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Abstract—Cooperative eigenvalue-based spectrum sensing
techniques under the multipath (short-term) fading assumption
have been extensively analyzed in the literature. However, when
evaluating the performance of wireless communication systems,
it is of paramount importance to consider the combined effect
of the multipath fading and shadowing (long-term fading) on
the received signal. In this context, this paper aims at investi-
gating the performance of four eigenvalue-based techniques for
centralized data-fusion cooperative spectrum sensing in cognitive
radio networks, taking into account both short-term and long-
term fading. The channel model assumes that the shadowing
is a random variable lognormally distributed about the area-
mean signal strength and that the multipath fading is Rayleigh
distributed. The detection techniques considered are the gen-
eralized likelihood ratio test (GLRT), the maximum-minimum
eigenvalue detection (MMED), the maximum eigenvalue detection
(MED) and the energy detection (ED). The results show that i)
under shadowing, the decisions of the spectrum sensing become
less accurate, ii) under severe shadowing, the performance can
significantly depart from the one in which only the multipath
fading is present, and iii) in terms of ranking, the MED
outperforms all the remaining techniques, followed by the ED,
the GLRT and the MMED.

I. INTRODUCTION

Currently, there is a growing demand for effective use
of spectrum and spectral-efficient management strategies in
the context of the fast developing wireless communications
systems. The spectrum resources have become scarce, and
at the same time there is a natural increasing demand for
better quality of service, as well as higher transmission rates.
Nevertheless, in fact there is an artificial scarcity of spectrum,
since there are bands that are not actually used during all
time in a given region [1]. The cognitive radio (CR) concept
proposed in the Mitola’s seminal work [2] can be applied to
this context, aiming at using the electromagnetic spectrum
more efficiently. A CR system uses advanced techniques
that optimize the occupation of the bands, and spectrum
sensing techniques to find the so-called spectral opportunities
or spectral holes within bands of interest in a given area and
in a given time. Hence, a CR system makes it possible to
use the available spectrum in temporal, spatial and frequency
dimensions, without causing interference to licensed systems.

The importance of studies involving spectrum sensing tech-
niques is undeniable and, now, even more pronounced since
that recently, actually this year, the IEEE announced the
creation of the IEEE 802.22 Spectrum Occupancy Sensing
(SOS) Study Group [3]. As stated by the chair of the working
group, “standardization could lead to the more efficient use
of spectrum, especially in places where the information about
the primary users is difficult to find”. Yet, “individual and
collaborative spectrum sensing is one of the tools to com-
plement the information contained in databases to create an
accurate spectrum occupancy survey, which would combine
information from multiple sensors along with local terrain
information to predict the spectrum occupancy patterns” [3].
And now, the IEEE 802.22 Revision Project, extending the
IEEE Std. 802.22-2011 to other Spectrum Sharing Bands, was
approved. The standard specifies operation in the bands that
allow spectrum sharing where the communications devices
may opportunistically operate in the spectrum of the primary
service, such as 1300 MHz to 1750 MHz, 2700 MHz to 3700
MHz and the VHF/UHF TV broadcast bands between 54 MHz
to 862 MHz [4].

The choice of the spectrum sensing technique will also
influence the detection performance, depending on the cog-
nitive network architecture and the conditions of the channel.
Many detection techniques for spectrum sensing have been
proposed so far, e.g. the matched filter, the cyclostationary
and the energy detection [5], [6]. Among the latest ones
are those based on the eigenvalues of the received signal
covariance matrix; see [7]–[9] and references therein. These
techniques have received a lot of attention mainly because they
do not require prior information on the transmitted signal,
and, in contrast to the energy detection, some eigenvalue-
based schemes do not need to know the noise variance either.
As far as the detection technique is concerned, we consider
the eigenvalue-based generalized likelihood ratio test (GLRT);
the maximum-minimum eigenvalue detection (MMED), also
known as the eigenvalue ratio detection (ERD); the maximum
eigenvalue detection (MED), also known as Roy’s largest root
test (RLRT); and the energy detection (ED), applied to a



centralized data-fusion cooperative spectrum sensing scheme.
ED is not an exclusively eigenvalue-based detection technique,
but it can be easily implemented using eigenvalue informa-
tion. It has been included in the present work for the sake
of completeness, also giving support to a broader pool of
comparisons.

