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Abstract—Recently, it has been proposed an empirical method
for estimating the number of sources of signals impinging on mul-
tiple sensors, named norm-based (NB) algorithm. The algorithm
computes the Euclidian norm of vectors whose elements are the
normalized and nonlinearly scaled eigenvalues of the received
signal covariance matrix, and the corresponding normalized
indexes. Such norms are then used to discriminate the largest
eigenvalues from the remaining ones, thus allowing for the
estimation of the number of sources. In this paper we propose an
improved norm-based (iNB) algorithm which uses the ℓ0.55-norm
as a means for classifying the eigenvalues. Differently from the
NB, the iNB algorithm does not use the nonlinear scaling and does
not need to set an additional empirical constant that is crucial to
the proper operation of the NB algorithm. Comparisons are made
with the estimators MDL (minimum description length) and AIC
(Akaike information criterion), and with a recently-proposed
estimator based on the random matrix theory (RMT). It is shown
that the iNB algorithm can outperform one or more of these
estimators in several situations, and that it always outperforms
the NB algorithm.

I. INTRODUCTION

The estimation of the number of sources of signals imping-
ing on multiple sensors is a fundamental problem in com-
munications and signal processing. This number is important
in itself in some cases, e.g. to determine the approximate
number of neurons responding to some stimulus in medical
applications. In other cases it is used as the input for subse-
quent procedures, e.g. for direction of arrival (DoA) estimation
in antenna array processing applications. Common solutions
to this problem adopt information theoretic approaches, such
as the minimum description length (MDL) and the Akaike
information criterion (AIC) [1], [2]. Recently, a random matrix
theory (RMT) approach was proposed in [3], claiming high
detection performance at low signal-to-noise ratio (SNR),
similar to the AIC estimator, and near consistency at large
sample sizes, similar to the MDL estimator.

In this paper we propose a new algorithm for improving
the performance of the norm-based (NB) estimator discussed
in [4]. We call it improved NB (iNB). Our algorithm enjoys
lower complexity than the NB, yet exhibiting consistency
and outperforming the MDL, the AIC and the RMT-based
estimators in several situations. The performance of the iNB
is always better than the performance achieved by the NB
estimator alone.

II. PROBLEM FORMULATION

Let an array with m sensors (antennas for example), each
one collecting n samples of the received signal from p
transmitters (sources). These samples are arranged in a matrix
Y ∈ Cm×n and the samples from the p transmitters are
arranged in a matrix X ∈ Cp×n. Let H ∈ Cm×p be the
channel matrix with elements {hij}, i = 1, 2, . . . ,m and
j = 1, 2, . . . , p, representing the channel gains between the
j-th source and the i-th sensor. Finally, let V ∈ Cm×n

be a matrix of additive Gaussian noise samples, distributed
N (0, σ2Im) and independent of the signal samples. The matrix
of received samples is then Y = HX+V.

We consider only those methods for estimating the number
of sources that use the eigenvalues {λ1 ≥ λ2 ≥ · · ·λm} of
the received signal population covariance matrix R, for which
the maximum likelihood estimate is the sample covariance
matrix R̂ = YY†/n, where † means complex conjugate
and transpose. It can be shown [1] that R can be written as
R = E[YY†] = HRxH

† +σ2I, where Rx is the transmitted
signal population covariance matrix, I is the identity matrix,
σ2 is the noise variance and E[·] is the expectation operator.
If H is full column rank, the rank of HRxH

† is p, which
means that the m − p smallest eigenvalues of HRxH

† are
equal to zero. Therefore, the m−p smallest eigenvalues of R
are equal to σ2. Then, it is possible to estimate the number of
sources p from the multiplicity of the smallest eigenvalues of
R. Instead of R, in practice its estimate R̂ is computed using
a finite number of samples, and the resulting eigenvalues are
all different with probability one. In this case the classification
of the eigenvalues in two groups (the largest p and the smallest
m−p) is not trivial, representing a challenge for the estimation
of the number of sources.

