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Abstract—We propose a new model for a cognitive radio in the
scenario of centralized data-fusion cooperative spectrum sensing.
The model is grounded on a direct-conversion receiver architec-
ture and was applied to four detection methods: the eigenvalue-
based generalized likelihood ratio test, the maximum-minimum
eigenvalue detection, the maximum eigenvalue detection and the
energy detection. It is shown that the sensing performance under
the conventional model typically adopted in the above scenario
is overestimated when compared with the proposed one, which
suggests that our model better suits for the spectrum sensing
design and its performance assessment.

Index Terms—Cognitive radio, cooperative spectrum sensing.

I. INTRODUCTION

SPECTRUM sensing is the task of detecting spectral holes
in bands licensed to primary wireless networks, for oppor-

tunistic use by secondary cognitive radios (CR). This sensing
can be independently made by each CR, but cooperative
sensing [1], [2] has been considered the solution for receiver
uncertainty, multipath fading and shadowing. Among the spec-
trum sensing techniques, eigenvalue-based ones are receiving
a lot of attention [3], [4], mainly because no prior information
about the transmitted signal is necessary. In some techniques,
the knowledge of the noise power is not needed as well [4].
Conventionally, the multiple-input, multiple-output (MIMO)
discrete time channel model has been indistinctively adopted
for modeling the received samples for single-receiver, multi-
antenna and for multiple-receiver, single-antenna sensing de-
vices in data-fusion centralized cooperative spectrum sensing.
However, without an appropriate modification, this model is
not well suited to the case of single-antenna multiple receivers.
This modification is needed because the conventional model
assumes that samples collected by each CR are forwarded
to the fusion center (FC) as if no signal processing task is
performed at the CRs. To the best of our knowledge, no
exception to this assumption has been considered so far.

In this letter we propose a new implementation-oriented
model in which typical signal processing tasks of a direct-
conversion CR receiver are taken into account. In order to
compare our results with those reported in the literature,
we investigate the performances of four well-known sensing
schemes [4] under the conventional and the new model,
namely: the eigenvalue-based generalized likelihood ratio
test (GLRT), the maximum-minimum eigenvalue detection
(MMED), also known as eigenvalue ratio detection (ERD), the
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maximum eigenvalue detection (MED), also known as Roy’s
largest root test (RLRT), and the energy detection (ED).

II. CONVENTIONAL MODEL

Let a discrete-time MIMO model in which there are m
single-antenna cognitive receivers or m antennas in a cognitive
receiver, each one collecting n samples of the received signal
from p primary transmitters during the sensing period. These
samples are arranged in a matrix Y ∈ C

m×n and the samples
from the p transmitters are arranged in a matrix X ∈ Cp×n.
Let H ∈ Cm×p be the channel matrix with elements {hij},
i = 1, 2, . . . ,m and j = 1, 2, . . . , p, representing the channel
gains between the j-th primary transmitter and the i-th sensor
(antenna or receiver). Finally, let V ∈ Cm×n be the matrix
containing noise samples that corrupt the received signals.
The matrix of received samples is then Y = HX + V.
In eigenvalue-based sensing, spectral holes are detected us-
ing test statistics based on the eigenvalues of the sample
covariance matrix of the received signal matrix Y. If a
multi-antenna device is used for non-cooperative sensing, or
even for centralized cooperative sensing with data-fusion, the
sample covariance matrix will be R = YY†/n, where †
means complex conjugate and transpose. When centralized
cooperative sensing with single-antenna CRs is considered,
the matrix Y is the one that is assumed to be available at the
FC as if no signal processing is needed before each row of Y
is sent to the FC.

III. IMPLEMENTATION-ORIENTED MODEL

The diagram shown in Fig. 1 is a possible reference for
constructing a more realistic model. It combines a direct
conversion receiver (DCR) front-end with spectrum-sensing-
directed functions. The analog RF front-end comprises a wide-
band antenna, a wideband band-pass filter (BPF), a low-noise
amplifier (LNA) and quadrature local oscillators (LO) and
mixers responsible for direct conversion of the desired channel
to in-phase and quadrature (I&Q) baseband signals. DCRs,
though attractive from the perspective of circuit integration,
suffer from drawbacks like I&Q imbalance, flicker noise and
DC-offset [5]. Among these, DC-offset is the most damaging
and, without compensation, can easily saturate subsequent
amplification stages [6]. It is a DC signal appearing at the
mixer output, primarily due to LO self-mixing processes and
in-band interfering signals, and it is composed of a static
and a dynamic part. By adopting careful circuit design and
modern DC-offset compensation algorithms, the static part
can be almost completely eliminated, whereas some residual
dynamic DC-offset will always remain [7]. The summation
block following the mixer in Fig. 1 accounts for this residual
dynamic DC-offset.
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Fig. 1. Direct conversion cognitive radio receiver.

