
Eigenvalue-Based Techniques for Continuous
Sensing Model in MIMO CR Networks

Adoniran Judson Braga
Department of Electrical Engineering

University of Brasilia, Brazil 70904-970

Email: jbraga@ene.unb.br

Rausley A. A. de Souza
National Institute of Telecommunications

Santa Rita do Sapucaı́, Brazil 37540-000

Email: rausley@inatel.br

Dayan Adionel Guimarães
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Abstract—Many studies on cognitive radio (CR) networks
have been carried out to maximize the CR throughput under
the restriction of avoiding interference on primary user (PU)
network. Aiming at a higher network throughput than in the
classic approach, the concept of continuous sensing is used,
where secondary receiving nodes are responsible for the spectrum
sensing and decision about the presence of the PU while others
secondary users (SU) transmit in the same sensed spectrum
band. In this paper we compare, in a continuous sensing scheme,
the performance of eigenvalue spectrum sensing techniques in
a multiple sensor CR network. The soft Akaike information
criterion (SAIC) achieves the best performance for detection of
the PU signal when the SU signal is strong and the modified
maximum eigenvalue detection performs better when the SU
signal is week.

I. INTRODUCTION

Nowadays, the use of the electromagnetic spectrum for
communication is growing: new services emerge over time,
while traditional services remain active occupying most of
attractive bands for wireless communication. Because of this,
there is a serious scarcity of spectrum to be managed by the
scientific community and regulatory agencies. On the other
hand, even though much of the useful radio spectrum is
already allocated to conventional systems, studies [1]-[4] have
demonstrated that the assigned spectrum is significantly under-
utilized around the world. Aiming at optimizing the space-time
allocation of radio spectrum, cognitive radio is proposed as a
solution [5]. The idea is simple: while the licensed user (PU)
for a certain spectral band is not transmitting for any reason,
this spectrum may be available for unlicensed users (SU), as
long as this channel is released as soon as the PU attempts
to use it again. Therefore, spectrum sensing [6] is the main
functionality enabling the CR to use the best spectrum’s oppor-
tunities without interfering with the operation of licensed users.
To reach a better sensing performance, a lower probability of
false alarm (Pfa) is desired to maximize the utilization of the
available spectrum, whereas a higher probability of detection
(Pd) is required to avoid interference with PU. Consequently,
there is a natural tradeoff in CR technology between avoiding
interference with primary network and improving throughput
for the secondary network.

The sensing period must be long enough to achieve a
required Pd and avoid harmful interference with the PU.
However, a channel detection time (CDT) [7] is usually stated
to limit the time during which a PU can withstand interference

before the CR system detects it. So, within the CDT period, the
CR users are required to perform the sensing and transmission
tasks. Thus, the longer the sensing time, the shorter the
transmission time, reducing the throughput and increasing
the delay for traffic in the secondary network. Such periodic
transmission interruption can lead to an inefficient usage of
the available spectrum, and, consequently, to a reduction in
the CR network capacity. Solid studies [8]-[11] have been
carried out to minimize the sensing time and maximize the
CR throughput for a given interference constraint. However,
these studies are based on the assumption that the CRs are
required to stop transmitting to perform the spectrum sensing.
The dynamic frequency hopping (DFH) method [12] changed
the paradigm that the CR users are not able to perform the
sensing and transmission at the same time. In this approach,
during the CR transmission through a working channel, sensing
is performed in parallel in other channels. After the CDT
period, the CR switches the operation to the best channel
recently sensed, and the band previously used is vacated.
Hence, interruption is no longer required for sensing [12].
Even though the DFH method has demonstrated an important
advantage of this parallel sensing approach over the traditional
one, the problem that the channel being sensed cannot be used
for data transmission by the CR still persists.

Generally, channels being sensed are not used for data
transmission because the CR spectrum sensing has been treated
as a conventional signal detection problem [8]. Thus, signal
detection techniques have been rarely used with adaptations
regarding the CR objectives. The authors in [13] have proposed
a spectrum monitoring technique at the receiver based on error
statistics to be performed prior the spectrum sensing. The
increase of the error rate may be caused by the presence of
the PU signal and then a spectrum sensing is trigged. This
considerably reduces the sensing rate, increasing the through-
put in the SU network. The monitoring technique achieves
a good performance if the secondary-to-primary power ratio
(SPPR) is not too high. In high SPPR scenarios, the presence
of the PU signal may be hardly detected or mistaken with
fading of the SU signal. The work [14] has come up with
a continuous sensing method based on energy detection [15],
where sensing is performed at the receiving node of the SU.
Thus, the SU at the transmitting node can keep transmitting
as the primary user is idle, seeking a higher throughput in the
SU system and continuity in sending data (thereby reducing
the overhead). However, since the SU is allowed to transmit
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while the spectrum is sensed, its signal becomes an intrinsic
interferer in the task of sensing the PU.