III. AIC, MDL AND RMT-BASED ESTIMATORS

The criteria for AIC and MDL are respectively [1]:

AIC(k) = −2n ln
(m− k)

∏m
i=k+1 λi(∑m

i=k+1 λi

)m−k
+ 2k (2m− k) ,

MDL(k) = −n ln
(m− k)

∏m
i=k+1 λi(∑m

i=k+1 λi

)m−k
+

1

2
k (2m− k) lnn,



for k = 0, 1, ...,m−1. For both, the estimate p̂ of the number
of sources is the value of k which minimizes the criterion.

The RMT-based estimate can be written as [3] p̂ =
argmin

k

{
λk < σ̂2 [µn,m−k + s(α)ξn,m−k]

}
− 1, where σ̂2 is

the estimate of the noise variance, µn,m−k and ξn,m−k are
respectively determined from the centering and scaling param-
eters of the Tracy-Widom distribution, and s(α) is a function
of the asymptotic false alarm (overestimation) probability α,
which is obtained by inverting numerically the Tracy-Widom
distribution (for more details on the RMT-based method,
please refer to [3]). Notice that this method suffers from the
need of computing a threshold that depends on an estimate of
the noise variance, but on the other hand permits control of
the overestimation probability, which can be desired in some
application.

IV. THE ORIGINAL NB ALGORITHM

In the original NB algorithm [4], the ordered eigenvalues of
R̂ and the corresponding indexes are normalized so that both
are placed in the interval [0, 1], that is, for i = 1, ...,m,

li =
λi − λm

λ1 − λm
, i(N) =

i− 1

m− 1
, (1)

where li and i(N) are the i-th normalized eigenvalues and
indexes, respectively. The normalized eigenvalues {li} are
further modified by a nonlinear operation, leading to

λ
(N)
i =

√
1− (1− li)

E
. (2)

The role of this nonlinear operation is explained in what
follows, with the help of an example: Figure 1(a) shows the
normalized eigenvalues {li} and {λ(N)

i } for some values of
the exponent E, assuming m = 30, p = 0 and n = 5000.
Since p = 0, as n grows the curve for {li} tends to become
a straight line. The effect of (2) is a bending of this curve
according to the value of E. For E = 2 and large n the
curve for {λ(N)

i } tends to lay on the unit semicircumference
quarter. For E > 2 the curves for {λ(N)

i } are further bent.
Now define a vector Λi = [λ

(N)
i i(N)]T . Notice in Figure

1(a) that for E > 2, ∥Λ1∥ < ∥Λi∥ for i ̸= 1, where ∥Λi∥
is the Euclidean norm of Λi. For p > 0 the smallest m −
p eigenvalues of R̂ tend to be equal to the noise variance,
and it will become evident an inflection point in the curve,
at the transition from the largest p and the smallest m − p
eigenvalues, as illustrated in Figure 1(b). This will tend to
make ∥Λp+1∥ < ∥Λi∥ for i ̸= p+ 1. Then, ∥Λi∥ can be used
to estimate the number of sources. This is the essence of the
NB algorithm. For a small number of sources, however, the
placement of the inflection point more to the left will lead
to a high chance of having ∥Λi∥ < ∥Λp+1∥ for i > p + 1.
To avoid this, only a subset of vectors of the set {Λi} have
to be tested while searching for the smallest Euclidian norm.
Figure 1(b) illustrates this heuristic for a subset size K = 15
for p = 0 and p = 5, assuming m = 30, n = 5000 and E = 5.
Notice that searching within a subset of size smaller than m
is equivalent to pushing the inflection point of the curves to
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Fig. 1. (a) Graphical representation of the normalized eigenvalues and indexes
(b) Normalized eigenvalues and indexes according to the NB algorithm

the right, reducing the chance of overestimating of the number
of sources. If the number of sources increases, the entire set
with K = m vectors is used; see an example for p = 15 in
Figure 1(b). The need for determining the best value of K is
the main drawback of the NB algorithm, since it is influenced
by the expected maximum number of sources, an information
that is not known a priori in most of the applications.

