
 

  

Abstract—This tutorial deals with key aspects of the MSK 

(Minimum Shift Keying) modulation, aiming at unveiling some of 

its hidden concepts. Signal generation and demodulation are 

analyzed in detail. Common questions concerning the study of the 

MSK modulation are addressed and answered, e.g. the 

similarities and differences among MSK, Sunde’s FSK 

(Frequency Shift Keying) and SQPSK (Staggered Quaternary 

Phase-Shift Keying) or OQPSK (Offset QPSK); the relation 

among the modulating data stream, its differentially-decoded 

version, the frequency shifts and the phase shifts of the modulated 

signal, and the MSK signal-space representation. 
Index Terms—MSK, FSK, SQPSK and OQPSK modulations.  

Resumo—Este tutorial trata de aspectos chave sobre a 

modulação MSK, objetivando revelar alguns dos seus conceitos 

muitas vezes não revelados explicitamente. A geração e a 

demodulação do sinal MSK são analisadas em detalhe. Ao longo 

do trabalho procura-se responder a algumas questões intrigantes 

relacionadas com, por exemplo, as similaridades e diferenças 

entre as modulações MSK, FSK (de Sunde) e SQPSK ou OQPSK 

e a relação entre a seqüência moduladora, sua versão decodificada 

diferencialmente, os desvios de freqüência e de fase do sinal 

modulado e a representação do sinal MSK no espaço euclidiano. 
Palavras chave— Modulações MSK, FSK, SQPSK e OQPSK. 

I. INTRODUCTION 

The Minimum Shift Keying (MSK) modulation, also 

known as “fast FSK” [1], was first considered during the early 

60s and 70s [2]-[4], and its characteristics have gained the 

attention of the scientific community during the subsequent 

decades. 

MSK modulation has features such as constant envelope, 

compact spectrum and good error performance, which are all 

desirable in many digital communication systems. Its 

utilization goes from the Global System for Mobile 

Communication (GSM), in which a Gaussian-filtered MSK 

(GMSK) modulation is employed, to micro-satellite 

communications, positioning and navigation systems, hybrid 

optical/wireless communication systems, deep space 

communications and, more recently, to the Blue Ray disc 

technology [5], only to mention a few examples. 

Like many recently rediscovered technologies developed 

several years, or even decades ago, the MSK modulation 

seems to be one more idea whose time has come. 
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Although covered in many papers and good books on 

Digital Communications, some of the concepts of this 

modulation are hidden or difficult to understand, representing 

opportunities for alternative approaches, like the one adopted 

in this tutorial. This approach is intended to help everyone 

who wants to have an understanding about the MSK 

modulation, especially the practicing engineers and the first-

level graduate students in Telecommunications. It addresses 

some key questions about the MSK modulation, such as: 

 

1 – To which extent the MSK modulation can be regarded as a 

special case of the conventional Sunde’s [6] [7, p. 381] FSK 

(Frequency Shift Keying) modulation? 

2 – To which extent the MSK modulation can be detected in 

the same way as the Sunde’s FSK modulation? 

3 – To which extent the MSK modulation can be regarded as a 

special case of the SQPSK or OQPSK (Staggered or Offset 

QPSK) modulation? 

4 – To which extent the frequency and phase shifts of an MSK 

signal are related to the modulating data sequence? 

5 – To which extent the phase shifts of an MSK signal can be 

related to the phase transition diagram on its signal-space 

representation? 

 

The remaining of this work is organized as follows: Section 

II addresses some fundamental concepts about the signal-space 

representation, the complex representation of signals and 

systems, and the minimum separation between tones in an 

orthogonal FSK signaling. Section III is devoted to the 

analysis of the signal construction from the signal-space 

expansion and the complex representation approaches. The 

MSK spectral content, receiver structure and system 

performance are also analyzed in Section III. Further attributes 

and uses of the MSK modulation are summarized in Section 

IV, and Section V addresses the answers to the questions 

highlighted above, concluding the work. 

II. BASIC CONCEPTS 

In this section the reader are invited to revisit some 

fundamental concepts about signal-space representation and 

complex representation of signals and systems. Although 

applicable to the study of digital communications in general, 

these two concepts are essential for the study at hand, and will 

give us insight on different forms of MSK signal generation 

and detection. Additionally, the minimum tone separation for 

coherent detection of orthogonal FSK is analyzed, aiming at 
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justifying the term minimum in the name of the MSK 

modulation. 

A. Signal-space representation 

The signal-space representation is constructed on the basis 

of linear combination theory, and it is very analogous to the 

vector algebra theory. Let us define an N-dimensional 

Euclidian space spanned by N orthogonal axes. Let us also 

define a set of orthogonal vectors {φφφφj}, j = 1, 2, …, N, 

normalized in the sense that they have unit length. These 

vectors are said to be orthonormal and to form an 

orthornormal basis. 

Any vector vi, i = 1, 2, …, M in the Euclidian space can be 

generated through the linear combination 

1

N

i ij j

j

v
=

=∑v φφφφ  (1) 

where the coefficients vij correspond to the projection of the i-

th vector on the j-th base vector. Their values can be 

determined by the dot product (or inner product) between vi 

and φφφφj, that is 

T

ij i j
v = v φφφφ  (2) 

where the superscript T denotes matrix transposition,                

vi = [vi1 vi2 … viN]
T
 and φφφφj is also an N-dimensional vector with 

a 1 in the j-th position and zeros otherwise, that is                  

 φ φ φ φj = [0 1 0 … 0]
T
 for j = 2 as an example. 

Figure 1 illustrates these concepts for a two-dimensional  

(N = 2) Euclidian space and for two vectors (M = 2). The axes 

were labeled in a way to resemble the orthonormal base-

vectors. 
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Figure 1. Vector-space representation for M = 2 and N = 2. 

In a similar way, one can use the Euclidian space to 

represent coefficients that, in a linear combination, will give 

rise to signals instead of vectors. Then we have the signals 

1

( ) ( ) , 1, 2, ...,
N

i ij j

j

s t s t i Mφ
=

= =∑  (3) 

where, now, the set {φj(t)} comprises N orthonormal base-

functions, one function being orthogonal to each other and 

having unit energy, that is: 

0

1,
( ) ( )

0,

T

i j

i j
t t dt

i j
φ φ

=
= 

≠
∫  (4) 

The set of functions {φj(t)} are also said to be orthonormal 

and to form an orthornormal basis. 

