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Abstract—This article suggests some modifications in 

conventional single-parity check turbo product code 
structures to fulfill the specifications of the DVB-RCT 
standard proposed for the return channel of DVB-T 
based Digital TV systems. The resultant codes are two 
and three-dimensional array codes, in which diagonal 
parity equations are applied. Simulation results are 
presented for the AWGN and Rayleigh fading channels 
and reveal a good trade-off between performance and 
complexity for the suggested channel coding schemes. 

Index Terms—Array codes, Single Parity Check 
Product Codes, Block Turbo Codes, DVB-RCT, DVB-T. 

I. INTRODUCTION 

Two-way communications are essential to provide 
real-time interactivity between the subscriber and the 
digital television content provider. The so-called 
DVB-RCT (Return Channel-Terrestrial) standard [1] 
defines a wireless interface that can be shared by a 
large number of terminals, enabling them to send 
“return” signals to a base station, at the same time and 
through the same antenna that it receives IP data on 
the “forward” link, which are carried using the DVB-T 
[2] broadcast channel. 

A discussion on the utilization of Single Parity 
Check Turbo Product Codes (SPC-TPC) [5] for the 
requirements of DVB-RCT is in order. Conventional 
two and three-dimensional (2D and 3D) SPC are 
modified through the use of different component codes 
in each dimension, diagonal parity equations and zero 
padding, in order to match the specifications of the 
DVB-RCT standard, concerning block sizes and code 
rates. The key feature of the channel-coding scheme 
suggested here is the low complexity of the coding and 
the decoding processes. 

The remainder of this paper is organized as follows. 
Section II presents the channel-coding requirements 
according to the DVB-RCT standard, i.e. block sizes 
and code rates associated to each modulation scheme. 
In Section III, details about the code construction are 
presented, in order to fulfill the specifications listed in 
Section II. Section IV is devoted to the turbo-decoding 
algorithm, while Section V presents simulation results 
for the channel-coding schemes suggested here, for the 
AWGN and the Rayleigh fading channels. Finally, 
Section VI concludes the paper, highlighting some 

open questions to be addressed in future work. 

II. CODE REQUIREMENTS 

According to the DVB-RCT, one of the following 
methods of channel-coding is used in a given RF 
channel: turbo codes or concatenated Reed-Solomon 
plus convolutional codes. The turbo code adopted for 
the standard uses parallel concatenation of Circular 
Recursive Systematic Convolutional (CRSC) codes [3] 
[9] and its performance is evaluated in [4] for a variety 
of input block sizes 

No matter the channel-coding method used in the 
DVB-RCT standard, the data bursts produced after the 
coding and modulation process have a fixed length of 
144 modulated symbols. Table 1 lists the original sizes 
of the useful data payloads to be encoded, given the 
selected modulation and code rate [1]. 

 
TABLE I 

USEFUL DATA PAYLOAD OF A BURST (DVB-RCT STANDARD) [1] 

Modulation Rate = 1/2 Rate = 3/4 

QPSK 144 bits 216 bits 
16-QAM 288 bits 432 bits 
64-QAM 432 bits 648 bits 

 
In order to match the code structure with the 

requirements given by Table 1, the number of 
dimensions of a single parity check (SPC) product 
code and the length of the component codes proposed 
here are varied. In addition to the conventional multi-
dimensional parity equations, diagonal parity [5] 
equations are also considered as a means to achieving 
these requirements. The resultant structure can be 
viewed as a form of Array Codes [12]. 

III. CODE CONSTRUCTION 

The channel code can be constructed as shown in 
Figure 1, for the case where the input block size is 144 
bits. First, the parity is calculated column-wise using a 
(n,k) = (7,6) single parity check component code, 
which will make the original input block grow by 24 
bits. The parity of the rows is then calculated using the 
same (7,6) component code used in the first 
dimension. After that, the 49 parity bits corresponding 
to the encoding in the third dimension are calculated 



 
 

using a (5,4) SPC code. Diagonal parity is applied to 
the resulting (7×7×5, 6×6×4) code by computing 7 
parity bits for each of the 5 planes, successively 
towards the “depth” of the structure. The final output 
block has 280 bits, which results in an overall code 
rate r = 0.51. Zero-padding the output with 8 symbols 
brings the code rate down to ½ in this case, as 
required. 

 

 
Fig. 1. Block shape matched to the specifications of DVB-RCT for 

QPSK (R = ½). 