As stated in [4], the choice of the bending exponent E
in (1) can be made via simulation, aiming at maximizing
the probability of correct detection, Pc, which is the prob-
ability of correctly estimating the number of sources, for
a specific set of system parameters. In a scenario of more
practical significance, E can be found as the value which
maximizes the average Pc over several sets of parameters.
For example, combining the parameters m = 10, 15, 20, 50;
n = 50, 100, 200, 500, 1000, 50000; SNR = −5 dB, 0 dB, 5
dB, 8 dB, 10 dB; p = 2, 5, 10, 15, the optimal exponent E = 5
was found in [4]. The numerical results shown in Section VI
for the NB algorithm consider E = 5.

The original NB algorithm is summarized as follows [4]:



Algorithm 1 The NB Algorithm
for i = 1...m do

Compute λ
(N)
i using (1) and (2)

end for
Do K = m/2
for j = 1...K do

Compute Λj =
[
λ
(N)
j

j−1
K−1

]T
end for
Compute p̂ = argmin

j
||Λj ||2 − 1

V. THE PROPOSED INB ALGORITHM

As previously stated, the need for determining the value of
K is the main drawback of the NB algorithm. However, a
closer look at (2) allows us to interpret the nonlinear scaling
of the eigenvalues as a change or distortion in the distance
space of the normalized eigenvalues so that the Euclidian norm
is computed in the sequel. This is intuitively reasonable, but
can be viewed from another perspective: why do not keep
unchanged the distance space of the normalized eigenvalues
and change only the distance measure? But this new per-
spective for the problem at hand is nothing but a possible
interpretation of the general ℓu-norm. Recalling, the ℓu-norm
of a d-dimensional vector x, which is usually denoted by
∥x∥u, is defined by: ∥x∥u = (|x1|u + |x2|u + · · ·+ |xd|u)

1/u.
In order to see how the above reasoning works, Figure 2(a)

shows the idealized asymptotic behavior of the eigenvalues
and indexes, for p = 0, normalized according to (1), i.e. {li}
(balls), and according to (1) and (2), i.e. {λ(N)

i } (squares) for
E = 5. Figure 2(b) shows the ℓ0.83-norm for all {li} (balls)
and the Euclidian norm (ℓ2-norm) for all {λ(N)

i }, for p = 0.
From Figure 2(b) it is possible to see the effect of bending
the normalized eigenvalues by the nonlinear scaling of (2) on
the Euclidian norm for each λ

(N)
i , and compare this effect

with the one produced by measuring the norm from each {li}
using the ℓ0.83-norm (the value 0.83 was chosen to keep the
norms within the same range). Notice that, in both ways, what
is being done is a sort of distortion in the distance space of
the normalized eigenvalues. However, one can also notice that
such distortions are different from each other, which is our
main justification for the different performances between the
NB and the iNB algorithm, as shown later on in this paper.
The iNB operates with {li} and uses the ℓu-norm with a value
of u for optimized performance, whereas the NB operates with
{λ(N)

i } and uses the ℓ2-norm and a value of E for optimized
performance. Moreover, the NB algorithm also demands the
empirical choice of the parameter K, which does not exist in
the iNB algorithm. In iNB, all the m normalized eigenvalues
are considered in the search for the minimum norm.

Figure 3 shows the same parameters shown in Figure 2, but
now for p = 10. This figure illustrates the effect of using the
ℓ0.83-norm in a situation in which it is evident the failure of the
NB algorithm. Notice in Figure 3(a) that the inflexion point is
visible in the normalized eigenvalues {li}, whereas it is hardly
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Fig. 2. (a) Idealized asymptotic behavior of the eigenvalues and indexes,
for p = 0, normalized according to (1) (balls), and according to (1) and (2)
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noticed in the normalized and nonlinear scaled {λ(N)
i }. Notice

