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Performance Analysis of Spectrum Sensing
Techniques in Nakagamnd Rice Fading Channels

Ricardo A. da S. Junior, Rausley A. A. de SouzalRaghn A. Guimaraes

Abstract— This paper aims at investigating the performancef
four eigenvalue-based techniques for centralized dafusion
cooperative spectrum sensing in cognitive radio nebrks over
flat Nakagami-m and Rice fading channels. The detection
techniques are the generalized likelihood ratio teGLRT), the
maximum-minimum  eigenvalue detection (MMED), the
maximum eigenvalue detection (MED), and the energgletection
(ED). In the case of Nakagamm, arbitrary fading and phase
parameters were assumed, and so was with the Ricarameter in
the case of the Rician model.

Index Terms- cognitive radio, cooperative eigenvalue spectru
sensing, Nakagami, Rice.

I. INTRODUCTION

Nowadays, there is a growing demand for effectige af
spectrum and spectral efficient management stiegeigi the
context of fast developing wireless communicatisgstems.
The spectrum resources have become scarce, ahd sarne
time there is an increasing demand for better tuadf
service, as well as higher transmission rates. Mleetess, in
fact there is an artificial scarcity of spectrurmce there are
bands that are not actually used during all timeaigiven
region [1]. The cognitive radio (CR) concept [2]nchke

references therein. These techniques have receivied of
attention mainly because they do not require priformation
on the transmitted signal, and, in contrast to #mergy
detection, some eigenvalue-based schemes do not toee
know the noise variance either.

No matter the sensing technique adopted, the dmtect
performance depends on the reception conditiorttefCRs,
and therefore on the propagation environment. kamgle, in
[9] comparisons were made among different modeistte
energy detector under conditions of additive wiaussian
noise (AWGN) and Rayleigh fading channels. It haerb
shown that the problem of energy detection liestlie
uncertainty of estimating the noise power, whichrddes the
detection performance [10]-[12]. In [13] the auth@nalyze
the probability of miss detection of the energyedédr under
Nakagami fading channels. Recently, in [14] thehard
presented a new implementation-oriented model iriclwh
typical signal processing tasks of a direct-coneersCR
receiver were taken into account considering thgldRgh
fading channel.

The aim of this paper is to present the analysighef
spectrum sensing performance under two importaanmél

applied to this context, aims at using the elecagnetic Models: Nakagamm [15] (with arbitrary phase and fading
spectrum more efficiently. A CR system uses advancdarameters) and Rice [16] (with arbitrary Rice pagter). The
techniques that optimize the occupation of the barahd Nakagami distribution can be parameterized to meeddbus
spectrum sensing techniques to find the so-callgectsal fading conditions such as Rayleigh and Rice. Thesums that
opportunities within bands of interest in a giveeaand in a It iS possible to control the severity of the Naka fading by
given time. Thus, a CR system makes it possiblas® the making this distribution to fit more appropriateiyto real
available spectrum in temporal, spatial and freqyen Scenarios with multipath propagation [13]. The Ng@i-m

dimensions, without causing interference to licensgstems. and Rice distributions, which are general, flexilied easily

depending of several factors, such as channel tons
location and prevailing political control of spagctt usage.
This implies greater system complexity, since tlgnitive
cycle of the CR concept includes a step for leanihe
channel [2]-[3]. Hence, the behavior of the chanonelmore
precisely the channel model, influences the opamatnd
performance of a CR. Then, evaluating the perfoaanf a
CR system under different channel models is of mpatat
importance. Moreover, the choice of the spectrumsisg
technique will also influence the detection perfance,
depending on the cognitive network architecture dhe
conditions of the channel. Many detection techrsqdier
spectrum sensing have been proposed so far, e.gnadtched
filter, the cyclostationary and the energy detectt{d]-[5].
Among the latest ones are those based on the eilyesvof
the received signal covariance matrix; see [6]-[@hd
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practice [17]-[18].

In what concerns the detection technique, we cendite
eigenvalue-based generalized likelihood ratio (&R T); the
maximum-minimum eigenvalue detection (MMED), also
known as the eigenvalue ratio detection (ERD);ntteximum
eigenvalue detection (MED), also known as Roy’'géat root
test (RLRT); and the energy detection (ED), applieda
centralized data-fusion cooperative spectrum sgnsiteme.
ED is not an exclusively eigenvalue-based detection
technique, but it can be implemented using eigerval
information. It has been included in the presemtstigation
for the sake of completeness, also giving supmo# broader
pool of comparisons.