We investigate the performance of six eigenvalue-based
sensing schemes using the MIMO channel model adapted
for the continuous sensing model with centralized sample
processing at the fusion center (FC). In this study, the mod-
els and the FC concept can be employed in a centralized
cooperative sensing system with several receivers or in a
single receiver system with multiple sensors. Specifically, we
assess the performance of the eigenvalue-based altered gener-
alized likelihood ratio test (AGLRT); the altered maximum-
minimum eigenvalue detection (AMMED); the altered max-
imum eigenvalue detection (AMED); and the altered energy
detection (AED) [16]. Although the ED is not an exclusively
eigenvalue-based detection technique, it can be implemented
using eigenvalue information for the sake of completeness. We
also analyse the performance of the model order estimator
named AIC [17], and introduce a new technique based on
it named soft Akaike information criterion (SAIC), which
proved useful in low primary-to-secondary power ratio (PSPR)
scenarios.

The remainder of this paper is organized as follows. Section
II presents the modified system model for the eigenvalue-
based sensing techniques in the presence of the secondary user,
and Section III describes the AIC based techniques. Section
IV describes the simulation setup, and Section V presents
simulation results and discussions concerning the different
techniques and PSPR. This paper ends with conclusions and
suggestions for new research in Section VI.

II. EIGENVALUE-BASED SPECTRUM SENSING

In what concerns the baseband linear discrete-time MIMO
fading channel model, assume that there are m sensors (e.g.,
antennas) in a CR, or m single-sensor CRs, each one collecting
n samples of the received signal from p primary transmitters
and q secondary transmitters during the sensing period, with
p + q < m. Consider that these samples are arranged in a
matrix Y ∈ C

m×n. Similarly, consider that the transmitted
signal samples from the primary and secondary transmitters are
arranged in a matrix X ∈ C

p×n and in a matrix S ∈ C
q×n,

respectively. The PU and SU signals are i.i.d. (independent
and identically distributed) random process and independent
of each other. Let Hx ∈ C

m×p be the channel matrix with
elements {hij}, i = 1, 2, . . . ,m and j = 1, 2, . . . , p, repre-
senting the channel gain between the j-th primary transmitter
and the i-th sensor (antenna or receiver) and let Hs ∈ C

m×q

be the channel matrix with elements {hij}, i = 1, 2, . . . ,m
and j = 1, 2, . . . , q, representing the channel gain between
the j-th secondary transmitter and the i-th sensor. Finally,
let V ∈ C

m×n be the matrix containing thermal noise that
corrupts the received signal. The matrix of collected samples
is then

Y = HxX+HsS+V. (1)

In eigenvalue-based sensing, spectral holes are detected
using test statistics based on the eigenvalues of the sample
covariance matrix of the received signal matrix Y. If a multi-
sensor device is used to decide upon the occupation of a given
channel in a non-cooperative fashion, or even in a centralized

cooperative multi-node scheme with data-fusion [18], matrix
Y is formed, and the sample covariance matrix

R =
1

n
YY† (2)

is estimated, where (·)† means complex conjugate and trans-
pose. From R, the eigenvalues {λ1 ≥ λ2 ≥ · · · ≥ λm} are
computed and the test statistics for the AGLRT, the AMMED,
the AMED, and the AED may be calculated [16]. The decision
performance depends on the decision distance between the H0

state, when PU signal is absent, and H1, when PU signal is
present. Assuming single primary and secondary transmitters
(p = q = 1), these adapted tests are respectively calculated
according to:

TAGLRT =
λ1 + λ2

2
m−2

m∑
i=3

λi

, (3)

TAMMED =
λ1 + λ2

2λm
, (4)

TAMED =
λ1 + λ2

2PH0

, (5)

TAED =
‖Y‖2F
mnPH0

=

m∑
i=1

λi

mPH0

, (6)

where ‖ · ‖F is the Frobenius norm of the underlying matrix,
and PH0 is the SU signal (from the transmitting node) plus
noise power averaged over all sensors.