also from Figure 3(a) that, if the normalized eigenvalues {li}
were used in the search for the minimum Euclidian norm, the
estimated number of sources p̂ would be around 13. In Figure
3(b) one can observe that the minimum ℓ0.83-norm indeed
corresponds to p̂ = 10. However, the minimum Euclidian norm
adopted by the NB algorithm corresponds to p̂ ̸= 10, i.e. the
NB algorithm would fail in estimating the number of sources
in a situation similar to the one illustrated in Figure 3. The
best value of u was found based on the results shown in Figure
4, which show the probability of correct detection (Pc) as a
function of the norm value u combining the following sets
of parameters: m = 10, 15, 20, 30, 40; n = 50, 100, 250, 400;
p = 2, 5, 8, 10, 20 and SNR = 0, 2, 8, 10 dB. From this figure it
is apparent that the optimum value of u for maximum average
Pc is around 0.55. Notice that finding u in the iNB algorithm
is similar in process to finding E in the original NB algorithm.

The proposed iNB algorithm is summarized as follows.
Notice that the parameter K of the NB algorithm is not used
anymore, and that the iNB is less complex than the NB:



Algorithm 2 The Proposed iNB Algorithm
for i = 1...m do

Compute Λi =
[
li i(N)

]T
using (1)

end for
Compute p̂ = argmin

i
||Λi||0.55 − 1
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Fig. 4. Probability of correct detection as a function of the norm value u
for several system parameters

VI. NUMERICAL RESULTS

In this section we present numerical results comparing
the iNB, the NB, the MDL, the AIC, and the RMT-based
estimators. Each point in the subsequent graphs was generated
from 5000 Monte Carlo events. In each event a new matrix
Y = HX+V was generated. The entries in X are independent
and identically distributed (i.i.d.) complex Gaussian variates
that simulate Gaussian-distributed and uncorrelated transmit-
ted signals. This situation arises in wireless communications,
where the envelope of most modulated signals are Gaussian-
distributed. The entries in H are also i.i.d. complex Gaussian,
to simulate a flat Rayleigh fading channel which is constant
during each detection interval, changing independently from
one interval to the next. The entries in V are also i.i.d. complex
Gaussian, representing the additive thermal noise present at
the receiver inputs. Assuming unitary total transmit power,
the received SNR is given by tr[H†H]/

(
mpσ2

)
, where tr [·]

is the trace of the underlying matrix. To simulate an inac-
curate noise variance estimate for the RMT-based algorithm,
the noise variance is made a uniform random variable in
[σ2−0.05σ2, σ2+0.05σ2]. This situation is denoted by RMT2
in the graphs. In order to simulate signal sources with variable
power, we assume that the signal strengths are uniform random
variables in [0.4, 1]. Additionally, for the RMT-based estimator
the asymptotic false alarm (overestimation) probability is
adjusted to α = 0.1%. In all figures, the probability of correct
detection (Pc) and the probability of overestimation (Poe) were
considered as the performance measurements of the estimators.

Figure 5 shows results for Pc and Poe as a function of the
number of samples n collected by each sensor, for m = 30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.0

0.2

0.4

0.6

0.8

1.0

 

n (number of samples)

 P
c
 (iNB)

 P
oe
 (iNB)

 P
c
 (RMT)

 P
oe
 (RMT)

 P
c
 (RMT2)

 P
oe
 (RMT2)

 P
c
 (NB)

 P
oe
 (NB)

 P
c
 (MDL)

 P
oe
 (MDL)

 P
c
 (AIC)

 P
oe
 (AIC)

Fig. 5. Pc and Poe against n for p = 3, m = 30, SNR = −10 dB

sensors, p = 3 signals sources and SNR = −10 dB.
Notice that the RMT-based estimator with perfectly known
noise variance exhibits near consistency at large sample sizes,
similar to the MDL (which is known to be consistent). How-
ever, the RMT-based estimator unveils severe inconsistence in
the presence of noise uncertainty (RMT2 curves). The AIC
estimator reaches higher detection performance with a smaller
number of samples, but clearly it is inconsistent at large sample
sizes, having a non-negligible Poe for n ≫ 1. It can be noted
that the proposed iNB estimator performs better than the MDL
estimator, and much better than the NB for all values of n,
exhibiting a performance not far from the RMT (with perfectly
known noise variance) and the AIC. The iNB also appears
to be a consistent estimator, though we are not able to give
a formal proof of this due to the empirical nature of the
algorithm. It is worth mentioning that an increase in the SNR
reduces the number of samples necessary for a target Pc (not
shown here), which is a characteristic of all estimators.

