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Abstract—We propose an ambient noise reduction technique
for underwater acoustic communication systems in warm shallow
water, where the snapping shrimp impulsive noise is a common
impairment. This noise is emitted at the cavitation bubble collapse
caused by the claw shut, and can produce very high acoustic
pressures which are responsible for the impulsiveness of the noise.
The denoised signal is the solution of an unconstrained scalarized
bi-criterion convex optimization problem. One of the criterions is
based on the robust least-squares signal reconstruction approach,
for which the sum of the Huber penalty function of the residuals
is minimized. The other criterion uses a quadratic smoothing
regularization term, acting on the first-difference of the denoised
signal samples. It is shown that the proposed technique can
significantly reduce the ambient noise and, thus, reduce the bit
error rate of an underwater digital communication system.

I. INTRODUCTION

The high attenuation of electromagnetic waves, especially
by sea water, is one of the most limiting factors for using radio
waves for underwater communications. On the other hand,
these attenuations are significantly smaller for acoustic waves,
which motivates the use of acoustic signals in underwater
communication systems [1, pp. 15-47], [2], [3].

Underwater acoustic communication (UWAC) systems have
been used in many applications, from sound navigation and
echo detection (sonar), to diver-to-diver and ship-to-diver
communications, for communications with submersibles and
other underwater vehicles for sea exploration, in telemetry
and in underwater control systems. Applications related to
underwater sensor networks are one of the most recent ones
[4]–[7]. The main characteristic of UWAC systems is the use
of acoustic carrier waves typically above 5 kHz. The upper
limit depends on the range. As an example, for a 10 km range
this upper limit is about 10 kHz. For a 100 m range, signals
up to 100 kHz can be used. Some modern high speed UWAC
systems for short-range communication use acoustic carriers
with even higher frequencies. Transmission powers typically
are on the order of 30 W or less. Transmission rates are up to
a few kilobits per second in a 10 km range.

The impairments found in underwater acoustic channels are
even more severe than those encountered in wireless radio

channels, representing a challenging limitation for UWAC
system design. The main limiting factors are the propagation
delay, multipath, attenuation and ambient noise, all with strong
randomness.

The channel is subjected to a three-dimensional variability
of the refractive index, leading to ray bending (refraction).
This is one of the main causes of multipath and shadowing.
Multipath propagation is also caused by reflections on sea
surface and sea floor. Small coherence times combined with
large propagation delays also impose severe limitation to the
system design. For example, in a 1 km range the signal can
take up to 0.66 seconds to hit the receiver. On the other hand,
channel characteristics can change drastically within 0.5 sec-
onds or less. Delay spreads can reach up to 60 ms, producing
severe frequency-selective fading. Doppler shift and Doppler
spread also appear, and are caused due to surface and internal
wave motion and due to relative motion between receiver
and transmitter. Additionally, the sound speed varies in water,
mainly with depth, and depends on the water characteristics
and weather conditions.

The main mechanisms of signal loss in UWAC channels
are the spreading of the signal energy with distance, similar
to what occurs in radio communications, absorption and scat-
tering. Absorption is the conversion of acoustic energy into
heat and it is a frequency-dependent and chemical-dependent
phenomenon. Scattering occurs at sea surface and sea floor,
but also on water bubbles and on small water volumes with
different temperatures. Moreover, since the signal-to-noise
ratio is strongly dependent on range and frequency, higher
ranges mean lower available bandwidths for data transmission.

Besides the thermal noise generated at the receiver, typical
ambient noise impairments in UWAC systems are generated
by breaking waves, rain, marine life and ships. Among theses
ambient noise, in warm shallow water it is common the
existence of an impulsive noise generated by snapping shrimps
[8]–[11]. In this paper we propose a technique for combating
the compound noise resultant from the addition of the thermal
and the ambient snapping shrimp noise. Throughout the paper
we interchangeably refer to this technique as noise reduction



or simply denoising. The denoised signal is sometimes referred
to as the reconstructed signal.

The remaining of the paper is organized as follows: in
Section II we describe the proposed noise reduction scheme.
Section III presents the digital communication system model
adopted for assessing the performance of the denoising pro-
cess, in terms of the bit error rate (BER) versus the ratio
between the average energy per bit and the noise power
spectral density (Eb/N0). Section IV provides the numerical
results and Section V concludes the paper.