 
An example of the procedure used to compute the 

diagonal parity on each plane is shown in Figure 2. 
The block formed with the information bits plus the 
symbols corresponding to the horizontal and vertical 
parities is first re-arranged to form a new 5×5 array, 
the columns of which corresponding to the left 
diagonals of the original block. One way to 
accomplish this is to do circular shifts on the lines of 
the structure in Figure 2(a). The first line is not 
shifted; the second line is shifted to the left by one bit 
and the l th line of the original block is shifted by l – 1 
bits. The left diagonal parity bits are then calculated 
by computing the parity bits along the columns of the 
array shown in Figure 2(b). 
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Fig. 2. Computation of the left diagonal parity for a 2D                
(5,4)2 = (5×5, 4×4) product code. (a) Array with information bits, 
horizontal and vertical parity bits; (b) Modification in (a) for left 

diagonal parity calculation. 

 
The influence of diagonal parity is analyzed with 

more details in [8], where the best results were 
obtained with the restriction that the component codes 

in each dimension being equal and having an odd 
number of bits. An independent initiative to compute 
the diagonal parity is proposed in [5] and, in this case, 
it is enough that the component codes have the same 
length. Because the requirements in terms of code rate 
and block length are defined by DVB-RCT, the 
structures suggested in this article were built so as to 
optimize these parameters, following the guidelines 
given in [5]. 

When the required code rate is ¾, a two-
dimensional product code is used, as illustrated in 
Figure 3, for a 432-bit input block. Note that the last 9 
positions of the array has to be filled with zeros so that 
the input bits are arranged as a perfect square and 
diagonal parity can be applied [5] [8]. Two rows of 16 
bits are generated based on the calculation of the 
diagonal parity bits to the left and to the right of the 
array formed by the information bits plus vertical and 
horizontal parity bits. 
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Fig. 3. Block shape matched to the specifications of DVB-RCT for 

QPSK (R = ¾). 

 
The structures designed for operation with 16-QAM 

(Quadrature Amplitude Modulation) and 64-QAM 
follow the same aforementioned principle. For each 
case, the number of dimensions and the size of the 
component codes had to be adjusted. The codes ere 
designed so that the resulting code rate is equal or 
exceeds the one specified by the DVB-RCT standard. 

It was found that 3D codes are viable only when the 
required code rate is R = ½. When R = ¾ it is not 
possible to use more than two dimensions in the 
product code. As in QPSK mode, diagonal parity is 
applied to both 3D and 2D structures, but while in the 
first case the diagonal parity can only be applied left 
or right-wise due to rate restrictions, the latter case 
implements both left and right diagonal parity. In some 
configurations, both the input and output blocks had to 
be zero-padded. Figure 4 and 5 show the suggested 
structures for ½ and ¾ code rates, respectively, when 
using 16-QAM modulation. For the 3D case, the 
resulting codeword has 288 + 48 + 56 + 49 + 63 = 504 
bits, and it has to be appended with 72 null symbols to 
comply with the R = ½ specification. 



 
 

 
Fig. 4. Block shape matched to the specifications of DVB-RCT for  

16-QAM (R = ½). 

 
The required input block for 16-QAM mode and    

R = ¾ has 432 bits and the 2D product code with 
diagonal parity suggested for this case is shown in 
Figure 5. Here the resulting codeword has 528 bits and 
it is zero-padded with 43 symbols at the output to 
bring the code rate down to ¾. 
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Fig. 5. Block shape matched to the specifications of DVB-RCT for  

16-QAM (R = ¾). 

 
The structure designed for ½ code rate and 64-

QAM modulation is depicted in Figure 6. Concerning 
this 3D case, it was necessary to pad the input block 
with 16 zeros in order for the diagonal parity of the 
eight successive planes to be properly calculated from 
perfect 8 × 8 squares. 

For the same 64-QAM modulation scheme, and 
when the required code rate is ¾, a 2D structure like 
the one shown in Figure 7 is suggested. This time, 28 
bits were appended to the input block for the diagonal 
parity computation. 

