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Abstract—Maximizing the secondary cognitive radio network
throughput under the restriction of avoiding interference to
the primary network is a main concern in recent research. In
the classic approach, a specific interval is devised to the task
of spectrum sensing, which penalizes the secondary network
throughput. Aiming at a higher throughput than in this classic
approach, the continuous sensing mode can be adopted. In this
mode, secondary receiving nodes sense the spectrum while other
secondary users simultaneously transmit in the same frequency
band. This paper compares, under the continuous sensing ap-
proach, the performances of centralized cooperative spectrum
sensing techniques. The maximum eigenvalue detection and the
energy detection techniques are considered. In what concerns
the fusion rules, we consider the sample fusion, the decision
fusion and a recently proposed eigenvalue fusion technique. It is
shown that, in spite of the intrinsic interference present in the
continuous mode, this approach is flexible in terms of the sensing
time, eventually allowing for better sensing performance.

I. INTRODUCTION

The use of the electromagnetic spectrum for wireless com-
munication is growing fast nowadays: new services emerge
over time, while traditional ones remain active and occu-
pying most of the attractive bands. As a result, there is a
serious spectrum scarcity to be managed by the scientific
community and regulatory agencies. On the other hand, even
though much of the useful radio spectrum is already allocated
to conventional systems, studies have demonstrated that the
assigned spectrum is significantly underutilized around the
world [1]. Aiming at optimizing the space-time allocation of
radio spectrum, the cognitive radio (CR) paradigm has been
proposed as a solution [2]. The idea is simple: if the licensed
or primary user (PU) is not transmitting for any reason, the
corresponding channel can be made available for unlicensed
or secondary users (SU), as long as this channel is released
if the PU attempts to use it again. Therefore, the spectrum
sensing task is the main functionality enabling the CR to use
the best spectrum opportunities without interfering with the
operation of licensed users.

The spectrum sensing can be accomplished by each CR
without any help from other CR decisions or measurements,
or can be cooperative (or collaborative). Non cooperative

spectrum sensing suffers from channel fading and shadowing,
also being very prone to the hidden terminal problem [3].
Aiming at combating such effects and achieving higher detec-
tion capabilities, the cooperative spectrum sensing has been
preferably adopted. Cooperative spectrum sensing techniques
can be centralized, distributed or relay-assisted [3]. In central-
ized cooperative sensing, data collected by each cooperating
CR (e.g., samples of the received signal) is sent to a fusion
center (FC) through a reporting channel. This process is called
data fusion or sample fusion. After the data is processed,
the FC decides upon the occupation state of the channel.
Centralized cooperative spectrum sensing can also be made
from the decisions about the channel occupancy state made
by each cooperating CR. This operation is called decision
fusion, where the final decision about the channel state is
accomplished through binary operations on the CR decisions.
In both centralized schemes, the final decision is informed
back to the CRs through a control channel, for subsequent use
by the CR network.

In order to achieve a better sensing performance, a lower
probability of false alarm (Pfa) is desired to maximize the
utilization of the available spectrum, whereas a higher prob-
ability of detection (Pd) is required to avoid interference to
the PUs. Consequently, there is an intrinsic tradeoff between
avoiding interference to the primary network and improving
the throughput in the secondary network. The period during
which the spectrum is sensed must be long enough so that
the required Pd is achieved and harmful interference to the
PUs is avoided. However, a channel detection time (CDT)
is usually stated to limit the time during which a PU can
withstand interference before the CR system detects it. During
the CDT, the CRs are required to perform the sensing and
transmission tasks. Thus, the longer the sensing time, the
shorter the transmission time, reducing the throughput and
increasing the delay for traffic in the secondary network. Such
periodic transmission interruption can lead to an inefficient
usage of the available spectrum, and, consequently, it can
reduce the CR network capacity.