The remainder of this paper is structured as falo8ection
Il presents the system model for the eigenvaluedhasnsing
technique and the fading channels models. Sectiaeports
simulation results and discussions concerning rifileeénce of
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system parameters on the performance of the spectruespectively. The decision upon the occupationhef gensed
sensing. Finally, Section IV concludes the paper. channel is attained by comparing the test stagistiith a

decision threshold.
II. SYSTEMMODEL ) . .
) ) ) ) B. The Spectrum Sensing as a Binary Hypothesis Test
A. Centralized Cooperative Eigenvalue Spectrum Sensing : . .
Spectrum sensing can be formulated as a binarythgpis

quperative spectrum s_ensing is considered a pessib.st problem that can be stated as
solution for problems experienced by CR networks inon-
cooperative situation, like receiver uncertaintyultipath H,: Primary signal is abser
fading, hidden terminals and correlated shadowdig [ H,: Primary signal is prese! @)
Consider the well-known baseband memoryless linear
discrete-time MIMO fading channel model. Assume thare Wwhere H, is the null hypothesis, meaning that there is no
are ¢ single-antenna CRs, each one collectingamples of licensed user signal active in a specific sensed bandH,; is
the received signal fronk primary transmitters during the the alternative hypothesis, which indicates thatetis at least
sensing period, and that these samples are arramgeghatrix one active primary user signal.
Y € C"™". Similarly, consider that the signal samples fritw Two important parameters associated with the assm¥s
k primary transmitters are arranged in a maxix C¥", and ©f the spectrum sensing performance are the pristyabf
thatH € C“* s the channel matrix with elements;), i = 1, detection,Pp, and the probability of false alarm®:4, which

2, ..., tandj = 1, 2, ...,k representing the channel gainare defined as follows:

between thg-th primary transmitter and theth CR receiver. P, = Pr{decisiort?g H}: P{rT>y M}

The elements of the channel matrkt simulate a flat P _ prldecisi — HT (8)
Nakagamim or Rice fading channel between each primary b =Pr{decision=", Ho}= FT>y %o}

trar_ls;nitte(; _ar:jd CR,dasts:ched to be Qogsttant d;:is@ﬂ]a"_qu where Pr{Jlis the probability of a given event, the decision
berio 32,1 independent from ong perio _o_ anotieaty, | . variable andythe decision threshold. The valueydb chosen
vV € € represents the matrix containing thermal noisg§epending on the requirements for the spectrum irggns

samples that corrupt the received signal, thenmiaérix of  yerformance, which are typically evaluated througbeiver

collected samples is given by operating characteristic (ROC) curves that siRawWersusPa
Y =HX +V . (1) as they vary with the decision threshgtdA higher threshold

_ _ keepsPe4 at low levels, but renders detection difficult. G

In eigenvalue-based spectrum sensing, spectrak haile other hand, a low threshold favors detection, batdase®ex.

detected by using test statistics based on thevesiges of the This tradeoff is clearly seen from the ROC curve.
received signal sample covariance matrix. In a redined

cooperative scheme with data-fusion, matrixis formed at C- Fading Channels

the fusion center (FC), and the sample covariarateixn In [19], the Nakagami complex signal model is dised
considering the statistics of the phase distributmf the

R ~ lyyf ) channel, besides the envelope distribution, whimfitinues to

n be a debatable topic. Such distributions, includitigers as

is estimated, where stands for complex conjugate anolRayleigh, typically model the envelope of the reedi signal

transpose. The eigenvalued & 4, > ... > A.} of R are then assuming that.the phase distribution is uniformicWh; npt
computed, and assuming a single primary transmgter 1), gengrally true in real channels_. T_he knowledgdw_efsttanstms
the decision variables for the GLRT, MMED, MED, aB® applied to the phase distribution are important to
are respectively calculated according to [7]: communication sy§tems aqa!ysis, for exa}mple wheividg

