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Abstract— This paper aims at investigating the performance of 
four eigenvalue-based techniques for centralized data-fusion 
cooperative spectrum sensing in cognitive radio networks over 
flat Nakagami-m and Rice fading channels. The detection 
techniques are the generalized likelihood ratio test (GLRT), the 
maximum-minimum eigenvalue detection (MMED), the 
maximum eigenvalue detection (MED), and the energy detection 
(ED). In the case of Nakagami-m, arbitrary fading and phase 
parameters were assumed, and so was with the Rice parameter in 
the case of the Rician model. 
 
Index Terms— cognitive radio, cooperative eigenvalue spectrum 
sensing, Nakagami, Rice. 

I. INTRODUCTION 

Nowadays, there is a growing demand for effective use of 
spectrum and spectral efficient management strategies in the 
context of fast developing wireless communications systems. 
The spectrum resources have become scarce, and at the same 
time there is an increasing demand for better quality of 
service, as well as higher transmission rates. Nevertheless, in 
fact there is an artificial scarcity of spectrum, since there are 
bands that are not actually used during all time in a given 
region [1]. The cognitive radio (CR) concept [2] can be 
applied to this context, aims at using the electromagnetic 
spectrum more efficiently. A CR system uses advanced 
techniques that optimize the occupation of the bands, and 
spectrum sensing techniques to find the so-called spectral 
opportunities within bands of interest in a given area and in a 
given time. Thus, a CR system makes it possible to use the 
available spectrum in temporal, spatial and frequency 
dimensions, without causing interference to licensed systems. 
Nonetheless, the scenarios of spectral occupancy differ 
depending of several factors, such as channel conditions, 
location and prevailing political control of spectrum usage. 
This implies greater system complexity, since the cognitive 
cycle of the CR concept includes a step for learning the 
channel [2]-[3]. Hence, the behavior of the channel, or more 
precisely the channel model, influences the operation and 
performance of a CR. Then, evaluating the performance of a 
CR system under different channel models is of paramount 
importance. Moreover, the choice of the spectrum sensing 
technique will also influence the detection performance, 
depending on the cognitive network architecture and the 
conditions of the channel. Many detection techniques for 
spectrum sensing have been proposed so far, e.g. the matched 
filter, the cyclostationary and the energy detection [4]-[5]. 
Among the latest ones are those based on the eigenvalues of 
the received signal covariance matrix; see [6]-[8] and 

references therein. These techniques have received a lot of 
attention mainly because they do not require prior information 
on the transmitted signal, and, in contrast to the energy 
detection, some eigenvalue-based schemes do not need to 
know the noise variance either. 

No matter the sensing technique adopted, the detection 
performance depends on the reception conditions of the CRs, 
and therefore on the propagation environment. For example, in 
[9] comparisons were made among different models for the 
energy detector under conditions of additive white Gaussian 
noise (AWGN) and Rayleigh fading channels. It has been 
shown that the problem of energy detection lies in the 
uncertainty of estimating the noise power, which degrades the 
detection performance [10]-[12]. In [13] the authors analyze 
the probability of miss detection of the energy detector under 
Nakagami fading channels. Recently, in [14] the authors 
presented a new implementation-oriented model in which 
typical signal processing tasks of a direct-conversion CR 
receiver were taken into account considering the Rayleigh 
fading channel. 

The aim of this paper is to present the analysis of the 
spectrum sensing performance under two important channel 
models: Nakagami-m [15] (with arbitrary phase and fading 
parameters) and Rice [16] (with arbitrary Rice parameter). The 
Nakagami distribution can be parameterized to model various 
fading conditions such as Rayleigh and Rice. This means that 
it is possible to control the severity of the Nakagami fading by 
making this distribution to fit more appropriately into real 
scenarios with multipath propagation [13]. The Nakagami-m 
and Rice distributions, which are general, flexible, and easily 
tractable mathematically, have also been proved useful in 
practice [17]-[18].  