Through Figure 1 it can be seen that the value of a 

coefficient is proportional to a measure of the orthogonality 

between the analyzed vector and the corresponding base-

vector: the greater the orthogonality, the lesser the value of the 

coefficient. By analogy to the vector algebra, we can 

determine the values of the coefficients in (3) through a 

measure of orthogonality between the analyzed waveform and 

the corresponding base-function, which leads intuitively to 

0

1,2,...,
( ) ( ) ,

1,2,...,

T

ij i j

i M
s s t t dt

j N
φ

=
= 

=
∫  (5) 

In fact (5) has a formal mathematical justification, which 

can be obtained by operating generically with (3) and (4): 

0 0
1 1

0
1 1

T

1

( ) ( ) ( ) ( )

( ) ( )

N NT T

j j k k

j k

N N T

j k j k

j k

N

j j

j

x t y t dt x t y t dt

x y t t dt

x y

φ φ

φ φ

= =

= =

=

=

=

= =

∑ ∑∫ ∫

∑∑ ∫

∑ x y

 (6) 

Expression (6) states that the correlation in time domain 

has the inner product as its equivalent in the vector domain. 

We are now ready to define the signal-space 

representation: since knowing the set of coefficients and base-

functions is as good as to know the waveform signals 

themselves, we can also represent signals in a Euclidian space. 

In this representation we use points instead of vectors, to avoid 

polluting unnecessarily the graph. This kind of plot is also 

called signal constellation. Figure 2 shows a two-dimensional 

signal-space used to represent the signals s1(t) and s2(t) 

through the corresponding signal vectors s1 and s2. 
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Figure 2. Signal-space representation for M = 2 and N = 2. 

As can be noticed from Figure 2, the norm of a signal 

vector, that is, the length of this vector can be determined in 

the light of equation (6) by: 

2 2 2

1 2
0

( )
T

T

i i i i i i
s s s t dt E+ = = =∫s s  (7) 

Generally speaking, the distance from any signal vector to 

the origin of the coordinates is equal to the square root of the 

corresponding signal energy: 



 

22 2

10
( )

T NT

i i i i ij ij
E s t dt s

=
= = = =∑∫ s s s  (8) 

As a complementary result, the squared Euclidian distance 

between two signal vectors is obtained through 

( ) [ ]
22 22

0
1

( ) ( )
N

T

ik i k ij kj i k

j

d s s s t s t dt
=

= − = − = −∑ ∫s s  (9) 

The concepts just described will be used later for the 

understanding of a particular form for the MSK signal 

generation and detection. 

B. Complex representation of signals and systems 

We start by reviewing the concept of Hilbert transform. 

Following [7] and [8], let g(t) be a signal with Fourier 

transform G(f). The Hilbert transform of g(t) and the 

corresponding inverse transform are defined respectively by 

( )
1 ( ) 1

ˆ( ) ( )
g

g t d g d
t t

τ
τ τ τ

π τ π τ

∞ ∞

−∞ −∞
= =

− −∫ ∫  (10) 

and 

ˆ1 ( )
( )

g
g t d

t

τ
τ

π τ

∞

−∞
= −

−∫  
(11) 

In (10) we can identify that the Hilbert transform of g(t) is 

the convolution between g(t) and the function 1/πt. 

By recalling that a convolution in the time domain 

corresponds to a multiplication in the frequency domain, and 

by using the Fourier transform pair 

1
sgn( )j f

tπ
−⇌ , (12) 

where sgn(f) is the sign function or signum function defined by 

1, 0

sgn( ) 0, 0

1, 0

f

f f

f

>


= =
− <

, (13) 

then we can write: 

ˆ ( ) sgn( ) ( )G f j f G f= −  (14) 

Analyzing (14) we can see that the Hilbert transform of g(t) 

corresponds to a phase shift of –90º for the positive 

frequencies of G(f) and +90º for the its negative frequencies. 

Let us now make use of another definition: the analytic 

signal or pre-envelope of g(t): 

ˆ( ) ( ) ( )g t g t jg t+ = +  (15) 

from where, using (14) and the definition of the signum 

function given in (13), we can obtain 

2 ( ), 0

( ) ( ) sgn( ) ( ) (0), 0

0, 0

G f f

G f G f f G f G f

f

+

>


= + = =
 <

 (16) 

Now, consider a band-pass signal g(t) whose bandwidth is 

essentially confined in 2W Hz and is small compared to the its 

carrier frequency fc. According to (16), the analytic spectrum 

G+(f) is centered about fc and contains only positive frequency 

components. Then, using the frequency-shifting property of the 

Fourier transform we can write: 

( ) ( ) exp( 2 )cg t g t j f tπ+ = ɶ  (17) 

where ( )g tɶ  is called the complex envelope of the signal g(t) 

and it is clearly a low-pass signal. 

Since g+(t) is a band-pass signal, we can determine the low-

pass signal ( )g tɶ  through a frequency translation of g+(t) back 

to about f = 0. Using again the frequency-shifting property of 

the Fourier transform we can write 

[ ]
( ) ( ) exp( 2 )

ˆ( ) ( ) exp( 2 )

c

c

g t g t j f t

g t jg t j f t

π

π

+= −

= + −

ɶ
 (18) 

or, equivalently, 

ˆ( ) ( ) ( )exp( 2 )
c

g t jg t g t j f tπ+ = ɶ  (19) 

Since the signal g(t) is the real part of the left side of the 

expression above, we can obtain a very useful representation: 

[ ]( ) Re ( ) exp( 2 )
c

g t g t j f tπ= ɶ  (20) 

Generally speaking, ( )g tɶ  can be a complex quantity, which 

can be expressed in the Cartesian form by: 

( ) ( ) ( )I Qg t g t jg t= +ɶ  (21) 

where the subscripts I and Q stand for in-phase and 

quadrature. Then, by substituting (21) in (20) we have, after 

some simplifications: 

( ) ( ) cos(2 ) ( )sin(2 )I c Q cg t g t f t g t f tπ π= −  (22) 

Both gI(t) and gQ(t) are low-pass signals and are called the 

in-phase component and the quadrature component of the 

signal g(t), respectively. This is why we call ( )g tɶ  the 

equivalent low-pass version of the band-pass signal g(t). This 

result will be used later on in this tutorial to describe a 

particular form for the MSK signal generation and detection. 

Rewriting expression (21) in its polar form we have: 

( ) ( ) exp[ ( )]g t a t j tθ=ɶ , (23) 

from where, using (20), we can obtain 



 

[ ]

{ }

[ ]

( ) Re ( ) exp( 2 )

Re ( ) exp[ ( )]exp( 2 )

( ) cos 2 ( )

c

c

c

g t g t j f t

a t j t j f t

a t f t t

π

θ π

π θ

=

=

= +

ɶ

 (24) 

In (24), a(t) = | ( )g tɶ | is the envelope of the band-pass signal 

g(t), or the amplitude modulated component of g(t), and θ(t) is 

its phase, or the phase-modulated component of g(t). This 

result will also be used later as a means for understanding the 

MSK signal generation. 