II. THE PROPOSED DENOISING SCHEME

An n-dimensional transmitted signal vector x, under fading,
is added to a vector n representing the compound (thermal
plus ambient) additive noise, resulting in the received vector
r = x+n. From this vector, the noise reduction process tries to
reconstruct the transmitted signal, resulting in the estimate x̂,
which is then used to detect the transmitted data. The denoised
signal x̂ is the solution of the unconstrained scalarized bi-
criterion convex optimization problem

minimize
n∑

i=1

ϕhub (x̂i − ri) + δϕquad(x̂), (1)

where δ > 0 parameterizes the trade-off between fitting
(governed by the first term) and smoothness (governed by
the second term). The Huber penalty function with shape
parameter M is [12, p. 299]

ϕhub(u) =

{
u2 |u| ≤ M
M (2 |u| −M) |u| > M

, (2)

and the quadratic smoothing function is [12, p. 312]

ϕquad(x̂) =
n−1∑
i=1

(x̂i+1 − x̂i)
2
. (3)

The reasoning behind the proposed denosing technique goes
as follows: it is known that when the Huber penalty func-
tion is applied to a linear regression problem, the result
is robust against data outliners, and that is the reason for
giving the name robust least-squares to such approach. From
the perspective of the compound noise present in UWAC
communications, the impulsive noise samples can be seen as
outliers within the received signal samples. The solution of
the least squares in the linear regression problem can be seen
as a linear approximation of a smoothed reconstructed signal
segment. Then, by combining a robust least-squares fitting
with a smoothing process, the reconstructed signal will not
depart too much from the smoothed one by the influence of
the impulsive noise. In other words, the quadratic function in
(1) will produce a smooth reconstructed signal that, due to the
influence of the first term, does not care too much about the
presence of the impulsive noise, depending on the value of δ:
a smaller δ acts in favor of a better fit between the corrupted
and the reconstructed signal, in the Huber measure sense; a
larger δ acts in favor of a smoother reconstructed signal. To
the best of our knowledge, no such approach has been adopted
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Fig. 1. Examples of: a) the transmitted signal vector x, b) the corrupted
received signal vector r, and c) the reconstructed signal vector x̂

so far for combating the ambient noise in underwater acoustic
communication systems.

For illustration purpose only, Figure 1 shows 2000-point
vectors from this signal denoising process. Notice that the
received vector is under a heavy noise condition, with strong
impulsiveness. Nonetheless, the denoised signal is noticeably
free from impulsive noise and from most of the thermal noise.
Yet, the reconstructed signal is free from the typical time
dispersion the would be produced if conventional filtering were
used as a means for noise reduction. An efficient filtering (in
terms of noise reduction) would inevitably be accompanied by
intersymbol interference, which would prevent the reduction
of the symbol error rate.

III. SYSTEM MODEL FOR PERFORMANCE ANALYSIS

The vector x represents a transmitted signal whose rate of
amplitude variations is much slower than those present in the
compound noise vector, so that the denoising process works as
desired. This condition can be met by modulated and filtered
UWAC signals due to the fact that, besides the smoothness
produced by filtering, the carrier in these systems is an acoustic
wave, typically with frequency on the order of a few tens
of kilohertz [1, pp. 15-47]. Moreover, the frequency content
of the snapping shrimp impulsive noise easily reaches 250
kHz [9], which means that, indeed, its rate of variation is
much larger than the rate of variation of typical modulated
and filtered transmitted signals used in UWAC systems.

Besides the compound noise, UWAC signals are also sub-
jected to fading, even in short-range communications where
the observed fading is similar, but slightly less severe than
predicted by the Rayleigh distribution [3, p. 73]. Thus, it
is mandatory to consider the effect of the fading in the
performance of an UWAC system.

Aiming at adhering to the above requirements, we have
adopted the system model shown in Figure 2. A root-raised
cosine (RRC) filtered binary phase-shift keying (BPSK) signal
is transmitted over a Rayleigh fading channel with compound



Fig. 2. System model for performance analysis

(thermal plus ambient impulsive) noise. The multiplicative
fading effect is modeled as the multiplication of the binary
±1 data by a Rayleigh random variable with unitary second
moment, constant during the symbol duration and independent
from symbol to symbol - notice that this is a simple way
of guaranteeing that, in this waveform channel model, the
fading component affecting the decision variable is Rayleigh-
distributed, allowing for checking the performance against
theoretical results and for speeding-up the system simulation.
If a waveform fading channel were adopted instead, the
fading envelope variations should be very slow to be in close
agreement with the common assumption of constant fading
during the symbol interval. This would render the simulation
time last too long for guaranteeing that the average fading
effect manifests.

The transmit RRC filter is equipped with an inverse sinc
(IS) equalization, since the input pulses are rectangular. The
compound noise waveform is generated as an SαS (symmetric
α-stable) process, which adequately models the UWAC am-
bient noise and the presence of the snapping shrimp noise
[3], [10]. The carrier signals used for modulation and down-
conversion (DC) to base-band are cosine waves with frequency
in the acoustic range. The output of the RRC receive filter
(with no IS equalization) is sampled and held (S&H) and the
results are compared with zero so that the transmitted symbols
are estimated. Finally, transmitted and estimated symbols are
compared for bit (symbol) error rate computation.