The resultant I&Q signals then go through a variable gain
amplifier (VGA), which is part of an automatic gain control
(AGC) mechanism responsible for maintaining the signal
within the dynamic range of the analog-to-digital converters
(ADC) in the I&Q signal paths. I&Q low-pass filters (LPF) se-
lect the desired bandwidth to be sampled. The noise whitening
process takes place to guarantee that noise samples are kept
uncorrelated when Y is built at the FC.

IV. SIMULATION DESCRIPTION

The simulation setup under the proposed model has been
built to adhere to the overall centralized data-fusion cooper-
ative spectrum sensing scenario and to the spectrum-sensing-
directed receiver architecture depicted in Fig. 1. To simulate a
noise-like transmitted signal with controllable time correlation
at the receiver side, X is formed by filtering independent and
identically distributed (iid) complex Gaussian samples with
a length-L moving average (MA) filter with no quantization
(using floating-point computations). This type of filter has
been chosen for simplicity reasons; any other low-pass filter
could be adopted as well. The Gaussian distribution for the
entries of X has been adopted because it accurately models
several modulated signals. The elements in H are zero mean
iid complex Gaussian variables that simulate a flat Rayleigh
fading channel between each transmitter and sensor, assumed
to be constant during a sensing period and independent from
one period to another. To simulate the filtering effects at
the CRs, the entries in V are MA-filtered complex Gaussian
variables that represent the colored additive thermal noise. The
memory elements in the structure of the above MA filtering
processes are assumed to have zero initial value before the first
valid sample is applied to their inputs. As a result, the first
(L−1) samples from the MA filtering, out of (n+L−1), are
discarded before subsequent operations. Filtered samples has
been normalized to guarantee the desired signal-to-noise ratio
(SNR), in dB. Specifically, X← X/

√
PX for unitary received

primary signal power and V ← (V/
√
PV )
√
10−SNR/10

for an SNR-dependent thermal noise power, where PX and
PV are the time-series average powers in X and V before
normalization, respectively. Matrix H is also normalized so
that (1/mp)‖H‖2F = (1/mp)tr(H†H) = 1, where ‖ · ‖F and
tr(·) are the Frobenius norm and the trace of the underlying
matrix, respectively. The effect of the LNA and the AGC at
the i-th CR, i = 1, 2, . . . ,m is produced by the gain

gi =
fodD

√
2

6
√

1
ny

†
iyi

=
fodD

√
2n

6‖yi‖2 , (1)

where yi is the vector of n samples collected by the i-th CR
and ‖yi‖2 is the Euclidian norm of yi. The reasoning behind
proposing these gains is explained as follows: The combined

gains of the LNA and the AGC are those that maintain the
signal amplitude at the inputs of the I&Q ADCs within their
dynamic ranges D. By dividing the sample values by the
square root of y†

iyi/n, which is the average power of yi,
one obtains samples with unitary average power. Since X
is Gaussian, {yi} have Gaussian distributed sample values,
conditioned on the corresponding channel gain. If σ2 is the
variance of these (complex) samples after the effect of the
LNA/AGC, to guarantee that six standard deviations (prac-
tically the whole signal excursion or 99.73% of the sample
values) of the I&Q signals will be within [−D/2, D/2], we
shall have 6

√
σ2/2 = D, which means that the signal power

at the output of the AGC will be σ2 = 2D2/36. This justifies
the factor D

√
2/6 in (1). The overdrive factor fod ≥ 1 is

included in (1) to simulate different levels of signal clipping
caused by the ADCs. The clipping acts in a sample value
s according to s ← sign(s)min(|s|, D/2), where D is the
dynamic range of the ADCs. If fod = 1, the resultant gain
will guarantee that six standard deviations of I&Q signals
will be within [−D/2, D/2]. Practical AGC circuits do not
exhibit perfect adjusting precision as in (1), since they work
stepwise. However, it is a reasonable assumption to consider
modern numeric-controllable variable attenuators and digitally
controlled VGA working together a digital signal process
which normalizes the ADCs output signals according to their
estimated average powers, so that an overall fine adjusting
precision is achieved. Following the arguments in [8], the DC-
offset is assumed to be a complex-valued Gaussian random
variable with zero mean, constant over one sensing period and
independent from one period to another. This is translated into
the matrix D ∈ C

m×n that will be considered when forming
the received signal matrix, according to Y = HX+V +D.
The elements in D are column-wise equal to one another
within a given sensing period, though different in different
sensing periods, and are zero mean row-wise iid complex
Gaussian variables to represent independent DC-offsets among
CRs. The effect of the ADC on the sample values that will
be forwarded to the FC is produced by a quantizer with
configurable number Nq of quantization levels. The whitening
filter matrix that multiplies the MA-filtered, amplified and
perhaps clipped versions of {yi} is computed according to
W = UC−1, where U is the orthogonal matrix from
Q = UΣKT , the singular-value decomposition (SVD) of
the matrix Q whose elements are Qij = a|i−j|, with {ak}
representing the discrete autocorrelation function of the MA
filter impulse response, i.e. ak = (1 − k/L), for k ≤ L, and
ak = 0 otherwise, for i, j, k = 0, 1, . . . , (n− 1). Matrix C is
the lower triangular matrix from the Cholesky decomposition
of Q. Notice that this is a signal-independent whitening
process that can be easily implemented in practice, since
matrix W is pre-computed at the system design phase.