A A the error probability of digital modulation schemeser

itr(R):T' 3) fading channels, or when designing or analyzing the
m %Z/‘i performance of carrier-tracking loops. Likewiseg thhase
=1 distribution is important for analyzing the perfante of
spectrum sensing schemes, since it will affect ¢hannel
between primary transmitters and secondary receiver
The characterization and modeling of Nakagami chinis
, (5) still a topic of ongoing research, because the Yjaka
process models numerous classes and fading channel
S A E_ 1 i/l ©) conditions, resulting in a model that accuratety #mpirical
£ mne? & data. Moreover, the Nakagami- distribution s

where o2 is the thermal noise power, which is assumed to tggathematlcally simple, facilitating mathematicalridations,

known and the same in each sensor input, aficatrd [[}- are gnd_éhus rtn ik'_ng It ﬂmo_rbe_l_?ttracgve fotr ple_rfort'?aam_atlyssf.
the trace and the Frobenius norm of the underlyiragrix, esides, 1t brings fiexibiity and control in th&wverty o
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fading, taking for example the case of the Rayldagling as a SNR =-3 and SNR =6 dB, andn = 50 samples per CR.
particular situation. Since the influence of increasing the numigeof CRs under

In the model presented in [19], the Nakagamphase cooperation is, as expected, a performance impreaem
parametep is the condition of balance or unbalance betweatonsidering fixed the remaining system parametses,only
the in-phase and quadrature components of thedautiocess, consider ¢ = 3. In this scenario we adopt the Nakagami phase
which corresponds to the balance or unbalance leetvlee parameter ap = 0, leading to the balancing of the generation
real and imaginary components of the complex Nakéga model. From Figure 1 it can be seen that the MEDri@ue is
random variate. Thus, in a more general scenarie, @an better than ED. Notice that as the fading parametaeases,
think of an unbalanced structure between componbutsstill  the sensing performance is improved. This is aneebgul
having a total of &1 Gaussian processes. The valug ofin be result, since a larger fading parameter implieess Isevere
in the range-1 < p < 1, with the condition thagy = 0 leads to fading. As also expected, the influence of incregshe SNR
the balancing of the generation model, i.e. theesaomber of is a performance improvement, considering fixed the
real and imaginary Gaussian variates, and imbathnceemaining parameters.
otherwise. As shown in [19], this condition enalites correct 10

: ——— -
distribution of the envelope and phase of the Naksdading .@JL'FLT:/)&W'Q';/’:T,.
. . . . s oo 1/ = ./'//)/ /./l
process. This means that it is possible to evaluhte o . E == e
performance of the spectrum sensing more apprepyidty 0.9 5w T .,._/../'< % L —
using this Nakagami fading model. Based on the model in _ } ey . — |
[19], the real and imaginary samples of the comple® ) /-//'-/
. . . e £ 08 | B
Nakagamim random variate given by the densities 2 o o
2 / n
l+pm . é .l‘../.. R
f (X) = m 2 X|(l+p) ' ex%_ m)e] ; 074 /l V/. ' 177=2,SNR=E |
X = o |
Q F[H—pm] Q © 2 |4/
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Fig. 1. ROC curves for MED and ED in a Nakagamirfgcchannel under
—00 <Yy <00, different fading parameter and SNR.
were generated by using the inverse cumulativeriliigton Figure 2 shows ROC curves for the MMED and the GLRT
function method [20]. on a Nakagami fading channel, considering the saeteof

In the Rice fading channel model, fading severisy iparameters used to plot Figure 1. Here again, edfating
governed by the Rice paramekgrwhich is, by definition, the parameter and the SNR increase, the sensing perhmenis
ratio between the powers of the dominant receivigthaé improved. Notice that the GLRT outperforms the MMHED
component (referred to a&%) and those produced by thethe Nakagami multipath fading channel.
multipath propagation (referred to as?R The higher this
ratio, the less severe are the effects of the ¢pbiecause of .
the presence of a line-of-sight (LOS) or a dominanttipath et W
component signal. For example, the channel in anitigg 0.9 .'/"
radio system having a LOS with a primary transmitan be :
modeled with multiple cases of the Rice fading. Bas in
order to assess the performance of the spectruraingen
process in Rice fading channels. More specificitiiyould be
interesting to see how the detection performandmpacted
by the variation of the Rice parameter. The compRize
variate was obtained as described in [21].
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lll. SIMULATION RESULTS

This section presents simulation results and d&ons
concerning the influence of the Nakagamiand Rice fading 0.5
parameters on the spectrum sensing performance.