IV. NUMERICAL RESULTS

In this section we give numerical results aiming at as-
sessing the performance of the proposed convex optimization
denoising scheme. The benchmarks are the performance of
the optimum receiver for the AWGN (additive white Gaussian
noise) channel and the performance of a suboptimal receiver
equipped with a non-linear (clipping) device operating in the
impulsive noise environment. Channel fading is present in all
cases under analysis.

The system model in Figure 2 was implemented in Matlabr

and validated by comparing its performance with the theoreti-
cal performance of a BPSK modem over the Rayleigh-AWGN
channel for several values of Eb/N0. A perfect agreement has
been observed. In this case the SαS process has been modified

to a Gaussian process by setting the characteristic exponent
α = 2 [3, p. 22].

To speedup computations, we have chosen a simulation
sampling frequency of 10 kilosamples per second, meaning
that the impulsive and thermal noise bandwidths are equal to
5 kHz. Since the bandwidth of the actual snapping shrimp
impulsive noise can reach even beyond 250 kHz [9], 500
kilosamples per second would suffice for most of the practical
applications. Then, a factor of 50 is observed between this
sampling frequency and the simulation sampling frequency.
To maintain this proportion in simulations, we have used a
carrier wave with frequency of 200 Hz, which corresponds to
an acoustic carrier wave of 10 kHz. The symbol rate has been
also downsized from a typical value of 5 kbit/s to 100 bit/s, that
is, the symbol duration corresponds to 2 carrier periods and
100 simulation samples. The SαS process was generated with
α between 1.5 and 1.9, where α = 1.5 simulates a stronger
snapping shrimp noise component [3]. The scale parameter γ
of the SαS process has been adjusted according to the desired
Eb/N0 as follows:

γ =
σ√
2
=

√
N0

2
=

√
Eb

4× 10
Eb/N0

10

, (4)

where σ is the standard deviation of the Gaussian noise
component in the SαS process, Eb = P/Rb is a function
of the average received signal power P and the bit rate Rb,
and Eb/N0 is in dB. It is worth noting that this computation
of γ is exact only when α = 2, the unique case in which the
variance of the SαS process is finite. Then, one must consider
that the actual value of Eb/N0 is approximately equal to the
desired value when α ̸= 2.

The RRC filters have a roll-off 0.2 and 100k taps, where
k is the number of symbol intervals spanned by their impulse
responses. We have adopted k = 10 so that most of the
impulse response tail is taken into account. The simulation
operates in a frame-by-frame basis and the frame duration
defines the dimension of the vectors described in Section II
and in practice would be defined by the tradeoff between
this dimension and the amount of time needed to solve the
optimization problem (1) before a new frame is loaded. If the
received data does not need to be available in real time, the
restrictions on the frame duration and on the time to solve
(1) are relaxed, which is the case of some underwater sensor
network applications [7]. Here we have used a frame size
n = 1500 samples, aiming at maximizing the ratio between
the number of transmitted bits per frame and the simulation
end time: small values of n reduce the time to solve the opti-
mization problem, but diminishes number of bits in a frame,
causing the increase of the number of transmitted frames, thus
increasing the simulation end time; higher values of n increase
the number of transmitted bits per frame, but increase in a
higher proportion the time to solve the optimization problem,
which renders the simulation end time to increase.

Problem (1) has no analytical solution and was solved using
CVX, a Matlab-based system for modeling and solving convex
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Fig. 3. System performance without denoising for variable α

optimization problems [13]. The values of δ in (1) were chosen
so as to move the BER versus Eb/N0 curve as much as
possible to the left. They were chosen to be adapted with the
value of Eb/N0 or fixed, as we shall see from the simulation
results. The shaping parameter of the Huber penalty function
(2) was set to M = 0.009.

A. No Noise Reduction

Figure 3 shows the performances of the UWAC system in
the presence of the SαS noise, under different values of the
characteristic exponent α. For α = 2 we have a Gaussian-
only noise and the performance closely approximates the
theoretical result; α = 1.5 and α = 1.9 represents the strongest
and weakest snapping shrimp noise situation, respectively.
Notice that the performance can be severely degraded if no
countermeasure is applied against the impulsive nature of the
snapping shrimp noise.