From the modified received matrix Y = HX + V + D,
matrix R = YY†/n is then formed at the FC, from which
the eigenvalues {λ1 ≥ λ2 ≥ · · ·λm} are estimated. The
test statistics for the GLRT, MMED, MED and ED are then
computed according to [4]

TGLRT =
λ1

1
m tr(R)

=
λ1

1
m

∑m
i=1 λi

(2)
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Fig. 2. ROC for the GLRT under the conventional and the proposed models.

TMMED = λ1/λm (3)

TMED = λ1/σ
2 (4)

TED =
‖Y‖2F
mnσ2

=

∑m
i=1 λi

mσ2
, (5)

where σ2 is the thermal noise power, assumed to be known and
the same in each sensor input. The test statistic for a specific
detection technique is compared with a threshold computed
from the desired probability of false alarm (Pfa), and a final
decision upon the occupancy of the sensed channel is reached.

V. NUMERICAL RESULTS

The receiver operating characteristic (ROC) curves shown
hereafter were obtained with a minimum of 5, 000 runs of
Monte Carlo simulations. First we consider that the DC-offset
in the system model shown in Fig. 1 is zero. Non-zero DC-
offset is considered subsequently.

A. Zero DC-offset

Figs. 2, 3 and 4 show ROC curves relating Pfa and the
probability of detection (Pd) for the investigated detection
techniques, for p = 1, m = 6, SNR = −10 dB, and variable
L, Nq and fod. The shaded areas in these figures represent
positions of ROC curves for Nq = 8, and for fod and L ranging
from 1 to 2, and 1 to 20, respectively. These shaded areas are
meant to reflect parameter variations within empirical limits of
practical significance for the model based on Fig. 1 (R-model).
Since the influence of increasing the number n of collected
samples per CR is, as expected, a performance improvement
considering fixed the remaining system parameters, only Fig.
2 considers both n = 50 and n = 100. To avoid polluting
unnecessarily the graphs, only n = 50 is considered in Figs.
3 and 4. The results labeled “AGC-based model” will be
discussed in the last section of the paper.

It can be seen from Figs. 2, 3 and 4 that the performances
under the R-model are significantly degraded for Nq = 4,
and that they change slightly from Nq = 8 to Nq = 256. It
can also be seen that the performances under the conventional
model (C-model), whose results are in close agreement with

Fig. 3. ROC for the MMED under the conventional and the proposed models.

Fig. 4. ROC for MED and ED under the conventional and proposed models.

those in [4], are overestimated if compared with the proposed
model, mainly for MED and ED. Particularly in the case of
ED, the performance does not improve even for n as large as
500. This is an indication that, if a real receiver is used in a
data-fusion centralized cooperative sensing, and if the decision
statistic needs the noise variance information, the effect of the
AGC loop must be taken into account not only in the noise
variance estimate, but also in the definition of the test statistic
itself. The analysis of the influence of the AGC in the noise
variance estimate and in the test statistic is an opportunity for
further contributions related to the model proposed here.

B. Non-Zero DC-offset

Now we present numerical results considering that a resid-
ual dynamic DC-offset is present. The SDCR (signal-to-DC-
offset power ratio) and the impulse response length of the
receive filter, L, are the parameters varied to assess system
performance. Other systems parameters are m = 6, n = 50,
p = 1, SNR = −10 dB, fod = 1.2 and Nq = 8. Due to the
lack of space, we present in Fig. 5 only results for the GLRT
technique. We attest, however, that very similar behaviors were
observed for MMED and MED, and that all conclusions drawn
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Fig. 5. ROC for the GLRT for non-zero residual dynamic DC-offset.

from the GLRT also apply to them. As before, ED does not
work at all under R-model.