Taking the Fourier transform of g(t) we know to obtain its 

frequency content. If g(t) is a voltage signal, then the 

magnitude of its Fourier transform will result in a, say, 

“voltage spectral density”. Then, using (20) we get: 

{ }2 2
( ) { ( )} Re ( )e ecj f t j ft

G f g t g t dt
π π

∞
−

−∞
 = ℑ =  ∫ ɶ  (25) 

Using the identity Re[C] = ½[C + C
*
] in (25), and applying 

the Fourier transform properties x
*
(t) ⇋ X

*
(−f) and 

x(t)exp(j2πfct) ⇋ X(f − fc), we obtain: 

( ) ( )

2 2* 2

*

1
( ) ( ) e ( ) e e

2

1

2

c cj f t j f t j ft

c c

G f g t g t dt

G f f G f f

π π π
∞

− −

−∞
 = + 

 = − + − − 

∫ ɶ ɶ

ɶ ɶ

 (26) 

If g(t) is a sample function of an stationary random process 

G(t), it has infinity energy and, hence, its Fourier transform 

does not exist. In this case the spectral content of G(t) is given 

by its power spectral density (PSD), which is obtained from 

the Fourier transform of the auto-correlation function RG(τ) of 

the random process, as follows [8, p. 67]: 

( ) ( ) exp( 2 )GS f R j f dτ π τ τ
∞

−∞
= −∫  (27) 

The PSD for a stationary random process can also be 

estimated through [7, p. 51]: 

21
( ) lim ( )S f E G fΠ

Π→∞

 =
 Π

 (28) 

where GΠ(f) is the Fourier transform obtained from the sample 

process gΠ(t), which is g(t) truncated from –Π/2 to Π/2. The 

function |GΠ(f)|
2
 is called the energy spectral density of the 

energy signal gΠ(t). If the signal is deterministic, (28) can also 

be used, without the expectation operation [11, p. 31]. 

However, if the Fourier transform G(f) exists and is exact, 

according to which was stated before equation (25) S(f) can be 

simply determined by the squared-modulus of G(f), that is, 

( ) ( )
22 *1

( ) ( )
4

c cS f G f G f f G f f = = − + − −
  
ɶ ɶ  (29) 

Using a simplified notation, and the fact that |C|
2
 = CC

*
, we 

can rewrite (31) as follows: 

( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2
*

* *

* *

* *

2 2

* *

1
( )

4

1

4

1

4

1

4

S f X f X f

X f X f X f X f

X f X f X f X f

X f X f X f X f

X f X f

X f X f X f X f

 = + −
  

   = + − + −   

 + − −
=  

+ − + −  

 + −
 =
 + − + − 

 (30) 

By recognizing that X(f) and X(−f) are band-limited, band-

pass signals, the products X(f)X(−f) and X
*
(f)X

*
(−f) in (30) 

vanish to zero. Going back to the normal notation, we get: 

( ) ( )

( ) ( )

2 21
( )

4

1

4

c c

B c B c

S f G f f G f f

S f f S f f

 = − + − −
  

 = − + − − 

ɶ ɶ

 (31) 

Equation (31) states that we can easily obtain the power 

spectral density S(f) of a band-pass signal by translating the 

power spectral density SB(f) of the low-pass equivalent, and its 

mirror image, to the frequencies fc and −fc, respectively, and 

multiplying the result by ¼. 

C. Minimum frequency separation for coherent detection 

It may be somewhat obvious for some readers that MSK is 

a form of orthogonal frequency shift keying modulation, but 

our aim in this subsection is to give reasons for the term 

minimum in the Minimum Shift Keying nomenclature. 

To be coherently orthogonal in the signaling interval T, two 

cosine functions with different frequencies must satisfy 

( ) ( )1 2
0

cos 2 cos 2 0
T

f t f t dtπ π =∫  (32) 

Using the identity cosα⋅cosβ = ½[cos(α − β) + cos(α + β)] 

in the expression above we obtain: 

( ) ( )1 1

1 2 1 22 20 0
cos 2 cos 2 0

T T

f f t dt f f t dtπ π   − + + =   ∫ ∫  (33)

from where, after some manipulations, we get: 

( )
( )

( )
( )

1 2 1 2

1 2 1 2

sin 2 sin 2
0

4 4

f f T f f T

f f f f

π π

π π

   − +   + =
− +

 (34) 

Since for practical purposes the sum f1 + f2 >> 1, the 

second term in the left-hand side of (34) is approximately zero, 

which results in 

( )

( )

1 2

1 2

sin 2 0

, inteiro
2

f f T

k
f f k

T

π − = 

⇒ − =
 (35) 

Then, the minimum frequency separation between tones for 

an orthogonal FSK with coherent detection is 



 

( )1 2

1

2
f f

T
− = , (36) 

which justifies the name Minimum Shift Keying for the MSK 

modulation. 

III. MSK SIGNAL GENERATION AND DETECTION 

In this section, the MSK signal generation and detection 

are analyzed in detail, based first on a complex representation 

approach, and then, based on a signal-space representation 

approach. The MSK power spectral density is also considered. 

However, first we introduce the basics about the MSK and the 

conventional binary FSK modulation. At the end of the section 

these modulations are revisited, aiming at establishing their 

similarities and differences from the design of the transmitter 

and the receiver perspective. 

The receiver structures and performances considered in this 

section assume that the system operates on an Additive White 

Gaussian Noise (AWGN) channel. 

A. MSK and conventional binary FSK 

A continuous-phase, frequency-shift keying (CPFSK) 

signal can be described as a phase-modulated signal using 

(24), as shown by: 

[ ]
2

( ) cos 2 ( )b
c

b

E
s t f t t

T
π θ= +  (37) 

where Eb is the average energy per bit and Tb is the bit 

duration. 

The time derivative of the phase evolution θ(t) in (37) 

gives rise to the CPFSK instantaneous angular frequency shift. 

Then, in a given bit interval θ(t) increases or decreases 

linearly, depending on the desired transmitted tone, as 

described by: 

( ) (0) , 0 b

b

h
t t t T

T

π
θ θ= ± ≤ ≤  (38) 

where θ(0) accounts for the accumulated phase history until 

instant t = 0 and h is a measure of the frequency deviation. If h 

= 1 we have the conventional form of binary FSK modulation, 

also know as Sunde’s FSK [6] [7, p. 381], in which the tone 

separation is obtained from (38) as 1/Tb Hz. 