B. Noise Reduction via Clipping

There are several methods for designing locally optimal and
suboptimal detectors for signals in the presence of the SαS
noise. One of these methods is implemented by introducing
a nonlinear device before a matched filter or correlator de-
tector [3, Chap. 4]. However, this method requires a priori
knowledge of the impulsive characteristics of the noise and
are generally not suitable for signals where such characteristics
are time-varying. Here we adopt a device with the following
suboptimal transfer function:

y =

{
x if |x| ≤ c
sign(x)c if |x| > c

, (5)

where x is the input of the clipping device, y is the output,
and c is the clipping value. This function keeps low amplitude
signals with no distortion, while clipping large impulsive noise
and, thus, improving detector performance. However, when the
signal is also strong, it gets clipped as well and the perfor-
mance of the detector drops. To avoid this, the clipping value
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Fig. 4. Performance of the adaptive clipping with the empirical nonlinear-
device denoising (END) for α = 1.5

c should be adapted according to the standard deviation σ of
the Gaussian component of the SαS process and on the actual
amplitude of the received signal, which depends on the fading
factor β that accounts for the RRC-filtered Rayleigh random
variable and on the amplitude of the modulated and filtered
signal, which in turn depends on the roll-off of the RRC filter
and on the data sequence. Disregarding the data sequence, the
clipping value should be c = k1σ + k2β

√
2P , where k1 and

k2 are chosen so as to guarantee that the desired signal is not
clipped and that the Gaussian noise around this signal in not
severely clipped. However, in the high signal-to-noise ratio
regime the data-dependent signal amplitude variations should
be tracked more precisely to produce noticeable improvement.
Then, in this regime the above suboptimal value of c will not
be capable of correctly representing the ideal clipping value,
reducing the performance of the technique.

Clearly, the above suboptimal adaptation can not be easily
implemented in practice, since several parameters should be
estimated or known a priori. Then, we have considered an
alternative adaptation of c according to the time-series average
power ρ of the samples received in each frame, after down-
conversion, according to the simple empirical rule c = F

√
ρ,

being F a calibration factor. We call it the empirical nonlinear-
device denoising (END) technique. Figure 4 gives numerical
results showing the performances of this clipping rule for some
values of F and α = 1.5. One can see that if F is adjusted
to produce a good performance in the low Eb/N0 region, the
performance at higher values of Eb/N0 is penalized. If F
is adjusted to produce a satisfactory performance in the high
Eb/N0 regime, the performance at lower values of Eb/N0 is
penalized.

C. Noise Reduction via Convex Optimization

In this subsection we address the performance of the
proposed denoising technique, which we name convex opti-
mization denoising (COD) for notational simplicity. Figure
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Fig. 5. Performance of the proposed (COD) and empirical (END) techniques
for α = 1.5, adaptive δ = 0.6, 0.6, 0.8, 1.2, 1.4, 1.5 and fixed δ = 1

5 shows the results considering a strong impulsive noise
(α = 1.5) situation. The performance of the COD consider
that the regularization factor is fixed at δ = 1 and adapted
as δ = 0.6, 0.6, 0.8, 1.2, 1.4, 1.5, respectively for the values
of Eb/N0 = 0, 7, 14, 21, 28, 35 dB (this adaptation was made
based on the minimum mean square error between the trans-
mitted and the reconstructed signal). The performance of the
receiver equipped with the END for F = 1.5, i.e. considering
the intermediate curve given in Figure 4 is also reproduced
here. We notice that the COD outperforms the END for all
values of Eb/N0. A gain larger than 10 dB can be achieved
for a BER of 10−3 with respect to the performance with the
END. Moreover, we observe that the performance of the COD
does not vary too much from the situation of fixed to adaptive
regularization factor, which means that the proposed denoising
scheme is robust against variations in the signal-to-noise ratio.
Then, the value of δ can be the same for any value of Eb/N0,
simplifying receiver calibration.

V. CONCLUSIONS

We have proposed an ambient noise reduction technique for
underwater acoustic communication systems in warm shallow
water, where the snapping shrimp impulsive noise is common
and severely degrades the system performance. We have seen
that the proposed technique can significantly reduce the BER
in the presence of strong impulsive noise, with little or no
adaptation to the signal-to-noise ratio. We have also seen that
the technique does not demand that the impulsive noise is
detected to be subsequently processed, i.e. it is transparent to
the presence or absence of impulsive-like noise in the received
signal. Nevertheless, it has the limitation of the time required
to solve the corresponding optimization problem, a drawback
that might not exist in several underwater sensor networks
applications. In these applications, the received data can be
processed in a long-term fashion by a receiving node with

high computation capability. Moreover, real-time applications
[7] can be envisaged in the near future due to the proliferation
of the real-time convex optimization concept [14].

While real-time convex optimization is not widespread to
the point of being applicable to the problem at hand, an
attempt to speed-up the solution of the convex optimization
problem would be by trying accelerated first-order methods
[15]. This is because the interior-point methods adopted in
CVX are computationally expensive for the the problem (1),
mainly due to the Hubber function. Moreover, it would be of
value to compare the performance and the complexity of the
solution proposed here with other solutions to the shrimp noise
reduction problem, for example [16] and [17] .
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