The scenarios of spectral occupancy differ from one another
depending on several factors, such as channel conditions, lo-
cation and prevailing political control of spectrum usage. This
implies greater system complexity, since the cognitive cycle
of the CR concept includes a step for learning the channel
conditions [2], [10]. Thus, the behavior of the channel, or
more precisely the channel model, influences the operation and
performance of a CR. Then, evaluating the performance of a
CR system under different channel models is of paramount im-
portance. Moreover, no matter the sensing technique adopted,
the detection performance depends on the reception conditions
of the CRs, and therefore on the propagation environment.
For example, in [11] comparisons were made among different
models for the energy detector under conditions of additive
white Gaussian noise (AWGN) and Rayleigh fading channels.
It has been shown that the problem of energy detection
lies in the uncertainty of estimating the noise power, which
degrades the detection performance [12]–[14]. In [15] the
authors analyze the probability of missed detection of the
energy detector under Nakagami-m fading channels. Recently,
in [16] the authors presented a new implementation-oriented
model in which typical signal processing tasks of a direct-
conversion CR receiver were taken into account considering
the multipath Rayleigh fading channel.

It is well-known that in wireless systems, it is frequently
observed that the local average power varies randomly from
place to place in a given region. This phenomenon has been
assigned to the existence of shadowed areas due to the terrain
contour, large size vehicles [17], buildings, foliage [18] and
other obstacles. A large number of measurements campaigns
have suggested that the probability density function (PDF) of
the average power can be modeled in terms of a lognormal
PDF [18], [19]. However, it is important to consider the simul-
taneous effect of multipath fading (short-term) and shadowing
(long-term) on the received signal. This physical process
is known in the specialized literature as shadowed fading,
shadow-fading or composite fading. This paper deals with this
co-existence of fading effects influencing the performance of
different eigenvalue-based spectrum sensing techniques.

Due to the ameliorated detector performance as a result of
diversity gain, cooperative spectrum sensing is considered a
possible solution for problems experienced by CR networks in
a non-cooperative situation, like receiver uncertainty, multipath
fading, hidden terminals and shadowing [10]. The later one is
the aim of this paper, i.e, we will present the analysis of the
cooperative spectrum sensing performance under a shadowed
fading condition.

The remainder of the paper is structured as follows. Section
II presents the system model for the eigenvalue-based sensing
technique and for the shadowed fading channel. Simulation

results and discussions concerning the influence of system
parameters on the performance of the spectrum sensing are
reported in Section III. Finally, Section IV concludes the paper.

II. SYSTEM MODEL

A. Centralized Cooperative Eigenvalue Spectrum Sensing

Consider the well-known baseband memoryless linear
discrete-time MIMO fading channel model. Assume that there
are m single-antenna CRs, each one collecting n samples of
the received signal from p primary transmitters during the
sensing period, and that these samples are arranged in a matrix
Y ∈ Cm×n. Similarly, consider that the signal samples from
the p primary transmitters are arranged in a matrix X ∈ Cp×n,
and that H ∈ Cm×p is the channel matrix with elements {hiȷ},
i = 1, 2, . . . ,m and ȷ = 1, 2, . . . , p, representing the channel
gain between the ȷ-th primary transmitter and the i-th sensor
(CR). The elements of the channel matrix H simulate a flat
shadowed fading channel between each primary transmitter
and CR, assumed to be constant during a sensing period and
independent from one period to another. This channel will
be described with more details in Subsection II-C. Finally, if
V ∈ Cm×n represents the matrix containing thermal noise
samples that corrupt the received signal, then the matrix of
collected samples is given by

Y = HX+V. (1)

In eigenvalue-based spectrum sensing, spectral holes are de-
tected by using test statistics based on the eigenvalues of
the received signal sample covariance matrix. In a centralized
cooperative scheme with data-fusion, matrix Y is formed at
the fusion center (FC), and the sample covariance matrix

R =
1

n
YY† (2)

is estimated, where (·)† stands for complex conjugate and
transpose. The eigenvalues {λ1 ≥ λ2 ≥ · · · ≥ λm} of R
are then computed, and assuming a single primary transmitter
(p = 1), the decision variables for the GLRT, the MMED, the
MED, and the ED are respectively calculated according to [7]:

TGLRT =
λ1

1
m tr(R)

=
λ1

1
m

m∑
i=1

λi

(3)

TMMED =
λ1

λm
(4)

TMED =
λ1

σ2
(5)

TED =
∥Y∥2F
mnσ2

=
1

mσ2

m∑
i=1

λi (6)

where σ2 is the thermal noise power, which is assumed to be
known and the same in each sensor input, and tr(·) and ∥ · ∥F
are the trace and the Frobenius norm of the underlying matrix,
respectively. The decision upon the occupation of the sensed
channel is attained by comparing the test statistic of choice
with a decision threshold.



B. The Spectrum Sensing as a Binary Hypothesis Test

Spectrum sensing can be formulated as a binary hypothesis
test problem that can be stated as

H0 : Primary signal is absent
H1 : Primary signal is present,

(7)

where H0 is the null hypothesis, meaning that there is no
licensed user signal active in a specific sensed band, and H1

is the alternative hypothesis, which indicates that there is at
least one active primary user signal.