Generalizing (38), at any time instant the phase evolution 

can be determined by 

0
( ) (0) ( )

t

b

h
t b t dt

T

π
θ θ= + ∫  (39) 

where b(t) ∈ {±1} is the waveform related to the information 

sequence, such that a −1 represents a bit 0 and a +1 represents 

a bit 1. 

The modulated signal described by (37) and (39) can be 

generated by means of a continuous-phase VCO (voltage 

controlled oscillator) having b(t) as its input, and configured 

with center frequency fc Hz and gain h/(2Tb) Hz/volt. 

 

Example 1 - Suppose we want to transmit the information 

sequence [1 0 1 0 0 0 1 1]. Following (39), with h = 1, we 

shall have the phase evolution illustrated in Figure 3. Also in 

Figure 3 are plotted the waveform b(t) and the resultant FSK 

modulated signal s(t) for fc = 2/Tb Hz. The resultant tones are 

then at frequencies f1 = 5/(2Tb) Hz and f2 = 3/(2Tb) Hz. 

 

A careful look at Figure 3 shows that phase transitions 

from one bit to the next lead to the same value, using modulo 

2π algebra (a phase transition of +π is equal to a phase 

transition of −π, modulo 2π). Then, the receiver is not able to 

explore any phase information in the conventional Sunde’s 

FSK modulation. 
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Figure 3. Information sequence (a), phase evolution (b) and modulated signal 

(c) for the Sunde’s FSK modulation. 

Now, let us make h = ½ in (39). In this case we have the 

minimum tone separation of 1/(2Tb) Hz, and, through (37), we 

shall generate an MSK signal. 

 

Example 2 - Suppose again that we want to transmit the 

information sequence [1 0 1 0 0 0 1 1]. According to (39), 

with h = ½, we shall have the phase evolution shown in Figure 

4. The waveform b(t) and the resultant MSK modulated signal 

s(t) for fc = 1/Tb Hz are also plotted. The resultant tones are at 

frequencies f1 = 5/(4Tb) Hz and f2 = 3/(4Tb) Hz.  

 

As can be noticed from Figure 4, phase transitions from a 

bit to the next one lead to different values, modulo 2π. Then, it 

is possible to explore some phase information with the MSK 

modulation. This is indeed the motivation for the use of MSK: 

the receiver can explore phase transitions in order to benefit 

from this additional information to improve performance. 

B. MSK signal generation and detection from the complex 

representation approach 

The generation of s(t) through (37) and (39), though 

straightforward from the implementation point of view, brings 

no or little insight on how the receiver can be constructed in 

order to explore the phase information in the modulated signal. 

Then we are forced to obtain alternative mathematical models 

for representing s(t). 
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Figure 4. Information sequence (a), phase evolution (b) and modulated signal 

(c) for the MSK modulation. 

To simplify matters, consider initially only the first bit 

interval. Using h = ½ in (38) and the identity cos(α ±β) = 

cosα⋅cosβ ∓  sinα⋅sinβ, we can rewrite (37) as follows: 

( )

( )

( ) ( )

2
( ) cos (0) cos 2

2

2
sin (0) sin 2

2

( )cos 2 ( )sin 2

b
c

b b

b
c

b b

I c Q c

E
s t t f t

T T

E
t f t

T T

s t f t s t f t

π
θ π

π
θ π

π π

 
= ± 

 

 
− ± 

 

= −

, 0 bt T≤ ≤  
(40) 

Making use of (22) and applying again the identity 

cos(α ±β) = cosα⋅cosβ ∓  sinα⋅sinβ  to the in-phase 

component of s(t), and, without loss of generality, assuming 

θ(0) = 0, we get 

2
( ) cos

2

2
cos

2

b
I

b b

b

b b

E
s t t

T T

E
t

T T

π

π

 
= ± 

 

 
= ±  

 

, 
b bT t T− ≤ ≤  (41) 

Since θ(0) = 0, before t = 0 the phase evolution was a 

positive or negative slope going towards zero, depending on 

the previous bit. Then, the result in (41) is an increasing cosine 

function from –Tb to 0. Thus, sI(t) can be interpreted as a half-

cycle cosine function from the whole interval (–Tb, Tb]. 

Similarly, the quadrature component of s(t) can be written 

as follows: 

2
( ) sin

2

b
Q

b b

E
s t t

T T

π 
= ±  

 
, 0 2 bt T≤ ≤  (42) 

where we have made use of θ(0) = 0 and of the identity 

sin(α ±β) = sinα⋅cosβ ± cosα⋅sinβ. We have also made use of 

the relation cos[θ(0)] = cos[θ(Tb) ∓  π/2] = ± sin[θ(Tb)] = ±1. 

Since θ(Tb) = ±π/2, depending on the information bit 

during the interval (0, Tb], we shall have sin[θ(t)] going 

towards zero during the interval Tb to 2Tb, regardless the 

information bit during this interval. Thus, sQ(t) can be viewed 

as a half-cycle sine function from the whole interval (0, 2Tb], 

the polarity of which depending on the information bit during 

the interval [0, Tb). 

Using the results (41) and (42) in (40), we obtain: 
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where the polarity of both terms in a given bit interval are not 

necessarily the same. 

Following [4, p. 18], we can rewrite (43) as: 
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where we have defined aI(t) and aQ(t) as random sequences of 

rectangular pulses with amplitudes 
bE±  and duration 2Tb 

seconds. These sequences are associated to the polarities of the 

half-cycle cosine and sine functions as follows: if aI(t) is 

positive, sI(t) follows the function cos{[π/(2Tb)]t}; if aI(t) is 

negative, sI(t) corresponds to –cos{[π/(2Tb)]t}. The same 

happens with sQ(t): if aQ(t) is positive, sQ(t) follows the 

function sin{[π/(2Tb)]t}; if aQ(t) is negative, sQ(t) corresponds 

to –sin{[π/(2Tb)]t}. 

From the above discussion we can conclude that, 

depending on the information bit to be transmitted, the in-

phase and quadrature components of s(t) can change their 

polarities each 2Tb seconds, and that the half-cycle cosine and 

sine functions are offset from each other by Tb seconds. 

However, we are not still able to easily obtain the information 

sequence responsible for generating a given sequence of 

polarities. This would demand us to come back to the general 

analysis presented in Section III-A, specifically to equation 

(37), thus making difficult the visualization of the 

implementation issues for the MSK modem. 

Then, for the time being we assume a given sequence of 

pulses for sI(t) and sQ(t), and later we determine the 

information sequence based on the analysis of this assumption. 