 

IV. TURBO DECODING 

A turbo decoding process was used to decode the 
channel-coding schemes described in Section III. For 
simplicity, such schemes were evaluated using BPSK 
(Binary Phase Shift Keying) modulation over AWGN 
(Additive White Gaussian Noise) and Rayleigh fading 

channels, for the specified block lengths and rates 
listed on Table 1, Section II. Simulation of these 
schemes strictly in accordance with DVB-RCT is 
beyond the scope of this work. Similar approaches 
have been adopted in [4] [7] to evaluate the Circular 
Recursive Convolutional Code (CRSC) performance, 
which is specified by DVB-RCT as an alternative to 
the serial concatenation of Reed-Solomon with non-
recursive convolutional codes, as mentioned in Section 
II. 

 

 
Fig. 6. Block shape matched to the specifications of DVB-RCT for  

64-QAM (R = ½). 
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Fig. 7. Block shape matched to the specifications of DVB-RCT for  

64-QAM (R = ¾). 

 
A symbol-by-symbol MAP algorithm was used for 

turbo-decoding of the SPC product code, as in [13, pp. 
57-60], in which the extrinsic information is factored 
out and passed between decoders in each dimension, 
referred to as a SISO (soft-input, soft-output) decoding 
process. A simple extension of this algorithm is done 
here for the case where diagonal parity is used. In this 
case, the diagonal encoding can be considered as a 
form of a new “dimension” of the code. The decoding 
steps are as follows: 

 
(i) Calculate the channel log-likelihood ratios (LLR) 
for all received symbols and set the extrinsic 
information to zero for all bits in the code; 



 
 

 
(ii) Calculate the extrinsic information for all bits 
and each dimension. The a priori information for 
each bit in a given dimension is the sum of the 
extrinsic information from the other dimensions in 
the code; 

 
(iii) The decoding of all dimensions one time is 
called iteration. Repeat this process for as long as 
required. 
 
The a posteriori Log-Likelihood Ratio (LLR) of the 

symbol at the output of the detector (soft-input of the 
SISO decoder) can be expressed as [6]: 
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where g accounts for the fading and is called channel 
gain. Using the Bayes Theorem, from Equation (1) it 
is obtained: 
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where the first term on the right of Equation (2), which 
will henceforth be designated as Lc(y), corresponds to 
the channel measurement or channel state information 
at the detector output, given the alternate conditions 
that a 1 or a 0 may have been transmitted. The second 
term on the right of Equation (2) will be called L(x) 
and is the a priori value of the input symbol, whose 
value is not known until the first decoding iteration is 
completed. That is why, in general, the a priori values 
of the input symbols are initially set to zero.  

Substituting the numerator and the denominator of 

( )Lc y  by the equations that describe the Gaussian 

distribution, considering the expected values in each 
case, according to (1), yields: 
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where 2
0 2Nσ =  is the average noise power at the 

matched filter output and g = 1 if the channel is purely 
AWGN. 

From the LLR at the output of the detector 
expressed in Equation (2), it can be shown that, for 
systematic codes, the log-likelihood ratio at the output 
of the decoder (soft output), at a given dimension q, 
can be written as [10]: 

 ( ) ( ) ( ) ( )ˆ ˆ
q q qL x Lc y L x Le x= + +� � � �

 (4) 

where ( )qL x
�

 is the vector or array that bear the a 

priori  information that feeds the input of the decoder 

at the qth dimension, and ˆ( )qLe x
�

 is the extrinsic 

information, or additional information due to parity, 
that is obtained after the decoding process at the qth 
dimension. The extrinsic information represents the 
amount of information added to the soft value at the 
input of the decoder to form the soft output. The 
extrinsic information for the ith bit (i = 1, 2, …, nq) of a 
received codeword is given by [5] [13]: 
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where nq is the number of coded bits in the qth 
dimension, ( )jLc y  is the channel state information 

(CSI) at bit position j and ( )q jL x  is the input LLR of 

bit j at the qth dimension. Equation (5) differs from the 

one shown in [13] by the term ( )1 qn− , which is 

necessary when the logical element “0” is represented 

by symbol cE− , as it is the case of this article and of 

the example given in [14, p. 483-488]. When the bit 

“0” is represented by the symbol cE+ , the term 

( )1 qn−  is not used [11] [13]. The vector that holds the 

a priori values at the input of the decoder, according 
to step (ii) of the algorithm described above, can be 
expressed as: 
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where D is the number of dimensions of the code. 
Note that diagonal parity vectors or arrays are 
considered as additional dimensions in the schemes 
proposed here. The total LLR at the output of decoder 
is then calculated through: 
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where ˆ( )TL x
�

 is a vector with real numbers whose sign 

of each element yields a hard decision about the 
corresponding transmitted symbol and whose 
magnitude reveals the reliability of that decision. 
Practical aspects require the total values of the 
extrinsic information to be limited to avoid numerical 
problems during implementation. According to what 
has been suggested in [13], the results of the 
calculations to find the extrinsic information, at each 
dimension, were limited within the range 

