leveraging
multiple SUs, thereby improving the accuracy of decisions
regarding spectrum occupancy.

This work considers a CSS scheme with distributed detec-
tion and centralized decision-making through data fusion. In
this configuration, primary signal samples received by the SUs
are transmitted to a fusion center (FC), where they are used
to compute a test statistic. This statistic is then compared
to a decision threshold to generate a global decision on the
occupancy state of the monitored frequency band.

A wide range of detection techniques have been proposed
for spectrum sensing, from conventional energy detection
methods to more recent approaches based on neural networks,
machine learning, and artificial intelligence. Other strategies
include detectors that exploit cyclostationary features of the
signal or eigenvalue-based criteria [3].

More recently, the use of inequality indices has been
proposed as an innovative and promising framework for de-
tector design [4]–[9]. These indices, commonly employed in
economics and social sciences to quantify income or wealth
disparity among individuals or populations, offer a novel
perspective in the signal detection area.

The Atkinson index detector (AID) is another inequality in-
dex detector that has been recently introduced [10]. It adapted
the Atkinson coefficient formula to operate on the elements of
the sample covariance matrix (SCM) of the received signal.
The resulting AID features low computational complexity,
robustness to variations in signal and noise power levels, and
the desirable property of constant false alarm rate (CFAR), yet
outperforming several conventional detectors in many practical
scenarios.

The test statistic of the AID is parameterized by an inequal-
ity aversion parameter, ϵ. As the name suggests, the parameter
controls the sensitivity of the test statistic to disparities in
the input data, i.e. the SCM elements. In [10], only a minor
investigation has been made in regard to the influence of ϵ on
the performance of the AID. Hence, motivated by the need
for more information regarding the choice of this parameter,
this paper makes a deep analysis of the influence of ϵ on the
performance of the AID, as well as on possible numerical
problems that may arise depending on the chosen value of ϵ.

The remainder of this paper is structured as follows: Sec-
tion II introduces the signal, noise, and channel models.
Section III provides a brief overview of the AID, with focus
on its inequality aversion parameter. Section IV presents the
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numerical results and discussions, while Section V concludes
the paper.

II. SYSTEM MODEL

The model adopted herein for CSS with data fusion is the
same as the one in [10], ensuring consistency of results and
conclusions. Some details are therefore omitted for concise-
ness, and the reader is referred to [11] for further information.

Spectrum sensing is performed by m SUs uniformly dis-
tributed on a circular area of radius r centered at (0, 0).
Unless stated otherwise, the PU transmitter is positioned at
(x, y) = (r, r). Placing the PU transmitter outside the coverage
area of the secondary network is a common approach for
establishing an exclusion zone, which is a designated region
around the PU where SUs are restricted from accessing the
spectrum, in order to protect the PU from harmful interference.

Each SU collects n samples of the primary signal during a
sensing interval. The samples gathered by all SUs are then
transmitted to the FC through error-free control channels,
forming the sample matrix Y ∈ Cm×n, given by

Y = hxT +V, (1)

where the vector x ∈ Cn×1 contains the primary signal
samples, modeled as zero-mean complex Gaussian random
variables. The channel vector h ∈ Cm×1 comprises elements
hi, representing the channel gains between the PU transmitter
and the ith SU, for i = 1, . . . ,m. The temporal variation of
these gains reflects the fading effects due to multipath propa-
gation and SU mobility. Specifically, h = Ga, where G is a
gain matrix defined later, and a ∈ Cm×1 is a vector of complex
Gaussian random variables ai ∼ CN [

√
K/(2K + 2), 1/(K+

1)]. Here, K = 10K
(dB)/10 denotes the Rice factor of the

channels between the PU transmitter and the SUs, with
K (dB) = 10 log10(K) representing its value in decibels.

Based on the findings reported in [12], the Rice factor K (dB)

can be modeled as a Gaussian random variable with mean
µK and standard deviation σK , both expressed in decibels.
Typical values of µK and σK depend on the propagation
characteristics of the environment. For example, in urban
areas, µK = 1.88 dB and σK = 4.13 dB; in rural or open
areas, µK = 2.63 dB and σK = 3.82 dB; and in suburban
regions, µK = 2.41 dB and σK = 3.84 dB [12].