Figure 1 shows some ROC curves for MED and EL
techniques over a Nakagami fading channel, consigléhe Fig. 2. ROC curves for MMED and GLRT in a Nakagdadiing channel
fading parametersn = 2 andm = 7 and signal-to-noise ratios under different fading parameter and SNR
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In order to show the performance variations asnatfan of
the phase parameter, Figure 3 depicts ROC curveshio
MED technique on a Nakagami fading channel, o= O,
+0.25 and £0.5, SNR =5 dB, n = 50 samples per CR, =3

CRs andn = 1. Due to the lack of space, we present in igui =

3 only results for the MED technique. We attestyvéeer, that
very similar behaviors were observed for MMED, GLRiid

ED, and that all conclusions drawn from the MEDoapply

to the other ones. It is interesting to notice thfferent values
of the phase parameter lead to different performsnia spite
of having the same Nakagami fading parameter. Tieeteof

changing the phase parameter leads to an imbalantse

quadrature signals. Since that the Nakagami sigeah

complex variate, variation in the valuespleads to different
performances.
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Fig. 3. ROC curves for MED in a Nakagami fadingraingl with variable
phase parameter

The Rayleigh multipath fading is characterized e t
absence of line-of-sight or any dominant receivégha
component between transmitter and receiver, wheheaRice
fading is characterized by the presence of suclecaived
signal component of higher intensity. Then, theeffcaused
by increasing the Nakagami fading parameter
improvement of the detection performance is eqgeivialo the
one caused by increasing the Rice parameter.
objective of illustrating this behavior, FiguresAd 5 present,
respectively, simulation results for known (MED &8D) and

With tIikeIihood

DE SETEMBRO DE 2013, FORTALEZA, CE

1.0

i “,}.._'.J.L/IF;I;E O
e —=-
e :
Feo . .
0.9 ..,‘ — " . —
i A ] il
I e . o e |
u
. P~ o A " [K—_0dB, S\R-6B
.g 0.8 we s .
g -
a [ [K=10dB, SN\R=—64B
3 ./ / /. o
g 07 P
i u e
s b [ K=-40dB, SNR=-3dB J
S ue Mo
= »
06 |4 [ —e—ED 4
J o % Lf-f MED (RLRT)
|.[j® .. K=10dB, SNRZ—}dB' J
”i/
0.5 —F T T T T T

0.1 0.2 0.3 0.5

Probability of False Alarm - P

Fig. 4. ROC curves for MED and ED in a Rice faditginnel under different
Rice factor and SNR
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Fig. 5. ROC curves for MMED and GLRT in a Rice fagichannel under
different Rice factor and SNR

IV. CLOSINGREMARKS

on the This work was devoted to present the results of a

performance analysis of the eigenvalue-based gleta
ratio test (GLRT); the maximum-minimum
eigenvalue detection (MMED), also known as the rigdue
ratio detection (ERD); the maximum eigenvalue daac

unknown (MMED and GLRT) noise variance techniquedMED), also known as Roy’s largest root test (RLRand the

using the same settings adopted for constructiggres 1 and
2, except that at this time a Rice channel is amrsid, instead
of a Nakagami channel. It is evident from theseuirég the
improvement in the detection performance due tmareased
Rice parameter, i.e. with an increased strengta bOS or a
dominant received signal component, which decretesiing
severity. By settingK — 0 (e dB), the Rice density tends to
a Rayleigh density, i.e. the Rice fading turns iat®ayleigh
fading. Nevertheless, in [21] it has been pointed that a
Rice parameter arouneé40 dB suffices to produce a fading
that very closely matches a Rayleigh fading. Thtisasion is
considered in Figures 4 and 5.

energy detection (ED), applied to a centralizedadasion
cooperative spectrum sensing scheme in NakagamiRérel
fading channels. The analysis unveiled significeatiations
in the sensing performance in terms of variationslakagami
fading parameter as well as in the phase paramettRice
parameter. The modeling of the Nakagami channéatefd
envelope and phase statistics, which continue toahe
interesting debatable question. It was assumedhkeathannel
conditions were modeled with flat fading. For bdtding
models, it was verified that the MED outperforms$ thle
remaining techniques, followed by ED, GLRT and MMED
The same ranking was also observed in [7]. Sinc®MiEd
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ED are semi-blind techniques that assume knowledg®ise
variance, they achieve better performance tham ldimes that
do not assume this knowledge, which is the casel®&T and
MMED.
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