Solid studies have been carried out to minimize the sensing
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time and maximize the CR throughput for a given interference
constraint. However, these studies are based on the assumption
that the CRs are required to stop transmitting to perform
the spectrum sensing. The dynamic frequency hopping (DFH)
method [4] changed the paradigm that the CR users are not
able to perform sensing and transmission at the same time.
In DFH, during the CR transmissions in a given channel,
sensing is performed in parallel in other channels. After the
CDT period the CR switches the operation to the best channel
just sensed, and the band previously used is vacated. Hence,
interruption is no longer required for sensing. Even though
the DFH method has demonstrated an important advantage
of this parallel sensing approach over the traditional one, the
problem that the channel being sensed cannot be used for data
transmission by the CR still remains.

Generally speaking, channels being sensed cannot be used
for data transmission because the spectrum sensing has been
treated as a conventional signal detection problem. Thus,
signal detection techniques have been rarely used with adap-
tations regarding the CR objectives. As a counterexample, the
authors in [5] have proposed a spectrum monitoring technique
at the receiver based on error statistics to be performed prior
to the spectrum sensing. The increase of the error rate may be
caused by the presence of the PU signal and then a spectrum
sensing is trigged. This considerably reduces the sensing rate,
increasing the throughput in the SU network. The spectrum
monitoring technique achieves a good performance if the
secondary-to-primary power ratio (SPPR) is not too high. In
high SPPR scenarios, the presence of the PU signal may be
hardly detected or mistaken with fading of the SU signal.

The work [6] came up with a continuous sensing method
based on energy detection, where sensing is performed at a
receiving node of the SU network. Thus, the transmitting node
of the SU network can keep transmitting while the primary
user is idle, achieving a higher throughput in the SU system
and continuity in sending data. However, since the SU is
allowed to transmit while the spectrum is sensed, its signal
becomes an intrinsic interferer in the task of sensing the PU.
Capitalizing the results in [6], the authors in [7] applied the
continuous sensing method in a cooperative spectrum sensing
scheme using sample fusion with eigenvalue-based techniques.

Here we investigate the performance of two centralized
cooperative sensing schemes using the MIMO (multiple input,
multiple output) channel model adapted to the continuous
sensing approach. We assess the performance of an altered
version of the maximum eigenvalue detection, which we call
AMED, and the performance of an altered version of the well-
known energy detection, which we call AED. It is in order
to remember that the ED is not a detection technique based
exclusively on eigenvalues, but it can be implemented using
eigenvalue information, which is the case considered here.

II. GENERAL EIGENVALUE SPECTRUM SENSING MODEL

We consider a baseband linear discrete-time MIMO fading
channel model, for which there is an antenna array with a
sensors in a CR, or a single-sensor (single-antenna) CRs,

each one collecting b samples of the received signal from p
primary transmitters and q secondary transmitters during the
sensing period, with p + q < a. Consider that these samples
are arranged in a matrix Y ∈ Ca×b. Similarly, consider that
the transmitted signal samples from the primary and secondary
transmitters are arranged in a matrix X ∈ Cp×b and in a matrix
S ∈ Cq×b, respectively. The PU and SU signals are i.i.d.
(independent and identically distributed) random processes,
and independent of each other. Let Hx ∈ Ca×p be the
channel matrix with elements {hx

ij}, i = 1, 2, . . . , a and
j = 1, 2, . . . , p, representing the channel gain between the
j-th primary transmitter and the i-th antenna sensor or i-th
single-antenna CR, and let Hs ∈ Ca×q be the channel matrix
with elements {hs

ij}, i = 1, 2, . . . , a and j = 1, 2, . . . , q,
representing the channel gain between the j-th secondary
transmitter and the i-th antenna sensor or i-th single-antenna
CR. Finally, let V ∈ Ca×b be the matrix containing thermal
noise samples that corrupt the received signal. The matrix of
collected samples is then

Y = HxX+HsS+V. (1)

In eigenvalue-based spectrum sensing technique, idle chan-
nels are detected using test statistics based on the eigenvalues
{λ1 ≥ λ2 ≥ · · · ≥ λa} of the sample covariance matrix of the
received signal, which is given by

R =
1

b
YY†, (2)

where † means complex conjugate and transpose. The decision
is made by comparing the desired test statistic against a thresh-
old which is normally set according to a target constant false
alarm rate. The decision process is then a binary hypothesis
test for which H0 means that PU signals are absent, and H1

means that PU signals are present.