In what concerns the detection technique, we consider the 
eigenvalue-based generalized likelihood ratio test (GLRT); the 
maximum-minimum eigenvalue detection (MMED), also 
known as the eigenvalue ratio detection (ERD); the maximum 
eigenvalue detection (MED), also known as Roy’s largest root 
test (RLRT); and the energy detection (ED), applied to a 
centralized data-fusion cooperative spectrum sensing scheme. 
ED is not an exclusively eigenvalue-based detection 
technique, but it can be implemented using eigenvalue 
information. It has been included in the present investigation 
for the sake of completeness, also giving support to a broader 
pool of comparisons. 

The remainder of this paper is structured as follows. Section 
II presents the system model for the eigenvalue-based sensing 
technique and the fading channels models. Section III reports 
simulation results and discussions concerning the influence of 
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system parameters on the performance of the spectrum 
sensing. Finally, Section IV concludes the paper. 

II. SYSTEM MODEL 

A. Centralized Cooperative Eigenvalue Spectrum Sensing 

Cooperative spectrum sensing is considered a possible 
solution for problems experienced by CR networks in a non-
cooperative situation, like receiver uncertainty, multipath 
fading, hidden terminals and correlated shadowing [3]. 

Consider the well-known baseband memoryless linear 
discrete-time MIMO fading channel model. Assume that there 
are λ single-antenna CRs, each one collecting n samples of 
the received signal from k primary transmitters during the 
sensing period, and that these samples are arranged in a matrix 
Y ∊ λ×n. Similarly, consider that the signal samples from the 
k primary transmitters are arranged in a matrix X ∊ k×n, and 
that H ∊ λ×k is the channel matrix with elements {hij}, i = 1, 
2, …, λand j = 1, 2, …, k, representing the channel gain 
between the j-th primary transmitter and the i-th CR receiver. 
The elements of the channel matrix H simulate a flat 
Nakagami-m or Rice fading channel between each primary 
transmitter and CR, assumed to be constant during a sensing 
period and independent from one period to another. Finally, if 
V ∊ λ×n represents the matrix containing thermal noise 
samples that corrupt the received signal, then the matrix of 
collected samples is given by 

.= +Y HX V  (1) 

In eigenvalue-based spectrum sensing, spectral holes are 
detected by using test statistics based on the eigenvalues of the 
received signal sample covariance matrix. In a centralized 
cooperative scheme with data-fusion, matrix Y is formed at 
the fusion center (FC), and the sample covariance matrix 

†1

n
≅R YY  (2) 

is estimated, where † stands for complex conjugate and 
transpose. The eigenvalues {λ1 ≥ λ2 ≥ … ≥ λm} of R are then 
computed, and assuming a single primary transmitter (p = 1), 
the decision variables for the GLRT, MMED, MED, and ED 
are respectively calculated according to [7]: 
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where σ 2 is the thermal noise power, which is assumed to be 
known and the same in each sensor input, and tr(⋅) and ||⋅||F are 
the trace and the Frobenius norm of the underlying matrix, 

respectively. The decision upon the occupation of the sensed 
channel is attained by comparing the test statistics with a 
decision threshold. 

B. The Spectrum Sensing as a Binary Hypothesis Test 

Spectrum sensing can be formulated as a binary hypothesis 
test problem that can be stated as 

0

1

: Primary signal is absent

: Primary signal is present,

H

H
 (7) 

where H0 is the null hypothesis, meaning that there is no 
licensed user signal active in a specific sensed band, and H1 is 
the alternative hypothesis, which indicates that there is at least 
one active primary user signal. 

Two important parameters associated with the assessment 
of the spectrum sensing performance are the probability of 
detection, PD, and the probability of false alarm, PFA, which 
are defined as follows: 
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where Pr{⋅} is the probability of a given event, T the decision 
variable and γ the decision threshold. The value of γ is chosen 
depending on the requirements for the spectrum sensing 
performance, which are typically evaluated through receiver 
operating characteristic (ROC) curves that show PD versus PFA 
as they vary with the decision threshold γ. A higher threshold 
keeps PFA at low levels, but renders detection difficult. On the 
other hand, a low threshold favors detection, but increases PFA. 
This tradeoff is clearly seen from the ROC curve. 