The received signal power at the SUs may vary in intensity
and over time due to differences in the distances between the
PU transmitter and the SUs, as well as due to mobility-induced
changes in those distances across different sensing events.

In this context, the previously mentioned gain matrix
G ∈ Rm×m is given by G = diag(

√
p/Ptx), where p =

[Prx1, . . . , Prxm]T is the vector of PU signal powers received by
the m SUs, and [·]T denotes transposition. Here, Ptx represents
the PU transmission power in watts, and diag(·) denotes a
diagonal matrix with its main diagonal formed by the vector
elements in the argument.

The log-distance path loss model [13] is employed to
compute the received signal power at the ith SU, in watts,
as

Prxi = Ptx

(
d0
di

)η

, (2)

where d0 is a reference distance within the far-field region
of the transmitting antenna, di is the distance between the PU
transmitter and the ith SU, and η is the environment-dependent
path loss exponent. All distances are specified in meters.

Discrepancies and fluctuations in the noise power at the SU
receivers may arise due to temperature variations, differences
in front-end circuitry, and the presence of undesired signals
that elevate the noise floor. To model these effects, the ele-
ments of the ith row of the matrix V ∈ Cm×n, defined in (1),
are modeled as zero-mean Gaussian random variables with
variance

σ2
i = (1 + ρui)σ̄

2, (3)

where ui is a realization of a uniform random variable Ui over
the interval [−1, 1], σ̄2 is the average noise power at the SUs,
and 0 ≤ ρ < 1 is the fraction representing the variability in
σ2
i around σ̄2.
The instantaneous SNR across the SUs, γ, is a random

variable due to its dependence on both σ2
i and di, which are

themselves random. Based on (2) and (3), a realization of γ
is given by

γ =
1

m

m∑
i=1

Ptx (d0/di)
η

(1 + ρui)σ̄2
. (4)

Therefore, the average SNR at the SUs is defined as SNR =
E[γ], where E[γ] denotes the expected value of γ.

To implement the above SNR model, one first computes the
expected value of γ′, defined for σ̄2 = 1 and given {di}. It
can be shown [11] that this expectation is

E[γ′] = ln

(
1 + ρ

1− ρ

)
1

2ρm

m∑
i=1

Prxi (5)

for 0 < ρ < 1, and for ρ = 0 it becomes

E[γ′] =
1

m

m∑
i=1

Prxi. (6)

Since SNR = E[γ] = E[γ′]/σ̄2, the calibrated noise
variance is given by

σ̄2 =
E[γ′]

SNR
. (7)

This value of σ̄2 is substituted into (3), along with a
realization ui of the random variable Ui, to obtain σ2

i , which
is the noise variance of the elements in the ith row of V. New
values of {σ2

i } are generated for each sensing event, thereby
introducing the desired temporal variability in noise levels.

The matrix Y in (1) is constructed at the FC using the
mn samples forwarded by the SUs. Under hypothesis H1,
indicating the presence of the PU signal in the sensed band,
this matrix is given by Y = hxT +V. Under hypothesis H0,
indicating the absence of the PU signal, the model reduces to
Y = V. From Y, the FC computes the sample covariance
matrix of order m×m, which is given by

R =
1

n
YY†, (8)

where † denotes the complex conjugate and transpose. The
test statistic of the AID is built from the elements of R, as
detailed in the next section.
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III. THE ATKINSON INDEX DETECTOR

The Atkinson index [14] applied for income inequality
measurement is

Aϵ = 1− 1

r̄

(
1

N

N∑
i=1

r1−ϵ
i

) 1
1−ϵ

, (9)

where 0 ≤ ϵ ̸= 1 is the inequality aversion parameter, ri is the
income of the ith population or individual, for i = 1, . . . , N ,
and r̄ = 1

N

∑N
i=1 ri is the mean income.