A general rule will arise from this analysis. 

 

Example 3 – In a 8-bit interval, let sI(t) and sQ(t) assume the 

sequence of half-cycle cosine and sine pulses shown in Figure 

5. For reference, in this figure the functions cos{[π/(2Tb)]t} 

and –sin{[π/(2Tb)]t} are also plotted, in dashed lines, and are 

given the polarities of the waveforms aI(t) and aQ(t). 

Combining the waveforms in Figure 5 according to (40), we 

get the results in Figure 6. In this figure the waveforms sI(t) 

and sQ(t) are also plotted, in dashed lines. The carrier 



 

frequency in this example is fc = 1/Tb Hz. The resultant tones 

are then at frequencies f1 = 5/(4Tb) Hz and f2 = 3/(4Tb) Hz. 
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Figure 5. Generation of the MSK signal: base-band in-phase and quadrature 

components. 

Observing the modulated signal s(t) in Figure 6 we can 

notice that, if a bit 1 is associated to the tone of greater 

frequency, the corresponding modulating sequence should be 

d = [1 1 1 0 0 1 0 0]. Let us now define a new sequence i in 

which the exclusive-or (XOR) operation between a given bit 

and the previous one results in a bit of the sequence d. This 

new sequence is i = [1 0 1 0 0 0 1 1 1]. Sequence d can be 

seen as a differentially decoded version of i. Additionally, 

suppose that the sequence i is parallelized to form the 

sequences of odd and even symbols of duration 2Tb, io = [1 1 0 

1 1] and ie = [0 0 0 1], respectively. Now, suppose that each 

symbol of these sequences is converted to ± bE . The great 

achievement here is that these new parallel sequences, if they 

are off-set to each other Tb seconds, are exactly the waveforms 

aI(t) and aQ(t). 
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Figure 6. Generation of the MSK signal: modulated in-phase and quadrature 

components and the resultant MSK signal. 

We then conclude that the MSK signal can be generated 

through (44), where the waveforms aI(t) and aQ(t) are the 

serial-to-parallel (S/P) converted version of the information 

sequence, with bit 1 converted to bE+  and bit 0 converted to 

b
E− . Additionally, the sequence aQ(t) has to be offset Tb 

seconds from aI(t), before they multiply the corresponding 

remaining terms in (44). Figure 7 illustrates the structure of the 

MSK modulator constructed according to complex 

representation approach just described. 

The MSK signal just analyzed can also be generated by 

means of a VCO configured with center frequency fc Hz and 

gain 1/(4Tb) Hz/volt. However, since the frequency shifts in 

the modulated signal do not directly correspond to the 

information sequence, the input of the VCO must be the 

differentially decoded version of this information sequence, 

converted to {±1}. 

 

 

Figure 7. MSK modulator constructed according to the complex 

representation approach. 

Some authors claim that the MSK modulation is a special 

form of OQPSK (or SQPSK) modulation where the pulse 

shaping are half-cycle cosine and sine functions, instead of the 

rectangular shaping functions used in OQPSK. However, in 

despite of being true, this statement must be carefully 

interpreted. From (43) we can see that, in fact, the shapes of 

the pulses that modulate the quadrature carriers are half-cycle 

cosine and sine functions. Nevertheless, they are not a simple 

reshaping of the waveforms aI(t) and aQ(t). Before modulating 

the quadrature carriers, aI(t) and aQ(t) are modified by the 

polarities of the waveforms cos{[π/(2Tb)]t} and sin{[π/(2Tb)]t} 

in each 2Tb interval. But we can make a small modification in 

the above structure to implement the MSK modulation in the 

same way we implement an OQPSK modulator, the unique 

difference being the shape of the pulses that modulate the 

quadrature carriers. We just have to use the modulus 

|cos{[π/(2Tb)]t}| and |sin{[π/(2Tb)]t}| in (44). The resultant 

structure is shown in Figure 8. In this figure we have used 

additional simplifications to make the MSK modulator 

structure closer to a more practical one: the quadrature carriers 

were generated from a single oscillator and the pulse-shaping 

functions were implemented via low-pass filters with identical 

impulse responses given by 

sin , 0 2
( ) 2

0, otherwise                
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t t T
h t T

π  
≤ ≤  
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The inputs to these filters are PAM (Pulse Amplitude 

Modulation) sequences having very short durations 

(approximating unit impulses) and amplitudes of bE+ . 

We can recall that at the beginning of Section III-B we 

have made the assumption that θ(0) = 0. This assumption was 

adopted only to facilitate the mathematical description of the 

MSK modulation. In fact, from an implementation perspective, 

any initial phase is allowed for the quadrature carriers. 

However, regardless of this initial phase, the designer must 

only guarantee the correct phase alignment among the 

quadrature carriers, the pulse shaping functions and the 

sequences aI(t) and aQ(t). 

In the light of the similarities between the MSK and 

OQPSK modulations, we are now able to understand possible 

structures for the MSK demodulator. We know that a 

conventional QPSK modulator can be interpreted as two 

BPSK (Binary Phase-Shift Keying) modulators, each of them 

making use of one of the two quadrature carriers. Then, the 

QPSK demodulator can be implemented as two independent 

BPSK demodulators. The decisions made by each of these 

demodulators are parallel-to-serial (P/S) converted to form the 

estimate of the transmitted bit sequence. The OQPSK 

demodulator follows the same rule, with the difference that 

one of the estimated parallel sequences is offset Tb seconds 

from the other. Then, before P/S conversion these sequences 

must be aligned in time. 

The presence of the shaping and polarity inversion 

processes caused by the functions cos{[π/(2Tb)]t} and 

sin{[π/(2Tb)]t} in the modulator of Figure 7 do not change the 

demodulation rule, as compared to the one used for the 

OQPSK signal. This is also true if we use |cos{[π/(2Tb)]t}| and 

|sin{[π/(2Tb)]t}|, according to Figure 8. Then, the receiver 

block diagram shown in Figure 9 can be used indistinctly, 

without any modification. 

 

 

Figure 8. A more practical MSK modulator constructed according to the 

equivalence with the OQPSK modulation. 

The received signal in Figure 9 is coherently correlated, in 

one arm of the receiver, with the result of the multiplication 

between the in-phase carrier and the shaping function 

cos{[π/(2Tb)]t}. In the other arm, the received signal is 

correlated with the result of the multiplication between the 

quadrature carrier and the shaping function –sin{[π/(2Tb)]t}. 