Two important parameters associated with the assessment
of the spectrum sensing performance are the probability of
detection, Pd, and the probability of false alarm, Pfa, which
are defined as follows:

Pd = Pr {decision = H1|H1} = Pr {T > γ|H1}
Pfa = Pr {decision = H1|H0} = Pr {T > γ|H0} ,

(8)

where Pr{·} is the probability of a given event, T is the test
statistic and γ is the decision threshold. The value of γ is
chosen depending on the requirements for the spectrum sens-
ing performance, which is typically evaluated from receiver
operating characteristic (ROC) curves that show Pd versus Pfa
as they vary with the variation of the decision threshold γ. A
higher threshold keeps Pfa at low levels, but renders detection
difficult. On the other hand, a low threshold favors detection,
but increases Pfa. This tradeoff is clearly seen from a ROC
curve.

C. Shadowed Fading Channel

Consider the channel matrix in (1) given by

H = Hf + Hs. (9)

The channel matrix Hf represents the multipath fading, with
the elements |hf

iȷ| (magnitudes) and arg hf
iȷ (phases) being

Rayleigh and uniformly distributed in (0, 2π], respectively. The
channel matrix Hs represents the shadowing, with elements
|hs

iȷ| and arg hs
iȷ being lognormally and uniformly distributed

in (0, 2π], respectively. Remember that a lognormal variate
Z relates to a Gaussian variate Y as Z = exp(Y ). Then,
taking into account fading and shadowing simultaneously, it
is possible to demonstrate that the elements of H are random
variables with the Rayleigh-lognormal PDF given by [18], [19]

f(h) =
h

b0
√
2πd0

×∫ ∞

0

I0(hz/b0)
z

exp

(
− (ln z − µ)2

2d0
− (h2 + z2)

2b0

)
dz

(10)

where h , |hiȷ| is a random variable representing the
shadowed fading channel between each primary transmitter
and CR, b0 represents the average scattered power due to
multipath,

√
d0 and µ are the standard deviation and mean,

respectively, of the normal (Gaussian) random process that
generates the lognormal distribution or, equivalently, µ is the
mean of ln z and and

√
d0 is standard deviation of ln z. I0(·) is

the modified Bessel function of first kind and order 0. Keeping

in mind that the Rayleigh and lognormal random processes are
additive, it is possible to show that

E(h2) = 2b0 + exp (2µ+ 2d0) , (11)

where E(·) denotes the expectation operator. Concluding,
this well-accepted Loo’s model assumes that the line-of-sight
(LOS) component is subjected to shadowing, resulting in an
envelope that follows a lognormal statistic.

III. SIMULATIONS RESULTS

This section provides Monte Carlo simulation results and
discussions concerning the influence of the shadowed fading
on the performance of the spectrum sensing. Before, we
show some results used to validate the method for generating
the random variables taken into account in the simulations.
Figure 1 shows PDFs for the shadowed fading for different
values of the fading and shadowing parameters. In this figure,
solid lines correspond to the theoretical results, from (10),
whereas symbols are associated with the computer-generated
random variates, obtained from 106 samples. The code was
implemented in MATLAB according to the model described in
Subsection II-C. One can notice the close agreement between
the estimated and the theoretical densities, and that, when the
shadowing effect is decreased, the Rayleigh-lognormal PDF
exactly overlaps the Rayleigh PDF (dashed line).

With the purpose of simulating the effect of the shadowing
for different scenarios, the following parameters have been
created: pS denotes the probability of occurrence of shadowing
(lognormal) during a given sensing period, and pCR represents
the fraction of CRs under shadowing. As a consequence, the
probability of occurrence of the shadowing is a Bernoulli ran-
dom variable with probability of success pS, and the number
of CRs independently affected by shadowing is a binomial
random variable with parameters m and pCR.
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Fig. 1. Empirical and theoretical densities for some values of the shadowing
and the fading parameters
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Fig. 2. ROC curves for the MED technique under a shadowed fading channel

We have considered a single primary transmitter (p = 1),
m = 6 single sensor (single antenna) cooperating CRs, each
one collecting n = 50 samples of the received signal, and
a signal-to-noise ratio SNR = −10 dB. The primary trans-
mitted signal is assumed to be Gaussian-distributed, which
accurately models the envelope fluctuations of most of the
digital-modulated signals and, for instance, the envelope of
multicarrier signals, such as orthogonal frequency division
multiplexing (OFDM) with a large number of subcarries. The
desired received SNR, in dB, is guaranteed by making: (i) the
transmitted signal power (variance) of the complex Gaussian
samples in X equal to 1, and (ii) the variance of the noise
samples equal to E(h2) × 10−SNR/10. The channel was con-
sidered static during a sensing period, changing independently
and identically distributed from one period to another. The
parameters b0, d0 and µ are considered the same for all CRs
under shadowing. Studies show that the standard deviation
of the shadowing fading,

√
d0, varies from 4 dB to 16 dB

[20]–[22]. We used the linear values
√
0.5,

√
1 and

√
2,

which corresponds to the values 6.14, 8.68 and 12.28, in dB1.
Then we characterize the parameters, respectively, as weak,
moderate and heavy shadowing.