The first important observation from Fig. 5 is that system
performance becomes less sensitive to the DC-offset for larger
values of L. This is justified by the fact that the whitening
process, which takes place if L > 1, also decorrelates the
highly correlated DC-offset values from sample to sample.
The curves that are grouped together for finite SDCRs are
for minimum SDCR values that keep them grouped. This
means that, for L = 1, the sensing performance is practically
insensitive to a residual DC-offset for which SDCR ≥ 8 dB.
If L = 10, system robustness against DC-offset increases,
and it works for SDCR ≥ −3 dB as if no DC-offset existed.
When the received signal is not too week and the RF and
DC-offset compensation circuitry are properly designed, the
residual SDCR can be on the order of 15 to 30 dB [9]. In
such cases, one can disregard the effect of the residual DC-
offset on the system performance if the model depicted in Fig.
1 is adopted.

VI. AGC-BASED MODEL

From the previous results, one can infer that that the AGC
has caused most of the influence in the detection performance.
This is confirmed by observing the dashed curves right above
the shaded areas in Figs. 2, 3 and 4, and also in Fig. 5, which
were obtained using what we are calling an AGC-based model.
In this model, the received signal covariance matrix becomes

R′ = Y′Y′†/n = GY(GY)†/n = GRG, (6)

where G is a diagonal AGC gain matrix whose entries are
obtained from (1), omitting constants that do not influence
system performance if no additional signal processing are
taken into consideration besides AGC, i.e.

Gii = (y†
iyi)

−0.5 = ‖yi‖−1
2 . (7)

From Fig. 5 it can be noticed that this AGC-based model is
also valid in the presence of a residual dynamic DC-offset, as

long as SDCR ≥ 8 dB. This model is the proposed mathemati-
cal counterpart of the circuit-based model constructed from the

diagram in Fig. 1. Analytical investigations under this model
also represent an opportunity for further contributions.

VII. CONCLUSIONS AND FINAL REMARKS

An implementation-oriented model was proposed for cen-
tralized data-fusion cooperative spectrum sensing. A mathe-
matical AGC-based version of this model was also suggested.
Simulation results showed that the detection performance
under the conventional model can be overestimated when
compared with the proposed one. In our model, the AGC
will affect the noise level that corrupts the received samples,
from where it can be concluded that ED and eigenvalue-based
techniques that demand the knowledge of the noise variance,
like the RLRT, are feasible only if this AGC effect is taken
into account in the noise variance estimated value, as well as
in the decision statistic formulae. The degraded performances
of MED and ED in Fig. 4 support this statement. From the
influence of the quantization levels, we can conclude that 3
bits per sample are enough for the transmission of the sample
values to the FC, a result that is useful for determining the
necessary bandwidth and traffic over the reporting channel.
One last conclusion is that, for properly designed RF and DC-
offset compensation circuitry, the sensing performance under
the implementation-oriented model can be practically insen-
sitive to typical residual dynamic DC-offsets. We reiterate
that this is valid for all detection techniques considered here,
though results were presented only for the GLRT.

REFERENCES

[1] W. C. Headley, V. G. Chavali, and C. R. C. M. da Silva, “Exploiting radio
correlation and reliability information in collaborative spectrum sensing,”
IEEE Commun. Lett., vol. 15, no. 8, pp. 825–827, Aug. 2011.

[2] A. Singh, M. R. Bhatnagar, and R. K. Mallik, “Cooperative spectrum
sensing in multiple antenna based cognitive radio network using an
improved energy detector,” IEEE Commun. Lett., vol. 16, no. 1, pp. 64–
67, Jan. 2012.

[3] A. Kortun, T. Ratnarajah, M. Sellathurai, C. Zhong, and C. B. Papadias,
“On the performance of eigenvalue-based cooperative spectrum sensing
for cognitive radio,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 1,
pp. 49–55, Feb. 2011.

[4] B. Nadler, F. Penna, and R. Garello, “Performance of eigenvalue-based
signal detectors with known and unknown noise level,” in Proc. 2011
IEEE Int. Conf. on Commun., pp. 1–5.

[5] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE
Trans. Circuits Syst. II, vol. 44, no. 6, pp. 428–435, June 1997.

[6] R. Svitek and S. Raman, “DC offsets in direct-conversion receivers:
characterization and implications,” IEEE Microw. Mag., vol. 6, no. 3,
pp. 76–86, Sep. 2005.

[7] M. Keshavarzi, A. Mohammadi, and A. Abdipour, “Characterization
and compensation of DC offset on adaptive MIMO direct conversion
transceivers,” IEICE Trans. Commun., vol. E94-B, no. 1, pp. 253–261,
Jan. 2011.

[8] B. Lindoff and P. Malm, “BER performance analysis of a direct conver-
sion receiver,” IEEE Trans. Commun., vol. 50, no. 5, pp. 856–865, May
2002.

[9] M. Krueger, R. Denk, and B. Yang, “Good and bad training sequences
for zero IF sampling EDGE receivers,” in Proc. 2004 IEEE Int. Conf. on
Acoust., Speech, and Signal Process., vol. 4, pp. 1033–1036.