For the conventional approach, all the eigenvalue based
methods rely on the fact that the covariance matrix in the
presence of white noise only is a diagonal matrix with all its
elements equal to the termal noise power σ2. However, when
the PU signal arrives, the flat distribution of eigenvalues turns
into a non-flat vector of eigenvalues with p stronger terms, and
these methods try to assign the H1 channel state using this
contrast. In the continuous sensing approach, the eigenvalue
distribution is not flat prior the arrival of the PU signal, since
the SU is transmitting. Consequently, there is a shorter decision
distance between the H0 and H1 states, which worsens the
decision performance for the four methods. In principle, this
fact may discourage the continuous sensing approach since
this system is worse when compared in equal conditions to
the classic approach. However, this system is flexible in terms
of sensing time, allowing for better sensing performance [14].

As one can see in (3), in AGLRT we calculate the ratio be-
tween the average of the two larger eigenvalues and the average
of all the remaining eigenvalues. In AMMED we consider the
ratio between the average of the two largest eigenvalues and
the smallest eigenvalue. In AMED we compare the average of
the two largest eigenvalues with PH0 , while in the AED the
average of all eigenvalues is compared with PH0 . In AMED
and AED, the thermal noise power σ2 is assumed to be known
and the same in each sensor input with uncorrelated samples,
and the SU signal power can be estimated using a pilot channel
[19].



III. SOFT AKAIKE INFORMATION CRITERION - SAIC

Considering complete uncorrelation between all PU sig-
nals and SU signals and full rank matrices Hx and Hs,
for sufficiently large PU and SU signal-to-noise ratios, the
smallest m − (p + q) eigenvalues of R will be noticeable
smaller than the remaining p + q ones [17]. Therefore, this
composition indicates that the eigenvalues with the smallest
indexes represent the most relevant components of the signal.
Thus, it is possible to apply an algorithm in order to determine
the number of relevant eigenvalues.

The Akaike information criterion (AIC) is used to select the
necessary number of components to describe a signal without
loss of information. It is a mathematical criterion based on
information theory, in which given a set of candidate models
for a data, the preferred model is the one with the minimum
AIC value, where the AIC value is given by [17]

AIC[k] = −n(m− k) ln

[
Gm−k

Am−k

]
+ k(2m− k), (7)

where k = 0, 1, . . . ,m − 1 is the index of the considered
component, Gm−k and Am−k are the geometric mean and
the arithmetic mean of the m− k smallest eigenvalues. After
finding the value of k, named here as kmin, that minimizes (7),
it is possible to find the model order, which is given by

TAIC = m− kmin − 1. (8)

The outputs of each test (decision variable) presented in
the Section II are random variables with continuous probability
density functions (PDF) and continuous intersection between
their histograms for the H0 and H1 states. Therefore, the
receiver operating characteristic (ROC) curves vary smoothly,
due to the random nature of the noise and channel. In the case
of the AIC, the outputs of each test for the states H0 and
H1 is, when it correctly estimates the number of transmitters,
equal to q and p+q sources, respectively. This binary outcome
is efficient when the signal SU does not exist or is very
strong, but degrades Pd regardless of Pfa when weak signals
may be seen as one or confused with noise. Since there are
few discrete possible outputs, the error is more punitive. Soft
Akaike information criterion (SAIC), introduced here, tries not
to use only the minimum of AIC[k] to decide for kmin, but the
whole vector weighted as

TSAIC =

∑m−1
k=0

k
AIC[k]m∑m−1

k=0
1

AIC[k]m

. (9)

Differently from TAIC, TSAIC is not limited to integer numbers
or discrete histogram, but non negative real numbers ensuring
approximately continuous PDF.

IV. SIMULATION SETUP

The simulation setup under the discrete-time MIMO model
considers that Y = HxX+HsS+V is available to the FC.
Matrices X, S, Hx, Hs, and V are generated as follows: To
simulate Gaussian distributed noise-like transmitted signals,
X and S are formed by i.i.d. zero mean complex Gaussian
samples. The choice for the Gaussian distribution is adopted
because it accurately models several modulated signals, such
as orthogonal frequency-division multiplexing (OFDM) with a

large number of subcarriers, which is the preferred modulation
technique in most modern wireless technologies, including
several digital television standards.