C. Fading Channels 

In [19], the Nakagami complex signal model is discussed 
considering the statistics of the phase distribution of the 
channel, besides the envelope distribution, which continues to 
be a debatable topic. Such distributions, including others as 
Rayleigh, typically model the envelope of the received signal 
assuming that the phase distribution is uniform, which is not 
generally true in real channels. The knowledge of the statistics 
applied to the phase distribution are important to 
communication systems analysis, for example when deriving 
the error probability of digital modulation schemes over 
fading channels, or when designing or analyzing the 
performance of carrier-tracking loops. Likewise, the phase 
distribution is important for analyzing the performance of 
spectrum sensing schemes, since it will affect the channel 
between primary transmitters and secondary receivers. 

The characterization and modeling of Nakagami channels is 
still a topic of ongoing research, because the Nakagami 
process models numerous classes and fading channel 
conditions, resulting in a model that accurately fits empirical 
data. Moreover, the Nakagami-m distribution is 
mathematically simple, facilitating mathematical derivations, 
and thus making it more attractive for performance analysis. 
Besides, it brings flexibility and control in the severity of 
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fading, taking for example the case of the Rayleigh fading as a 
particular situation.  

In the model presented in [19], the Nakagami-m phase 
parameter p is the condition of balance or unbalance between 
the in-phase and quadrature components of the fading process, 
which corresponds to the balance or unbalance between the 
real and imaginary components of the complex Nakagami-m 
random variate. Thus, in a more general scenario, one can 
think of an unbalanced structure between components, but still 
having a total of 2m Gaussian processes. The value of p can be 
in the range −1 ≤ p ≤ 1, with the condition that p = 0 leads to 
the balancing of the generation model, i.e. the same number of 
real and imaginary Gaussian variates, and imbalanced 
otherwise. As shown in [19], this condition enables the correct 
distribution of the envelope and phase of the Nakagami fading 
process. This means that it is possible to evaluate the 
performance of the spectrum sensing more appropriately by 
using this Nakagami-m fading model. Based on the model in 
[19], the real and imaginary samples of the complex 
Nakagami-m random variate given by the densities 
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were generated by using the inverse cumulative distribution 
function method [20]. 

In the Rice fading channel model, fading severity is 
governed by the Rice parameter K, which is, by definition, the 
ratio between the powers of the dominant received signal 
component (referred to as A2) and those produced by the 
multipath propagation (referred to as 2σ2). The higher this 
ratio, the less severe are the effects of the fading because of 
the presence of a line-of-sight (LOS) or a dominant multipath 
component signal. For example, the channel in a cognitive 
radio system having a LOS with a primary transmitter can be 
modeled with multiple cases of the Rice fading. So, it is in 
order to assess the performance of the spectrum sensing 
process in Rice fading channels. More specifically, it would be 
interesting to see how the detection performance is impacted 
by the variation of the Rice parameter. The complex Rice 
variate was obtained as described in [21]. 

III.  SIMULATION RESULTS 

This section presents simulation results and discussions 
concerning the influence of the Nakagami-m and Rice fading 
parameters on the spectrum sensing performance. 

Figure 1 shows some ROC curves for MED and ED 
techniques over a Nakagami fading channel, considering the 
fading parameters m = 2 and m = 7 and signal-to-noise ratios 

SNR = −3 and SNR = −6 dB, and n = 50 samples per CR. 
Since the influence of increasing the number λ of CRs under 
cooperation is, as expected, a performance improvement 
considering fixed the remaining system parameters, we only 
consider λ= 3. In this scenario we adopt the Nakagami phase 
parameter as p = 0, leading to the balancing of the generation 
model. From Figure 1 it can be seen that the MED technique is 
better than ED. Notice that as the fading parameter increases, 
the sensing performance is improved. This is an expected 
result, since a larger fading parameter implies a less severe 
fading. As also expected, the influence of increasing the SNR 
is a performance improvement, considering fixed the 
remaining parameters. 