These correlations are made in a 2Tb seconds interval, 

reflecting the duration of the half-cycle cosine and sine 

functions, and are time-aligned with these functions. The 

estimated sequences eî  and oî  are then time-aligned and P/S 

converted to form the estimate of the transmitted sequence, î . 

If, for some reason, it is necessary to represent a bit 1 in the 

sequence d by the tone of lower frequency, the only thing we 

have to do is to invert the minus signal in the summation block 

in Figure 7 or Figure 8, and invert the minus signal in the 

bottom multiplier block in Figure 9. 

 

 

Figure 9. MSK demodulator constructed according to the complex 

representation approach. 

C. MSK signal generation and detection from the signal-

space representation approach 

We are now able to determine the orthonormal base-

functions responsible for generating the MSK signal. Recalling 

that we are talking about a binary orthogonal signaling, the 

base-functions can be directly obtained from (44) as follows: 
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These base-functions, differently from what is stated in [7, 

p. 390], are defined for any interval, not only from 0 to Tb. 

Comparing (44) with (46) and (47) we readily see that the 

MSK signal vectors are determined by the amplitudes of the 

waveforms aI(t) and aQ(t) defined in (44), in each bit interval: 
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Then, as shown in Figure 10, the signal-space diagram for 

the MSK modulation comprises four signal vectors, despite of 

MSK be a binary modulation. The mapping between these 

vectors and the information bits is determined via the 

differentially decoded version of the information bits. The 

following example is meant to clarify these statements. 

 

Example 4 – Let the sequence of signal vector polarities be      

[+ –], [+ –], [+ –], [– –], [– –], [+ –], [+ +] and [+ +], 

generated on a bit-by-bit basis. In this sequence, the polarities 

on the left refer to si1, and those on the right refer to si2. These 

polarities are the same as those considered in Figure 5 and, as 

we already know from Example 3, they are associated to the 

information sequence i = [1 0 1 0 0 0 1 1 1] and to its 



 

differentially decoded version d = [1 1 1 0 0 1 0 0]. From this 

example it is possible to draw the mapping between the signal 

vectors and the differentially decoded version of the 

information bits, as shown in Table I. 

 
TABLE I – MAPPING BETWEEN THE MSK SIGNAL VECTORS AND THE 

DIFFERENTIALLY DECODED VERSION OF THE INFORMATION BITS 

i Bits 
Signal vector coordinates 

  si1                        si2 

1 
 

2 
 

3 
 

4 

0 
 

1 
 

0 
 

1 

bE+
 

bE+
 

bE−
 

bE−  

bE+
 

bE−
 

bE−
 

bE+  

 

Since MSK is a continuous phase modulation, no abrupt 

phase transition occurs when a symbol changes. The 

circumference in Figure 10 illustrates this smooth phase 

transitions between any pair of symbols. They can be observed 

in a x-y plot, with sI(t) applied to the x-axis and sQ(t) applied to 

the y-axis (see Figure 5). 
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Figure 10. MSK constellation. 

Observing (46) and (47) we see that the base-functions 

φ1(t) and φ2(t) correspond to the modulation of the quadrature 

carriers by the waveforms cos{[π/(2Tb)]t} and sin{[π/(2Tb)]t}, 

respectively. Comparing (46) and (47) with (44), we see that 

the base-function φ1(t) are multiplied by aI(t), the base-

function φ2(t) is multiplied by aQ(t), and the results are added 

to form the MSK signal s(t). Figure 11 illustrates the 

generation of the MSK signal form this signal-space 

representation approach. The signal vector polarities 

associated to the waveforms aI(t) and aQ(t) are the same as 

those used in Example 4. 

As we did with the complex representation approach, now 

we shall construct the modulator structure based on the signal-

space representation. As a matter of fact, if we group together 

the two upper mixers and group together the two lower mixers 

in Figure 7 this job is already done. But we shall manipulate 

the base-function expressions to get an alternative structure. 

First, let us expand φ1(t) using the identity cosα⋅cosβ = 

½[cos(α − β) + cos(α + β)]: 
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Now, let us expand φ2(t) using the identity sinα⋅sinβ = 

½[cos(α − β) − cos(α + β)]: 
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Figure 11. Generation of the MSK signal: base-functions, coefficients and 

the resultant MSK signal. 

Figure 12 shows the MSK modulator constructed 

according to the interpretation of expressions (49) and (50). 

The two cosine functions are multiplied to generate the tones 

with frequencies f1 and f2, according to (49). Each of these 

tones is selected through the band-pass filters shown in this 

figure, and the results are combined according to (49) and (50) 

to generate the base-functions. Finally, these base-functions 

are multiplied by the corresponding waveforms aI(t) and aQ(t) 

and the results are added-up to form the MSK signal. The 

approach at hand can also consider the demodulator shown in 

Figure 9, where we readily identify the use of the base-

functions φ1(t) and φ2(t) feeding the correlators. 

We can see that, operating in different ways with the 

mathematical model of the MSK signal, it is possible to 

construct different, but equivalent structures. More structures 

would be possible if an alternative mathematical model were 

adopted. These comments are also valid to the construction of 

the MSK demodulator. In [11, pp. 299-307] the reader can 

find several forms for the implementation of an MSK modem, 

along with different approaches on its construction. 

 



 

 

Figure 12. MSK modulator constructed according to the signal-space 

representation approach. 

D. Bit error probability for the MSK modulation 

We can see through Figure 8 and equation (44) that the 

modulator transmits two independent sequences using two 

quadrature carriers, and through Figure 9 we can see that the 

demodulator detects these sequences independently. 

Consequently, we can state that the modulator can be 

interpreted as formed by two independent BPSK-like 

modulators and that the demodulator can be interpreted as 

formed by two independent BPSK-like demodulators. The 

difference to the conventional BPSK modulator and 

demodulator is the presence of half-cycle sine and cosine 

pulse-shaping functions. The energy per symbol for each of 

these two component BPSK modulators is easily found to be 
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where, for simplification purposes, we have adopted the carrier 

frequency fc as an integer multiple of 1/(2Tb). The energy per 

MSK symbol is the sum of the symbol energies in the 

quadrature modulated carriers, that is E = 2Eb, a value that can 

also be obtained from the constellation in Figure 10.  

Confusions may arise here: the duration of one bit is of 

course Tb seconds, and we must make the bit decisions in a bit-

by-bit basis. But the phase information at the MSK receiver is 

explored in 2Tb seconds intervals, so that the effective energy 

collected by this receiver corresponds to observations made 

during intervals of 2Tb seconds. 