The elements in the channel matrices Hx and Hs are zero
mean i.i.d. complex Gaussian variables that simulate a flat
Rayleigh fading channel between each transmitter and sensor
(CR), assumed to be constant during a sensing period and
independent from one period to another. Although channel
coefficients change in time and space, the average channel gain
over all sensors or receivers is considered constant in time.
Therefore, Pd and Pfa considered in this study are averaged
values in flat Rayleigh fading channel. The entries in V are
unitary variance (unitary power), i.i.d. zero mean complex
Gaussian variables that represent the additive thermal noise
corrupting the received samples. The power of PU and SU
signals are given by their signal-to-noise ratios, i.e. SNRX and
SNRS, respectively, since noise has unitary variance.

The covariance matrix R is computed from the received
matrix Y, and then the eigenvalues {λi}, i = 1, 2, . . . ,m. The
test statistics for the AGLRT, the AMMED, the AMED, the
AED, the AIC and the SAIC are respectively computed from
Equations (3)–(6), (8) and (9). In each detection technique,
the corresponding test statistic is compared with a threshold
computed from the desired false alarm probability, and a final
decision upon the occupancy of the sensed channel is reached.

V. SIMULATION RESULTS

In this section we present simulation results and discus-
sions concerning the influence of noise and SU signal on
the performance of PU signal detection for the AGLRT, the
AMMED, the AMED, the AED, the AIC, and the SAIC. The
ROC curves shown hereafter were obtained with a minimum of
5, 000 runs in Monte Carlo simulations implemented according
to the setup described in Section IV. System parameters are
those in Table I, unless otherwise indicated.

TABLE I. REFERENCE SYSTEM PARAMETERS.

PU signal-to-noise ratio SNRX = −10 dB
SU signal-to-noise ratio SNRS = −∞,−10,−5, 0, 5, 10 dB
Number of primary transmitters p = 1
Number of secondary transmitters q = 1
Number of sensors m = 6
Number of samples collected by each sensor n = 50

The choice for a small SNR of the PU signal (−10 dB) is
made to represent a more degrading, but yet realistic, situation
from the perspective of spectrum sensing performance. For
instance, IEEE 802.22 requires that the presence of digital TV
transmissions should be sensed with 0.9 detection probability
with a sensitivity of −114 dBm, which may be translated into
very low SNR levels [20].

Figs. 1–5 show the ROC curves relating Pfa and Pd for the
AGLRT, the AMMED, the AMED, the AED, and the SAIC.
No curves for the AIC is shown, since the discrete values of
TAIC cause intolerable errors in scenarios with strong noise,
as explained in Section III. It can be seen that the classical
sensing scheme, i.e. when no SU signal is present, outperforms
the continuous sensing model in all techniques. As shown in
[14], the strength of the continuous sensing model is the time
flexibility, since it is not necessary to stop sensing to transmit.
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Fig. 1. ROC curves for the AGLRT under variations of SU SNR.
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Fig. 2. ROC curves for the AMMED under variations of SU SNR.

It means that, for a fixed bandwidth, a much bigger number of
samples can be used to enhance Pd as a function of a longer
sensing time. However, one should be aware of the channel
coherence time and bandwidth waste in transmitting samples
to the FC.

Comparing the methods for the classical model, the AED
and the AMED, where the noise variance is assumed to be
known, perform better than the others, with a slight advantage
to the AMED. However, with the presence of the SU signal,
the performance of the AED exceeds slightly the AMED, even
though both show a growing deficiency as a function of the SU
signal power. As we can see, the AMMED performs better than
the AGLRT. However, a more practical comparison is made in
Fig. 7 where Pfa and Pd are set to values of more practical
meaning.

In Fig. 5 we see an atypical behavior in the SAIC curves as
a function of SNR SU. The worst results are not from curves
with high SNR SU, but those in which the secondary user
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Fig. 3. ROC curves for the AMED under variations of SU SNR.
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Fig. 4. ROC curves for the AED under variations of SU SNR.

signal is active and has low power. For curves with SU SNR
equal to 0, 5 and 10 dB, the SAIC achieved the best results.
This is due to the fact that, for the first four techniques, the goal
is to detect the presence of the PU signal under the interference
of the SU signal. However, for SAIC and the AIC, the number
of transmitting sources is taken into account.