A. Collaborative Eigenvalue Spectrum Sensing with Sample
Fusion

We assume that each of the m cooperating CRs collect n
samples of the received signal coming from a single primary
transmitter and a single secondary transmitter (p = q = 1).
In the general eigenvalue spectrum sensing model previously
described we have a = m and b = n. The matrix Y ∈ Cm×n

is made available to the FC, from which the sample covariance
matrix R ∈ Rm×m is computed, and then the eigenvalues
{λ1 ≥ λ2 ≥ · · · ≥ λm}. The test statistics for the AMED and
AED with sample fusion (sf) are computed according to:

T sf
AMED =

λ1 + λ2

2PH0

, (3)

T sf
AED =

∥Y∥2F
mnPH0

=

m∑
i=1

λi

mPH0

, (4)

where ∥ · ∥F is the Frobenius norm of the underlying matrix,
and PH0 is the SU (transmitting node) signal power plus the
noise power. In AMED we are interested in the ratio between
the average of the two largest eigenvalues and PH0 , whereas



in the AED we are interested in the ratio between the average
of all eigenvalues and PH0 . The thermal noise power σ2 is
assumed to be known and the same in each CR input, with
uncorrelated samples, and the SU signal power is assumed to
be correctly estimated using, for example, a pilot channel.

Conventionally, all the eigenvalue-based methods rely on the
fact that, in the limiting (asymptotic) regime of m, n → ∞,
m/n constant, the population covariance matrix in the pres-
ence of white noise only is a diagonal matrix with its nonzero
elements equal to the thermal noise power σ2, which means
that the set of eigenvalues will have just the value σ2 with
multiplicity m. When the PU signals are present, the set of
eigenvalues will have p larger values, and these methods try to
assign the H1 channel state using this contrast between the p
larger eigenvalues and the remaining m−p smaller ones. When
the same asymptotic analysis is applied to the continuous
sensing approach, the eigenvalues will not have multiplicity m
even prior to the arrival of the PU signals, since some SUs are
transmitting at the same time. Consequently, the assignment
of the test statistic to one of the hypotheses will become more
difficult, worsening the decision performance for all methods.
In principle, this fact may discourage the continuous sensing
approach since it is worse when compared in equal conditions
to the classic approach. However, this approach is flexible
in terms of the sensing time, eventually allowing for better
sensing performance.

B. Collaborative Eigenvalue Spectrum Sensing with Eigen-
value Fusion

In collaborative sensing with eigenvalue fusion, each of
the m cooperating CRs is responsible for computing its
own sample covariance matrix, estimating its eigenvalues and
transmitting these eigenvalues to the FC. Again, n is the
number of samples of the signal received by each CR, but
now the order of the covariance matrices is not attached to m.
Then, let J ×J be the desired order of the sample covariance
matrix to be computed by the i-th CR, i = 1, ...,m. Assuming
that n/J is an integer number, a matrix Yi with samples from
the received signal can be formed by arranging the n samples
taken by the i-th CR in J rows and n/J columns, preferably
with n/J ≫ J , which implies n ≫ J for more accuracy
of the sample covariance matrix estimation. In the general
eigenvalue spectrum sensing model previously described we
have a = J and b = n/J . Notice that if each CR is equipped
with an antenna array with J elements, each element collects
n/J samples. The matrices Yi ∈ CJ×n/J are given by

Yi =

 Yi(1) . . . Yi(n/J )
...

. . .
...