From the above discussion we can conclude that the bit 

error probability for the MSK modulation on the AWGN 

channel, considering equally-likely bits, can be determined by 

the average of the bit error probabilities for the two component 

BPSK detectors [8, p. 271], which results in: 
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b
b

E
P

N

 
=   
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where N0 is the AWGN power spectral density and erfc(u) is 

the complimentary error function of the argument. This result 

shows that the performance of the MSK modulation is the 

same as the performance of the BPSK and QPSK modulations, 

and is 3 dB more energy-efficient than the conventional BFSK 

with coherent detection [7, p. 418]. 

E. MSK signal generation and detection from a 

conventional Sunde’s FSK approach 

Suppose now that we aim at generating an MSK signal 

using the conventional FSK approach, but with the minimum 

tone separation (f1 − f2) = 1/(2Tb) Hz. The modulator would 

appear like in Figure 13. This form of FSK signal generation 

guarantees phase continuity only if the tone separation is a 

multiple of 1/Tb and the carrier frequency is a multiple of 

1/(2Tb). Then, the modulated signal in Figure 13 will show 

phase discontinuities, which does not correspond to an MSK 

signal. MSK and binary FSK signals are the same if they are 

generated according to (37) and (39), using h = ½. 

 

 

Figure 13. A try for generating an MSK signal from the conventional binary 

FSK implementation approach. 

Now, following [9], suppose that we want to detect an 

MSK signal using a conventional coherent FSK demodulator. 

We would be tempted to think that it is just necessary to 

correlate the received signal with base-functions formed by the 

cosine tones with frequencies f1 and f2, during Tb seconds 

intervals, and that the decision would be made in favor of the 

greatest correlator output. However, the phase continuity and 

phase dependency imposed by the MSK signal construction do 

not permit the use of the above approach. This is illustrated in 

Figure 14, were we have plotted an MSK signal and the cosine 

base-functions with frequencies f1 and f2 separated by 1/(2Tb) 

Hz. Observe that, in several intervals, there are no phase 

coherence between the modulated signal and the base-

functions with the same frequency, a behavior that would lead 

to detection errors. 

Let us elaborate a little bit more on this issue. From Figure 

14 we can see that when no phase coherence occurs, the MSK 

signal is at 180º out of phase from the corresponding base-

function. Then, by comparing the magnitudes of the correlators 

outputs we are still able to make correct decisions. But we 

cannot forget that, unless the MSK signal is generated directly 

from the realization of (37) and (39) with h = ½, the estimated 

bits would correspond to a differentially decoded version of 

the information bits. To get the estimates of the information 

bits we have to apply the inverse operation on the estimated 

bits through the exclusive OR (XOR) between a given bit and 

the previous XOR result (see Example 3 and the 

corresponding comments). However, this operation can lead to 

the opposite decisions, since a differentially decoded 1 can 

result from the information sequence 01 or 10, and a 

differentially decoded 0 can result from the information 



 

sequence 00 or 11. Inserting a differential coder at the 

transmitter input and a differential decoder at the receiver 

output easily solves this ambiguity problem. 

Finally, we shall have the transmitter and receiver 

structures shown in Figure 15. 
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Figure 14. MSK signal s(t), the cos(2πf1t) and cos(2πf2t). 

 

 

Figure 15. MSK modulator with conventional FSK detection: modified MSK 

transmitter (a) and detection via a modified coherent binary FSK receiver (b). 

Since the receiver in Figure 15 is not exploring any phase 

information, we expect a worse performance as compared to 

the one provided by the appropriate MSK receiver. 

Furthermore, although the channel noise is Gaussian, the noise 

in the decision variable is not. Then, the analytical process for 

obtaining an expression for the bit error probability Pe for the 

receiver under investigation is quite involved and is beyond 

the scope of this work. Nevertheless, a numerical calculation 

of Pe was made and a simulation of the system in Figure 15 

was carried out. Both results agreed and showed that the 

performance lies in between a coherently detected and a non-

coherently detected binary FSK, as shown in Figure 16, and is 

approximately 3.05 dB worse than the Pe obtained with the 

MSK receiver. This is an attractive result, since the Pe curves 

for the coherent and the non-coherent FSK differs 

asymptotically in about 1 dB [7 p. 418], and we are using a 

transmitted signal that has the most compact spectrum among 

the coherent and orthogonal CPFSK modulations [9]. 

Using a more practical and simplified approach, the MSK 

modulator in Figure 15-a can be replaced by a VCO, 

eliminating the need for the three differential circuits used by 

the complete system. This alternative was also simulated and 

the BER was the same as the one obtained with the simulation 

of the complete system depicted by Figure 15. 
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Figure 16. Performance results for MSK, coherent and non-coherent BFSK 

and for the system depicted in Figure 15. The channel is AWGN [9]. 

F. Power spectral density of the MSK signal 

We saw in Section II that in order to obtain the PSD of a 

modulated signal, we can determine the PSD of its complex 

envelope representation and, using (31), convert the result to 

the desired PSD. According to (22), the MSK signal can be 

written as: 

( ) ( )( ) ( ) cos 2 ( ) sin 2
I c Q c

s t s t f t s t f tπ π= −  (53) 

from where the complex envelope given by (21) is 

( ) ( ) ( )I Qs t s t js t= +ɶ  (54) 

For the MSK modulation, the low-pass in-phase and 

quadrature components in (54) are random waveforms in 

which the pulses with duration 2Tb can assume positive or 

negative values according to: 
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where p(t) is the shaping pulse with half-cycle sine format: 
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and {Ik} and {Qk} are random antipodal sequences ∈{±1} 

associated to the odd and even information bits, respectively 

(see Example 3) or, equivalently, associated to the waveforms 

aI(t) and aQ(t) in (44). 

It is a well-known result that the power spectral density of 

a random antipodal sequence can be determined by dividing 

the energy spectral density (ESD) of the shaping pulse by the 

pulse duration [7, p. 48] [8, p. 207]. By recalling that the ESD 

of a pulse is the squared-modulus of its Fourier transform, then 



 

the PSD of sI(t), which is equal to the PSD of sQ(t), can be 

easily determined. Furthermore, we know that the in-phase and 

quadrature components of the MSK signal are independent to 

each other. Then, the PSD of (54) can be obtained through 
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and the PSD of the MSK signal can be finally obtained using 

the above result in (31). 

Following the procedure just described, the PSD of the 

base-band MSK signal in (54) can be obtained from [8, p. 214] 

and is given by 
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 (58) 

Equation (58) is plotted in Figure 17, along with the base-

band PSD of the QPSK modulation, for comparison purposes. 

To draw this figure, both MSK and QPSK signals were set to 

the same average power. 
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Figure 17. Normalized base-band PSD, in dBm/Hz, for the MSK and the 

QPSK modulations with the same average power. 