Another way to compare the detection methods is to com-
pute the effort required to arrive at a certain target performance.
Here, we tested the number of samples required to achieve a
probability of detection of 90% when the probability of false
alarm do not exceed 10%, considering low PU signal power
(SNRX = −10 dB) and high SU signal power (SNRS = 0
dB). The other parameters remain as in Table I. The results
are depicted in Fig. 6.

For the sake of comparison, we show in Fig. 7 the curves
of Pd as a function of the number of samples when no SU
signal is present. As expected, we see clearly that the number
of samples required to achieve Pd = 90% is always less than in
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the continuous sensing model, no matter the technique adopted.

Table II reports the required number of samples to reach
Pfa = 10% e Pd = 90% for each technique and sensing
model. For the AIC in the classical model, n = 360, which
extrapolates the corresponding curve in Fig. 7.

TABLE II. NUMBER OF SAMPLES TO REACH A PROBABILITY OF FALSE

ALARME OF 10% AND A PROBABILITY OF DETECTION OF 90%.

Technique SNRS = 0 dB No SU signal

AGLRT n = 2480 n = 141
AMMED n = 1550 n = 161
AMED n = 1230 n = 84
AED n = 1000 n = 125
AIC n = 690 n = 360
SAIC n = 260 n = 123

The best performance of the AMED in terms of the number
of samples in the classical model is consistent with the results
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Fig. 7. Pd as a function of the number of samples for fixed Pfa = 10% and
considering no transmission of SU signal.

in Fig. 7 and the ROC curves in Figs. 1–5. Its advantage is
even more pronounced in comparison with the AED when a
higher performance standard is set, e.g. when Pfa = 10% and
Pd = 90%. We notice that both the AMED and the AED
have better performance than the AGLRT and the AMMED
in classical or continuous sensing model. On the other hand,
the AMED and the AED need a priori information about the
power of noise and SU signal. In some circumstances, this
information may not be available or can be unreliable. Unlike
what is shown in Figs. 1–5, the AGLRT surpasses the AMMED
in the classical model when Pfa = 10% and Pd = 90% is set.
This is due to the fact that the AGLRT has higher statistical
power [18]. However, the AGLRT is very inefficient for the
continuous sensing model.

As observed from the ROC curves and Table II, SAIC has
better performance than the four first techniques when a strong
SU signal is present. This is because the stronger the SU signal,
the shorter is the decision distance between the H0 and H1

states in the histogram of the decision variable. The AIC and
SAIC try to estimate the number of sources directly and the
bigger the SNR of all signals, the fewer is the incidence of
error. However, the discrete nature of TAIC limits its use only
in friendly scenarios. We also notice that SAIC performs better
than the AED under the classical model as well, unlike what
is observed in the ROC curves. This proves that SAIC not
only performs well in high interference condition, but also
when there is no interference and high performance standards
is required.

VI. CONCLUSION AND SUGGESTIONS FOR NEW

RESEARCH

In this paper we compare the performances of eigenvalue
spectrum sensing techniques in a multiple sensor cognitive
radio network that uses the concept of continuous sensing and
transmission. Using Monte Carlo simulations it was shown that
the soft Akaike information criterion (SAIC) is the best option
for detecting the PU signal when the SU signal is transmitting
at the same time, and has good performance for the classical



model as well when Pfa = 10% and Pd = 90% is set. For the
classical model, i.e. when there is no parallel transmission from
secondary users, the AMED and the AED achieved the best
results and can be used as the first choices if the noise power
information is available. In spite of the moderate performance
for the AMMED, its ROC curves showed that it is less sensitive
to SU SNR variations. We confirmed what is stated in [14],
that a longer sensing time for the continuous sensing model
is needed to reach the same statistical performance as in the
classical model, for a fixed bandwidth. This excess time may
be prohibitive considering the channel coherence time and the
bandwidth used to transmit all samples if a centralized coop-
erative multi-node system is employed. However, by choosing
an appropriate technique, the effort may be less costly.

The scenarios with eigenvalue combining [21] and hard
decision combining should be considered as candidates for
applying the continuous sensing as well in future deployments
of our proposal. Finally, the continuity of the work suggests a
deeper analysis of the impact of other SU interference on the
eigenvalue distribution of the sample covariance matrix and
in turn the development of more suitable eigenvalue sensing
strategy
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