Yi(n+ 1− n/J ) · · · Yi(n)

 , (5)

where Yi(j) is the j-th sample collected by the i-th CR, and
the sample covariance matrices are given by

Ri =
J

n
YiYi

†. (6)

The mJ eigenvalues of these covariance matrices are com-
puted and sent to the FC. The next part of the sensing process
is to combine the eigenvalues received at the FC for the
computation of the test statistic. Through some modifications
in (3) and (4), the test statistics in the eigenvalue fusion (ev)
scheme are given by

T ev
AMED =

1

2mPH0

m∑
i=1

(λ1,i + λ2,i) , (7)

T ev
AED =

1

JmPH0

J∑
j=1

m∑
i=1

λj,i, (8)

where {λ1,i ≥ λ2,i ≥ · · ·λJ,i} are the J eigenvalues
associated with the i-th CR.

For the AMED, the proposed eigenvalue combining rule
is the average of the two largest eigenvalues from each CR
divided by PH0 . For the AED, the test statistic is computed
from the average of all eigenvalues divided by PH0 . Recall
that PH0 is the SU transmitting node signal plus noise power.

Notice that the difference between the sample fusion and
the eigenvalue fusion schemes goes beyond a simple shift of
the eigenvalue computations from the FC to the CRs. In the
sample fusion, samples collected by the CRs are sent to the FC,
where one sample covariance matrix from all CR samples is
formed. The eigenvalues of this matrix are computed and then
the desired test statistic is formed. In the eigenvalue fusion,
each CR forms one covariance matrix based solely on his
samples and computes its eigenvalues. The eigenvalues from
different CRs are then sent to the FC, where they are combined
to form the test statistic. Notice that this eigenvalue fusion
approach reduces the volume of data sent in the reporting
channel (from the CRs to the FC) when compared with the
sample fusion scheme.

C. Collaborative Eigenvalue-Based Spectrum Sensing with
Decision Fusion

In Section I we have mentioned that the centralized coop-
erative spectrum sensing can be made on a decision fusion
basis, in which CR decisions are combined at the FC so that
the final decision is made. Commonly used decision fusion
combining rules are AND, OR and majority-voting, which are
collectively classified under the general term z-out-of -M . The
FC infers the PU signal being transmitted, i.e. H1, when there
exists at least z out of M CRs inferring H1. Otherwise, the
FC decides the PU signal not being transmitted, i.e, H0. If
z = 1, the 1-out-of -M becomes the OR rule, and if z = M ,
the M -out-of -M becomes the AND rule. If z ≥ M/2, the
z-out-of -M becomes the majority-voting rule [3].

CR decisions can be made by applying any detection
technique. For those considered here, the test statistics for the
i-th CR in the decision fusion (df) scheme can be determined
from minor modifications in (7) and (8), leading to:

T df
AMED,i =

λ1,i + λ2,i

2PH0

, (9)



T df
AED,i =

1

JPH0

J∑
j=1

λj,i. (10)

It is worth mentioning that the AMED and AED test
statistics, as defined in this paper, were determined empirically.
This means that it is not guaranteed that they are optimal in
the sense of a likelihood ratio test.

III. SIMULATION SETUP

The simulation setup under the discrete-time MIMO model
considers that Y = HxX +HsS+V is available to the FC
in the sample fusion scheme, and that Yi is available to the i-
CR in the eigenvalue and decision fusion schemes. Notice that,
from a simulation standpoint, Yi can be formed by reshaping
the i-th row of the matrix Y from (1).

Matrices X, S, Hx, Hs, and V are generated as follows: To
simulate Gaussian distributed noise-like transmitted signals,
X and S are formed by i.i.d. zero mean complex Gaussian
samples. The choice for the Gaussian distribution is adopted
because it accurately models several modulated signals, such
as orthogonal frequency-division multiplexing (OFDM) with a
large number of subcarriers, which is the preferred modulation
technique in most modern wireless technologies, including
several digital television standards. The elements in the chan-
nel matrices Hx and Hs are zero mean i.i.d. complex Gaussian
variables that simulate a flat Rayleigh fading channel between
each transmitter and sensor, assumed to be constant during a
sensing period and independent from one period to another.
Therefore, estimated Pd and Pfa are average values in the
flat Rayleigh fading channel. The entries in V are unitary
variance (unitary power), i.i.d. zero mean complex Gaussian
variables that represent the additive thermal noise corrupting
the received samples. The powers of the PU and the SU signals
are determined from their signal-to-noise ratios SNRX and
SNRS, respectively.