Figure 6 shows results for Pc and Poe as a function of
the SNR, for p = 3 signals sources, m = 30 sensors and
n = 1000 samples. Again, this figure shows the superior
detection capability of the iNB algorithm when compared
with the NB and the MDL estimators, while exhibiting a
performance very close to the RMT-based estimator (with
perfect knowledge of the noise variance) and to the AIC
in low SNR regimes. The advantages and drawbacks of the
estimators as perceived from Figure 5 are also observable in
Figure 6. Particularly, the MDL and the NB achieve Pc = 1
for high values of SNR. The RMT-based estimator achieves
Pc ≈ 1 in this situation; in fact it achieves Pc ≈ 1 − α.
However, when there is uncertainty in the noise variance
(RMT2 curves), the RMT-based estimator produces a non-
negligible Poe, preventing it of achieving Pc ≈ 1. Due to
inconsistence, the AIC also produces a non-negligible Poe,
leading to Pc → (1− Poe) as SNR → ∞.

Figure 7 depicts results for Pc and Poe as a function of the
number of sources p, considering m = 30 sensors, n = 1000
samples and SNR = 8 dB. Similar to the previous results,
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Figure 7 shows the superior performance of the iNB when
compared with the MDL and NB. For a small number of
sources the RMT-based estimator achieves Pc ≈ 1 when the
noise variance is assumed to be perfectly known, but its per-
formance is degraded if noise uncertainty takes place (RMT2
curves). The maximum estimated number of sources with
high detection probability clearly varies from one estimator
to another (and with the SNR; not shown), with advantage of
the AIC, the RMT and the iNB, in this order.

In Figure 8, the performance of all estimators are plotted as
a function of the number of sensors m, considering n = 1000
samples, SNR = −10 dB and p = 4 signals sources. Again
we can see the superiority of the iNB when compared with
the NB and the MDL. Notice in the case of the NB estimator
that, as the value of m increases beyond 40, the probability
of correct detection decreases. This is a consequence of the
non optimality of the parameter K, which indicates that the
NB algorithm suffers from a reduction in the capability of
estimating a small number of sources when the number of
sensors is large. The advantages and drawbacks of the AIC
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Fig. 8. Pc and Poe against m for SNR = −10 dB, n = 1000 and p = 4

and the RMT-based estimators can again be observed, now
with variable m.

VII. CONCLUSIONS

This paper proposed an empirical algorithm for estimating
the number of sources of signals impinging on multiple
sensors. The algorithm is a improvement of the one suggested
in [4]. The improved NB (iNB) uses the ℓ0.55-norm as a
means for classifying the eigenvalues. The main advantages
of the iNB algorithm are: i) it is less complex than the
NB algorithm; ii) it does not use a nonlinear scaling of the
eigenvalues and does not need to set the empirical constant
K that is crucial to the proper operation of the NB algorithm;
iii) it outperforms one or more of the estimators MDL, AIC
and RMT in several situations, and iv) it always outperforms
the NB algorithm. In contrast to the AIC estimator and to
the RMT-based estimator in the presence of noise variance
uncertainty, the iNB showed to be consistent, although this
was not supported by a formal proof. Being an empirical
proposition, the iNB is not guaranteed to win, in all other
situations, those estimators that were beat in the situations
considered in this paper. We attest, however, that several other
cases not shown here were analyzed, yet keeping the iNB
algorithm in an advanced ranking when compared to the MDL
and to the NB estimators, and in close ranking to the best
results shown by the RMT and AIC estimators. Last but not
least, it is worth mentioning that our results can be easily
reproduced due to the low complexity of the iNB algorithm.
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