It can be seen from Figure 17 that, although the main lobe 

of the MSK spectrum is wider that the main lobe of the QPSK 

one, the PSD of the MSK decreases faster with frequency. For 

QPSK, approximately 90% of the modulated signal power is 

concentrated in the main lobe. For MSK, this quantity 

increases to approximately 99%. This is a desired attribute of 

the MSK modulation, which makes it attractive due to easy 

filtering and, consequently, low adjacent channel interference. 

Detailed and more complete considerations about the 

power spectral characteristics of continuous-phase modulated 

signals can be found in [8, pp. 209-219]. 

IV. FURTHER ATTRIBUTES AND USES OF THE MSK 

In this section we summarize some MSK-related topics 

concerning additional attributes and applications of this 

modulation. We start by revisiting the application of the MSK 

in the recently-developed Blue-Ray technology [5], and as the 

base for implementing the GMSK modulation used, for 

instance, in the GSM standard [7, pp. 396-400]. In the case of 

the GSM standard, a Gaussian-filtered version of the 

information sequence is applied to an MSK modulator, 

resulting in the GMSK signal. This is done to increase the 

spectral efficiency of the MSK modulation, with the penalty of 

a possibly small reduction in performance due to inter-symbol 

interference introduced by the Gaussian filtering process. 

As mentioned at the beginning of this paper, the MSK 

modulation is also attractive because of its constant envelope, 

a characteristic that can be observed in all FSK-type 

modulations. Although M-PSK modulations also have constant 

envelopes, this is valid only if no filtering is applied to the 

signal. When the modulated signal is filtered before going 

through some non-linear distortion, such as non-linear 

amplification, out-of-band and in-band spurious can be 

generated due to envelope fluctuations that occur during 

abrupt phase transitions. Non-constant envelopes can also 

show high peak-to-average power ratios (PAPR), making it 

difficult the project of high dynamic range and power-efficient 

non-linear amplifiers. The MSK modulation, even after 

filtering, has low PAPR, becoming attractive in these cases. 

The MSK modulation can also be viewed as a special form 

of coded-modulation scheme in which the phase continuity 

restrictions introduce some sort of redundancy and, 

consequently, error correction capabilities. This attribute is 

explored in detail in [10]. 

In [12], J. K. Omura, et. al apply the MSK modulation to 

achieve code-division multiple access (CDMA) capability in a 

spread spectrum system. 

Finally, although MSK is usually associated to the binary 

case, that is, M = 2, its concepts are generalized to the M-ary 

case in [13] and [14]. A multi-amplitude, continuous-phase 

modulation approach is considered in [8, pp. 200-203], where 

the signal amplitude is allowed to vary, while the phase 

trajectory is constrained to be continuous. Generalized MSK is 

also considered in [15]. 

V. CONCLUSIONS 

We are now armed with enough concepts to give possible 

answers (A) to the questions (Q) listed at the end of Section I: 

Q: To which extent the MSK modulation can be regarded 

as a special case of the Sunde’s FSK modulation? A: We saw 

that MSK is in fact a special form of FSK with the minimum 

tone separation for orthogonality and coherent detection. 

However, the MSK signal construction gives to the receiver 

the ability to explore phase information for performance 

improvement, which does not happen with the conventional 

FSK modulation. As we saw in Section III-E, the conventional 

binary FSK signal with minimum tone separation does not 

correspond to an MSK signal and does not exhibit phase 

continuity for all bit transitions. 

Q: To which extent the MSK modulation can be detected 

as the conventional Sunde’s FSK modulation? A: From the 

analysis in Section III-E we conclude that an MSK signal can 

be detected as a conventional binary FSK, but it is necessary to 

make modifications at the transmitter and at the receiver, 

according to the block diagram shown in Figure 15. Since this 

modified receiver explores no phase information, the 

performance will not be the same as that provided by the 

appropriate MSK receiver. 

Q: To which extent the MSK modulation can be regarded 

as a special case of the SQPSK or OQPSK (Staggered or 



 

Offset QPSK) modulation? A: The MSK modulation is indeed 

a special form of OQPSK (or SQPSK) modulation, where the 

pulse shaping are half-cycle cosine and sine functions instead 

of the rectangular shaping functions used in OQPSK. But this 

is not a direct interpretation of the MSK signal construction. 

To shown perfect equivalence with the OQPSK modulation, 

the MSK transmitter must be implemented according to Figure 

8. The receiver structure is kept unchanged, according to the 

block diagram shown in Figure 9. 

Q: To which extent the frequency and phase shifts of an 

MSK signal are related to the modulating data sequence? A: If 

the modulated signal is generated through the realization of 

(37) and (39), using h = ½, then there will be a direct 

correspondence, that is, bit 0 will be represented by the tone 

with frequency, say, f2 (or vice-versa), and bit 1 will be 

represented by the tone with frequency f1 (or vice-versa). 

However, by generating the MSK signal through the other 

ways shown is this tutorial, the frequency shifts will 

correspond to a differentially decoded version of the 

modulating data sequence. 

Q: To which extent the phase shifts of an MSK signal can 

be related to the phase transition diagram on its signal-space 

representation? A: The MSK signal is constructed in a way 

that, besides phase continuity, it exhibits phase transitions that 

helps the receiver improve the detection performance. This is 

done because phase transitions from one bit to the next lead to 

different values, modulo 2π (see Figure 4). A bit one increases 

the phase in π/2 radians and a bit 0 decreases the phase in π/2 

radians. If these bits are or are not the information bits, it 

depends on how the MSK signal is generated: directly via (37) 

or indirectly (see former question and answer). Concerning the 

phase shifts of an MSK signal, they cannot be directly mapped 

on the signal-space symbol transitions. Two reasons support 

this conclusion: firstly, since a given signal-space diagram can 

represent a base-band or a band-pass signaling, it is not always 

able to represent phase transitions of a modulated signal, 

though it can happen with some modulations, such as M-PSK 

and M-QAM. Secondly, discrete points in a signal space 

cannot represent continuous-phase signals, because the phase 

of the carrier is time-variant [8, pp. 199-200]. As an example, 

two consecutive ones correspond to the same coordinates in 

Figure 10, but we know that the carrier phase changes +π/2 

radians from its preceding value, in a continuous way. A 

solution to this is to have a three-dimensional diagram with 

axes sI(t), sQ(t) and t, in which the phase trajectory can be 

recorded [8, pp. 194-195]. Figure 18 illustrates this 

representation. 
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Figure 18. Phase trajectory of an MSK signal. The projections of this 

trajectory on all planes are also shown. 
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