 
Fig. 1. ROC curves for MED and ED in a Nakagami fading channel under 

different fading parameter and SNR. 

Figure 2 shows ROC curves for the MMED and the GLRT 
on a Nakagami fading channel, considering the same set of 
parameters used to plot Figure 1. Here again, as the fading 
parameter and the SNR increase, the sensing performance is 
improved. Notice that the GLRT outperforms the MMED in 
the Nakagami multipath fading channel. 

 
Fig. 2. ROC curves for MMED and GLRT in a Nakagami fading channel 

under different fading parameter and SNR 
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In order to show the performance variations as a function of 
the phase parameter, Figure 3 depicts ROC curves for the 
MED technique on a Nakagami fading channel, for p = 0, 
±0.25 and ±0.5, SNR = −5 dB, n = 50 samples per CR, λ= 3 
CRs and m = 1. Due to the lack of space, we present in Figure 
3 only results for the MED technique. We attest, however, that 
very similar behaviors were observed for MMED, GLRT and 
ED, and that all conclusions drawn from the MED also apply 
to the other ones. It is interesting to notice that different values 
of the phase parameter lead to different performances, in spite 
of having the same Nakagami fading parameter. The effect of 
changing the phase parameter leads to an imbalance in the 
quadrature signals. Since that the Nakagami signal is a 
complex variate, variation in the values of p leads to different 
performances. 

 
Fig. 3. ROC curves for MED in a Nakagami fading channel with variable 

phase parameter 

The Rayleigh multipath fading is characterized by the 
absence of line-of-sight or any dominant received signal 
component between transmitter and receiver, whereas the Rice 
fading is characterized by the presence of such a received 
signal component of higher intensity. Then, the effect caused 
by increasing the Nakagami fading parameter on the 
improvement of the detection performance is equivalent to the 
one caused by increasing the Rice parameter. With the 
objective of illustrating this behavior, Figures 4 and 5 present, 
respectively, simulation results for known (MED and ED) and 
unknown (MMED and GLRT) noise variance techniques, 
using the same settings adopted for constructing Figures 1 and 
2, except that at this time a Rice channel is considered, instead 
of a Nakagami channel. It is evident from these figures the 
improvement in the detection performance due to an increased 
Rice parameter, i.e. with an increased strength of a LOS or a 
dominant received signal component, which decreases fading 
severity. By setting K → 0 (−∞ dB), the Rice density tends to 
a Rayleigh density, i.e. the Rice fading turns into a Rayleigh 
fading. Nevertheless, in [21] it has been pointed out that a 
Rice parameter around −40 dB suffices to produce a fading 
that very closely matches a Rayleigh fading. This situation is 
considered in Figures 4 and 5. 

 
Fig. 4. ROC curves for MED and ED in a Rice fading channel under different 

Rice factor and SNR 

 
Fig. 5. ROC curves for MMED and GLRT in a Rice fading channel under 

different Rice factor and SNR 

IV. CLOSING REMARKS 

This work was devoted to present the results of a 
performance analysis of the eigenvalue-based generalized 
likelihood ratio test (GLRT); the maximum-minimum 
eigenvalue detection (MMED), also known as the eigenvalue 
ratio detection (ERD); the maximum eigenvalue detection 
(MED), also known as Roy’s largest root test (RLRT); and the 
energy detection (ED), applied to a centralized data-fusion 
cooperative spectrum sensing scheme in Nakagami and Rice 
fading channels. The analysis unveiled significant variations 
in the sensing performance in terms of variations in Nakagami 
fading parameter as well as in the phase parameter and Rice 
parameter. The modeling of the Nakagami channel reflected 
envelope and phase statistics, which continue to be an 
interesting debatable question. It was assumed that the channel 
conditions were modeled with flat fading. For both fading 
models, it was verified that the MED outperforms all the 
remaining techniques, followed by ED, GLRT and MMED. 
The same ranking was also observed in [7]. Since MED and 
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ED are semi-blind techniques that assume knowledge of noise 
variance, they achieve better performance than blind ones that 
do not assume this knowledge, which is the case of GLRT and 
MMED. 
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