The test statistics for the AMED and the AED are respec-
tively computed from Equations (3) and (4) for the sample
fusion, (7) and (8) for the eigenvalue fusion, and (9) and (10)
for the decision fusion. The test statistic of interest is then
compared with a threshold computed from the desired false
alarm probability, and a final decision upon the occupancy of
the sensed channel is reached.

IV. SIMULATION RESULTS

In this section we present simulation results and discussions
concerning the influence of the noise and the SU signal on the
performance of the PU signal detection for the AMED and
the AED. The ROC (receiver operating characteristic) curves
shown hereafter were obtained with a minimum of 30, 000
runs in Monte Carlo simulations implemented in MATLAB
according to the setup described in the previous section.
Unless otherwise stated, the system parameters are: PU signal-
to-noise ratio SNRX = −10 dB, SU signal-to-noise ratios
SNRS = −∞ (no SU signal), −5 and 0 dB, number of primary
transmitters p = 1, number of secondary transmitters q = 1
and number of sensors m = 6. The choice for a small SNR of

the PU signal (−10 dB) is made to represent a more degrading,
but yet realistic, situation from the perspective of spectrum
sensing performance.

It is known that the number of samples and the order of the
covariance matrix influence the performance of eigenvalue-
based spectrum sensing. Thus, for a fair comparison, both
should be the same in all cases analyzed here. However, based
on the model proposed in this paper, this is only possible in the
case of the eigenvalue and the decision fusion. Then, we have
chosen to make the order of the sample covariance matrices
the same. The consequence is that the number of collected
samples in each CR had to be larger for the eigenvalue
and the decision fusion schemes, when compared with the
sample fusion. Nevertheless, as a counterexample, we have
also carried out simulations assuming an equal number of
collected samples per sensed channel in all fusion schemes.
For the sample fusion, the number of samples collected by
each CR was n = 60 and 300 samples. For the eigenvalue
and decision fusion schemes, the number of samples collected
by each CR was N = nJ = 60 and 300 samples. So, we
have chosen to compute J = 5 eigenvalues in each CR for
the eigenvalue and decision fusion schemes. Since m = 6, this
is also the number of eigenvalues computed by the FC in the
sample fusion scenario.

Figures 1–5 show ROC curves relating Pd and Pfa for
the AMED and the AED considering the sample fusion, the
eigenvalue fusion and the decision fusion with AND, OR
and Majority voting. It can be seen that the classic sensing
scheme, in which the SU is not transmitting, outperforms
the continuous sensing model in all techniques. However, one
must recall that the strength of the continuous sensing is the
sensing time flexibility, since it is not necessary to stop sensing
to transmit. It means that, for a fixed bandwidth, a much larger
number of samples can be used to improve its performance,
which is accomplished by setting a longer sensing time.

Comparing the results for no SU signal, the AMED per-
forms better than the AED in the case of the sample fusion.
However, the AED outperforms the AMED for the eigenvalue
combining and for the decision fusion schemes with majority-
voting, AND and OR rules. When compared with the AMED
test statistics (7) and (9), the AED test statistics (8) and (10)
unveiled more statistical power, indicating that the former
ones have margin for further improvements. This behavior
naturally leads to the question: Is there any other empirical
eigenvalue combination that results in a better performance
of the AMED? We have tried combinations other than the
arithmetic mean. For instance, we have tried the geometric
mean and the harmonic mean of the two largest eigenvalues
from each CR; we have also tried just the maximum eigenvalue
among all eigenvalues sent to the FC. However, the best ones
corresponded to the expressions proposed in this paper.

With the exception of the sample fusion with n = 300
samples, one can notice that the eigenvalue fusion outperforms
the other fusion methods for all test statistics analyzed in this
paper. The performance of the eigenvalue fusion is followed
by the OR, MAJ and AND decision fusion, respectively. In all
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Fig. 1. ROC curves for the AMED and the AED using sample fusion, under
variations of the SU SNR.
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Fig. 2. ROC curves for the AMED and the AED using eigenvalue fusion,
under variations of the SU SNR.

fusion schemes, the AMED and the AED show a diminishing
detection performance as the SU signal power increases, which
is an expected result.