( )ˆ100 100TL x− ≤ ≤ + . An estimation on the 



 
 

transmitted codeword, ̂x
�

, can be carried out by using 
the following decision criteria: 
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V. SIMULATION RESULTS 

The performance as a function of the number of 
iterations is shown in Figure 8 for the (10×9×8, 
8×8×7) code depicted in Figure 6. Each decoding 
cycle improves the performance, with decreasing 
returns, but after a number of iterations equivalent to 
the number of dimensions of the code, this 
improvement, as expected [13], becomes only 
marginal. 

 

 
Fig. 8. BER as a function of the number of iterations for the 54-

bytes input block 3D product codes with diagonal parity. 

 
The distribution of ˆ( )TL x

� , the total LLR out of the 

turbo decoder after one to five iterations is shown in 
Figures 9(a) to 9(e), for equally likely input symbols 
and for Eb/N0 = 4 dB.  

The center of the horizontal axis of the histograms 
in Figure 9 is the decision threshold, on the right of 
which the decision is favorable to bit “1”. Otherwise, 
bit “0” will be chosen. The soft values of the LLR 
have greater magnitude the more distant they are from 
the threshold. It can be seen the similarity between the 
amplitude distribution after four and five iterations, 
which is in agreement with the convergence observed 
in Figure 8. This is the reason why the simulation 
results presented here for BER estimation were 
obtained using a fixed number of five iterations. 
Figure 9 also reveals that the soft values of the LLR 
are concentrated at regular intervals. This behavior is 
similar to what happens for all codes mentioned in this 
work, and represents an opportunity for future 
investigation. 

 

 

(a) 54-byte input,              
Eb/N0 = 4 dB, 1 iteration. 

 

(b) 54-byte input, 
Eb/N0 = 4 dB, 2 iterations. 

 

 

(c) 54-byte input, 
Eb/N0 = 4 dB, 3 iterations. 

 

 

(d) 54-byte input, 
Eb/N0 = 4 dB, 4 iterations. 

 

 

(e) 54-byte input, 
Eb/N0 = 4 dB, 5 iterations. 

 

Fig. 9. Normalized histograms resulting from the measurements of 
LLR soft values at the output of the turbo decoder for the code 

(10×9×8, 8×8×7) @ Eb/N0 = 4 dB. 

 

A. Performance in AWGN channel 

The performance results from the simulation of the 
3D product codes with diagonal parity over AWGN 
channel are shown in Figure 10. 

The number of bytes in the legend of Figure 10 
corresponds to the input block size. Coding gain is 
approximately 4.8 dB for the 54-byte input block size 
code and its distance from capacity (≅0,2 dB for R = ½ 
and BPSK modulation [6]) is around 4.6 dB, both 
results considering a BER = 10-5. This is a quite good 
result, given the low complexity of the coding and the 
decoding processes and the relatively short codeword 
length. 

When the required code rate is ¾, 2D product codes 
with diagonal parity are used. The performance for the 
corresponding codes is shown in Figure 11. If 
compared to the 3D case, the 2D code that operates 
with 54 bytes at the input requires an additional 0.6 dB 
of normalized signal-to-noise ratio to yield the same 
bit error rate of 10-5. 

Still referring to Figures 10 and 11, it is worthy 
noting that the shorter codes outperforms the longer 
ones for low signal to noise ratios, a fact that can be 
attributed to the longer sequences of zero-padding 
used in the longer codes. However, the asymptotic 
gain of the longer codes seems to make the 



 
 

corresponding curves steeper, probably leading to 
lower BER for higher values of signal-to-noise ratios, 
when compared to the shorter codes. 

 

 
Fig. 10. Simulation results for rate ½ 3D product codes with 
diagonal parity, after 5 decoding iterations: AWGN channel. 

 
 

 
Fig. 11. Simulation results for rate ¾ 2D product codes with 
diagonal parity, after 5 decoding iterations: AWGN channel. 