In [10], the index has been adapted for spectrum sensing,
by replacing the incomes ri by the elements rij of R, yielding
the AID test statistic TAID = 1−Aϵ, which is given by

TAID =
1

r̄

 m∑
i=1

m∑
j=1

r1−ϵ
ij

 1
1−ϵ

, (10)

where

r̄ =
1

m2

m∑
i=1

m∑
j=1

rij . (11)

The AID test statistic (10) applies to any value of ϵ, as long
as 0 < ϵ ̸= 1.

When ϵ = 0.5, well-known algorithms for square root
calculation can be employed to reduce the computational
complexity and latency for calculating TAID, yielding its lowest
complexity version

TAID =
1

r̄

 m∑
i=1

m∑
j=i

(2− I)
√
|rij |+ ℜ(rij)

2

, (12)

where I = 1 for i = j (main diagonal of R), and I = 0 for
i ̸= j (off-diagonal elements).

In [10], the rule for choosing ϵ = 0.5 has been established
targeting low time complexity, yet resulting good performance.
In the next section, the choice of ϵ is refined by means of the
analysis of numerous computer simulation results.

IV. NUMERICAL RESULTS

The results presented in this section have been obtained
using the MATLAB code [15], from 10000 Monte Carlo
simulation runs. Unless otherwise stated, m = 6 SUs,
SNR = −10 dB, path loss exponent η = 2.5, coverage radius
r = 1 km, reference distance d0 = 1 m, PU transmit power
Ptx = 5 W, PU transmitter at (x, y) = (1, 1) km, number of
samples n = 200, fraction of noise level variation ρ = 0.5,
mean and standard deviation of the Rice factor µK = 1.88 dB
and σK = 4.13 dB, and target (constant) probability of false
alarm Pfa = 0.1.

Fig. 1 shows how the variance of TAID behaves as ϵ is
varied from 0.1 to 50. Although not shown, the mean of TAID
follows the same pattern. Around ϵ = 1, as expected, both
the mean and variance of TAID become extremely unstable,
spanning many orders of magnitude, which is consistent with
the singularity at ϵ = 1 in (10). At ϵ around 34 and above,
missing points (in both mean and variance of TAID) is caused

by a NaN values in MATLAB computations, which is owed
to a different numerical problem, as explored in the sequel.

Fig. 1: Variance of TAID versus ϵ.

From the definition of TAID, if ϵ = 34, then 1 − ϵ = −33
and 1/(1− ϵ) = −1/33. The entries rij of the sample
covariance matrix have magnitudes on the order of 10−6 for
a typical system setting. Then, raising them to the −33 power
leads to extremely large values: |rij |−33 ≈ (10−6)−33 =
10198. Such high values, when used in additional calculations,
are very likely to exceed the double-precision floating-point
range (approximately 10308), causing overflow to Inf during
intermediate computations, and, if any operation subsequently
involves an undefined form such as Inf−Inf or Inf/Inf,
the result becomes NaN.

For example, if the entries of R satisfy rij ∼ 10−6,
yielding |rij | ∈ [10−8, 10−6], say |rij | = 5× 10−8, then (5×
10−8)−33 ≈ 10264, which may exceed the double-precision
representation limits in subsequent calculations. Therefore,
intermediate results become Inf, and any subsequent invalid
arithmetic with Inf can yield NaN. This confirms that the
appearance of NaN values in TAID for large ϵ is a direct
consequence of numerical overflow due to raising small values
to large negative exponents.

In Fig. 2, the probability of detection of the AID is plotted
against the same range of ϵ considered in Fig. 1. It is clear that
the useful range of ϵ is in-between 0 and 1, since Pd ≥ Pfa
in this range. The unitary Pd shown by the rightmost point is
in fact an invalid outcome that resulted from the previously-
described NaN problem.

Fig. 2: Pd versus ϵ.

Fig. 3 shows Pd versus ϵ for ϵ ranging from 0.01 to 0.99,
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and for different values of the number of SUs, m, while Fig. 4
gives Pd versus m for some values of ϵ. Fig. 3 resembles
Fig. 1a of [10], confirming that ϵ = 0.5 is indeed a good choice
for acceptable performance and low computational complexity.
However, from Fig. 4 it can be realized that ϵ = 0.1 is a better
choice if it is expected large numbers of SUs.