An alternative way to compare the detection methods is by
measuring the number of samples required to meet a target
performance. To this end, we have varied the number of
samples and estimated Pd for a fixed Pfa = 0.1. The results are
depicted in Figures 6 and 7, considering low PU signal power
(SNRX = −10 dB), high SU signal power (SNRS = 0 dB)
and no SU transmission (SNRS = −∞ dB). The remaining
parameters were kept as before. As expected, we clearly see
that the number of samples required to achieve a given Pd
is always larger in the continuous sensing model, no matter
the adopted sensing technique or fusion scheme. The required
number of samples to reach Pfa = 0.1 and Pd = 0.9 for each
technique and sensing model is listed in the Table I.

The eigenvalue and sample fusion schemes, when the AED
technique is considered, need almost the same number of
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Fig. 3. ROC curves for the AMED and the AED using decision fusion with
the OR rule, under variations of the SU SNR.
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Fig. 4. ROC curves for the AMED and the AED using decision fusion with
the Majority-voting rule, under variations of the SU SNR.

TABLE I
NUMBER OF SAMPLES REQUIRED FOR Pfa = 0.1 AND Pd = 0.9.

AMED (AED)
SNRS = 0 dB No SU signal

Sample fusion n = 1280 (1000) n = 84 (125)
Eigenvalue fusion n = 1315 (1020) n = 219 (170)
Decision fusion OR n → ∞ n = 266 (10)
Decision fusion MAJ n → ∞ n = 388 (273)
Decision fusion AND n → ∞ n = 1200 (7500)

samples in order to achieve a given probability of detection.
The performance of the AED is better than the AMED, for
the same number of samples.

The best performance of the AED in terms of the number of
samples in the continuous sensing and transmission model is
consistent with the ROC curves in Figures 1–5. Its advantage
is even more pronounced in comparison with the AMED when
a higher performance standard is set, e.g. when Pfa = 0.1 and
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Fig. 5. ROC curves for the AMED and the AED using decision fusion with
the AND rule, under variations of the SU SNR.
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Pd = 0.9.
Notice that all the decision fusion rules clearly suffer from

a severe performance degradation in the presence of the SU.
Under the parameters adopted here, we were not able to
improve Pd by increasing the number of samples when a
decision fusion rule is adopted. This result is consistent with
the ROC curves in Figures 3–5 for SNRS = 0 dB.

The AND rule demonstrated to be the worst among all
fusion rules and test statistics under analysis. The results
concerned with decision rules are not meant to state that
the relative performances will always be kept the same. The
performance ranking of AND, OR and majority-voting can
vary with different system parameters or scenarios, as also
stated in [3].

V. FINAL REMARKS AND SUGGESTIONS FOR NEW
RESEARCH

In this paper we have compared the performances of
eigenvalue spectrum sensing techniques in a multiple sensor
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Fig. 7. Pd as a function of the number of samples for Pfa = 0.1, SNRX =
−10 dB and SNRS = −∞ dB (no SU signal transmission).

cognitive radio network that uses the concept of continuous
sensing and transmission. We have considered collaborative
centralized spectrum sensing with sample, eigenvalue and hard
decision combining. It has been shown that the decision fusion
rules are the worst options for detecting the PU signal when
the SU signal is transmitting at the same time. The proposed
empirical test statistics for the AED unveiled more statistical
power than the ones proposed for the AMED, demonstrating
an interesting future research opportunity seeking for further
improvements in the AMED expressions. The use of the
decision fusion schemes in the presence of the SU signal has
led to a low probability of detection even for high number
of samples. As a natural and necessary future development, it
will be a deeper analysis of the sensing-throughput tradeoff
by performing spectrum sensing and data transmission at the
same time as proposed in this paper.
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