 

B. Performance over the Rayleigh channel 

The performance of the 3D product codes without 
diagonal parity, after 5 decoding iterations, and over 
the Rayleigh channel is illustrated in Figure 12. The 
curves show the simulation results when the channel 
state information (CSI) is not available to the decoder. 
In this case, the bit error rate seems to be affected by 
an error floor after a certain value of Eb/N0 and this 
behavior was also observed for codes that implement 
diagonal parity. The code that operates with 18 bytes 
at its input needs a signal-to-noise ratio of about 11 dB 
to yield BER = 10-5. 

For the case when the receiver is implemented with 
some sort of mechanism that allows the CSI to be 
estimated and fed to the decoder input, the 
performance of the 3D product codes with diagonal 
parity is like the one shown in Figure 13. In this case, 
there seems to be no error floor, at least for the signal-

to-noise ratios under consideration, and the (7×7×5, 
6×6×4) code now requires only 10 dB to operate with 
BER = 10-5. This improvement is due to both the 
diagonal parity and the availability of the CSI. 
Because of the error floor, a larger difference on the 
required Eb/N0 should be expected if the analysis is 
carried out at a lower BER. 

 

 
Fig. 12. Simulation results for rate ½ 3D product codes with 

diagonal parity, after 5 decoding iterations: Rayleigh channel, no 
CSI available for the decoder. 

 
 

 
Fig. 13. Simulation results for rate ½ 3D product codes with 

diagonal parity, after 5 decoding iterations: Rayleigh channel, with 
CSI available for the decoder. 

 
According to Figure 13, coding gains greater than 

14 dB for the 18-byte input block size code can be 
achieved (and greater than 11 dB for all block sizes) 
for bit error rates less than 10-3. A distance of 
approximately 6.5 dB from capacity (≅1.5 dB for R = 
½ and BPSK modulation [6]) is obtained for the 18-
byte input block size code, for a BER equal to 10-5. 

The simulation results presented herein for the 
fading channel were obtained under the ideal condition 
in which a sufficiently large interleaver is employed, in 
a manner that the fading that takes place in a given 
symbol is uncorrelated with the fading that affects the 
other symbols in the same codeword. Therefore, the 



 
 

simulated fading was generated as independent and 
identically distributed random variables for each 
symbol transmitted through the channel. 

Figure 14 shows the performance results for the 
case where the required code rate is ¾ and 2D product 
codes with diagonal parity are used. An Eb/N0 around 
10.5 dB is needed for the 54-byte input block size 
product code to operate with a 10-3 bit error rate. 
 

 
Fig. 14. Simulation results for rate ¾ 2D product codes with 

diagonal parity, after 5 decoding iterations: Rayleigh channel, with 
CSI available for the decoder. 

 

VI. CONCLUDING REMARKS 

It was found through simulation that, for low signal-
to-noise ratios, the performance of the product codes 
is better the shorter is the block length. When Eb/N0 
increases, codes that operate with larger blocks tend to 
perform better. Therefore, it is expected that there is a 
crossing point in the curve, from which longer codes 
will have better performance. 

The behavior for low Eb/N0 seems to be aggravated 
when zeros are inserted at the output. To make matters 
worse, the suggested structures that have more null 
symbols at the output are exactly those with the larger 
block length. The inconveniences brought by zero-
padding were partially overcome by replacing the null 
symbols with new parity equations, computed towards 
the left and right diagonal of the 2D product code and 
only towards the left diagonal of the several planes 
that compose the 3D product codes. One of the 
reasons why right diagonal parity has not been applied 
to the 3D product codes is because one of the 
structures (with 18 bytes at the input) does not support 
the additional parity bits while keeping the specified 
code rate at ½. 

A comparison between BER performances between 
the product codes presented in this article and the 
turbo code defined in DVB-RCT standard indicates 
that the latter has better performance. Although the 
decoding complexity of the product codes is clearly 
low, more investigation is needed for this 
complexity/performance trade-off to be exactly 

quantified. 
Among the future work that would explore further 

what was covered so far could be to investigate the 
performance of these codes using higher order 
modulation schemes, specifically 16-QAM and 64-
QAM. It would also be worth investigating why the 
LLR’s have such a concentration of amplitudes at 
regular intervals, according to what was seen in Figure 
9. Another suggestion for future work is to confirm 
and investigate the reasons for the error floor, 
observed in a Rayleigh channel when no CSI is 
available for the decoder. Finally, an investigation 
using bounds on bit error probabilities would be useful 
to validate (or not) the conjecture stating that the 
longer codes considered here will outperform the short 
codes for high values of the signal-to-noise ratio. 
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