The ROC curves presented hereafter were obtained via
Monte Carlo simulations with 10000 runs. The code was
implemented in MATLAB according to the models and test
statistics described throughout the paper. The primary radio
signal activity was modeled as a Bernoulli random variable
with 50% of the time in the ON state (for Pd computations)
and 50% in the OFF state (for Pfa computations).

Figures 2-5 show ROC curves for the MED, the ED, the
MMED and the GLRT, respectively, under the Rayleigh-
lognormal shadowed fading channel. We consider fixed values
for b0 and variable µ and d0. It is firstly assumed a worst-
case scenario in terms of shadowing, i.e. the probability of
occurrence of the shadowing is pS = 1 and all the m = 6

1Remember that the standard deviation in dB is given by (20 log e)d0.
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Fig. 3. ROC curves for the ED technique under a shadowed fading channel
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Fig. 4. ROC curves for the MMED technique under a shadowed fading
channel

CRs are under shadowing conditions, that is, pCR = 1. From
these figures one can notice that that the MED technique is
better than the ED, which is also the case when only the
multipath fading channel is considered. Notice also that the
GLRT outperforms the MMED in the Rayleigh-lognormal
fading channel, following the same behavior of the multipath
Rayleigh fading channel. Observe that, as d0 increases, the
sensing performance decreases. This is an expected result,
since a larger d0 implies a more severe shadowing. The
same behavior is produced with an increased value of µ.
Additionally, notice the degrading effect of the shadowing in
the detection performance of the sensing techniques, even for
not too large values of d0.

We now consider a more realistic situation in which not
all the CRs and under shadowing and the probability of
occurrence of the shadowing is smaller than 1. Figures 6 and
7 present a set of ROC curves for known (MED and ED)
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Fig. 5. ROC curves for the GLRT technique under a shadowed fading channel
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Fig. 6. ROC curves for the ED and for the MMED techniques considering
fixed the fraction of CRs under shadowing of pCR = 0.5

and unknown (MMED and GLRT) noise variance techniques,
for µ = −1.5, b0 = 0.21, d0 = 2 and variable pS. In this
scenario we assume that the fraction of CRs under shadowing
is pCR = 0.5. From these figures it is evident the improvement
in the detection performance of all techniques, when compared
with the worst-case scenario previously taken into account.

In terms of ranking, the MED outperforms all the remaining
techniques, followed by the ED, the GLRT and the MMED.
When the shadowing parameter µ increases, the performance
degradation in terms of the detection probability is almost
the same for all eigenvalue-based spectrum sensing techniques
considered in this paper. The same conclusion applies to the
performance degradation with an increase of the probability
of shadowing.
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Fig. 7. ROC curves for the MED and for the GLRT techniques considering
fixed the fraction of CRs under shadowing of pCR = 0.5

IV. CONCLUSIONS AND SUGGESTIONS FOR NEW
RESEARCH

We have presented a performance analysis of four
eigenvalue-based spectrum sensing techniques over the
Rayleigh-lognormal shadowed fading channel, allowing for
quantifying the adverse impact of concurrent fading and shad-
owing. The results show that under shadowing, the decisions
of the spectrum sensing become less accurate, as expected.
Indeed, under severe shadowing, the performance can signifi-
cantly depart from the one in which only the multipath fading
is present.

As a natural extension of this work, scenarios with different
composite fading models such as Rice-lognormal, Nakagami-
lognormal and the alternative Gamma-shadowed fading mod-
els [23], [24] could be considered for applying the eigenvalue-
based spectrum sensing. Additionally, it is well-known that the
most of the sensing schemes perform satisfactorily for a large
number of samples. This is accomplished either by increasing
the sensing duration or by oversampling the received signal.
The former will increase the frequency of missed opportu-
nities while the latter will cause samples to become usually
(possibly highly) correlated. As a consequence, the correla-
tions introduced will degrade the detection performance. This
motivates the investigation about other detection schemes that
perform well for smaller sample sizes, such as the maximum-
eigenvalue-geometric mean (ME-GM) [25]. The continuity of
the work also suggests a deeper analysis of the impact of the
spatial correlated shadowing [26], [27] and of strategies de-
signed to mitigate the effects of correlated fading, shadowing
or both on the performance of cooperative spectrum sensing.
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