The remaining results of this section give further support for
the choice of ϵ = 0.1 in the majority of situations, whereas
ϵ = 0.5 can be still a good choice in some cases, mainly if
low complexity is more relevant than performance.

Fig. 3: Pd versus ϵ for different numbers of SUs, m.

Fig. 4: Pd versus m for different ϵ.

The influences of the number of samples, n, and the SNR
on Pd are shown in Fig. 5 and Fig. 6, respectively, for different
values of ϵ. In regard to n, ϵ = 0.1 indeed seems to be a good
choice, but for moderate-to-small n. If ϵ = 0.1, or even as
high as 0.9, good performances are achieved for large values
of n. Noteworthy, the performance monotonically improves as
n increases, which is an expected outcome.

In regard to the SNR, it can be seen in Fig. 6 that ϵ =
0.1 is also a good choice for the whole SNR range, although
larger values of ϵ can be adopted in the unrealistic regimes of
very high SNRs. Notice that the performance monotonically
improves as the SNR increases, as expected.

Fig. 7 shows the influence of the mean Rice factor on Pd,
while Fig. 8 explores how the path loss exponent impacts
Pd, both considering some values of ϵ. It can be seen from
Fig. 7 that the best choice for ϵ is highly influenced by µK .
Specifically, ϵ = 0.1 remains a good choice for µK above
≈ 2 dB, whereas ϵ = 0.5 or even larger become the most
appropriate choice for very small µK , which corresponds to a
Rayleigh fading channel.

Fig. 5: Pd versus n for different ϵ.

Fig. 6: Pd versus SNR for different ϵ.

As far as η is concerned, Fig. 8 unveils that ϵ = 0.1 remains
the best choice for the whole range, with ϵ = 0.5 bringing
approximately the same performance.

The performance degradation observed in Fig. 8 as η
increases is not credited to a larger average path loss. Instead,
it is credited to the larger discrepancies in the signal powers
received by the SUs. One must recall that the configured SNR
is the same for any η, because the noise power is adjusted
accordingly.

Fig. 7: Pd versus µK for different ϵ.

Finally, Fig. 9 and Fig. 10 depict how Pd is influenced by the
distances of the PU transmitter to the SUs (as determined by
the transmitter coordinates), and by the fraction of noise level
variation across the SUs. In both cases, ϵ = 0.1 and ϵ = 0.5
yield comparable performances, with ϵ = 0.1 showing a slight
advantage.

The worse performance observed in Fig. 9 for smaller
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Fig. 8: Pd versus η for different ϵ.

distances from the PU transmitter to the SUs is owed to
the larger discrepancies in the received signal powers in
comparison with larger distances. Again, one must recall that
the configured SNR is the same for any transmitter location,
since the noise power is adjusted accordingly.

The small performance variation observed in Fig. 10 high-
lights the robustness of the AID to noise level variations, which
is consistent with the claims presented in [10].

Fig. 9: Pd versus (x, y = x) for different ϵ.

Fig. 10: Pd versus ρ for different ϵ.

V. CONCLUSIONS

This paper addressed the influence of the inequality aver-
sion parameter (ϵ) of the Atkinson index detector (AID) on
the cooperative spectrum sensing performance. Refining the
conclusion drawn in [10], which states that ϵ = 0.5 is a good
choice for acceptable performance and low computational

complexity, this work examined how ϵ affects the the AID’s
performance under a variety of circumstances and system
parameters.

It has been found that ϵ = 0.5 is indeed the best choice
if the aim is a low-complexity computation of the AID test
statistic. However, it has been demonstrated that ϵ = 0.1 is
the best choice for superior performances in the majority of
scenarios of practical significance. It has been also found that
ϵ = 0.5 remains a good choice targeting better performance
in sensing channels with Rayleigh fading. Numerical problems
haven been also highlighted, allowing for the identification of
the most useful range of values for ϵ.
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