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Abstract— Eigenvalue spectrum sensing is a powerful tech-
nique to search for spectrum holes, with performance similar
to the energy detection. Among the eigenvalue-based techniques,
the maximum eigenvalue detection (MED), also known as Roy’s
Largest Root Test (RLRT) is, for a sufficiently large number of
samples, the optimum test if there is no a priori knowledge on the
primary signal. In this paper, the probability of detection of the
MED is assessed, assuming that the primary signal is transmitted
over the α-µ, κ-µ and η-µ generalized fading channels.

Keywords— Cognitive radio, eigenvalue spectrum sensing, gen-
eralized fading channels.

I. INTRODUCTION

The current spectrum allocation policy assigns a specific
band to a user inside a certain geographical region in a
long-term basis. However, the increasing demand for wireless
services and the small portion of frequency bands available
for new allocations have caused the problem of spectrum
scarcity. The cognitive radio (CR) [1] concept has arisen as a
possible solution to this problem, by introducing the approach
of opportunistic usage of underutilized frequency bands.

A CR is defined by the International Telecommunication
Union (ITU) as “a radio employing technology that allows
the system to obtain knowledge of its operational and geo-
graphical environment, established policies and its internal
state; to dynamically and autonomously adjust its operational
parameters and protocols according to its obtained knowledge
in order to achieve predefined objectives; and to learn from
the results obtained” [2]. Among the numerous functionalities
that fit in the above definition, the spectrum sensing aims at
monitoring the usage and characteristics of the spectral bands
of interest [3], [4]. The CR has to efficiently identify spectrum
holes while avoiding harmful interference to licensed users by
either switching to an unoccupied band or maintaining the
interference below a maximum acceptable level [5]. Common
spectrum sensing techniques found in the literature use energy
detection, cyclostationary feature detection, matched filter de-
tection, wavelet detection and compressed sensing detection
[3]. Eigenvalue-based spectrum sensing [6]–[8] techniques
have been recently proposed, and have received a lot of
attention from the scientific community in the past few years.

Eigenvalue based detection is a non-coherent technique that
uses the eigenvalues of the received signal sample covariance
matrix to estimate the channel state. In the absence of a
primary user (PU) signal the CRs will receive nothing but
noise and the covariance matrix will tend to be diagonal,
as the number of signal samples increase, with entries be-
ing the noise variance, i.e. the eigenvalues will be equal

to the noise variance. If the channel is occupied by a PU
signal, some eigenvalues will be spiked and this contrast is
the characteristic that is differently explored by the several
eigenvalue detection rules. Among these rules, we can mention
the maximum eigenvalue detection (MED), the maximum-
minimum eigenvalue detection (MMED), and the eigenvalue-
based generalized likelihood ratio test (GLRT). The MED uses
the noise variance information in the computation of the test
statistic, whereas the MMED and GLRT are blind in this sense.

In this paper we are concerned with the MED when applied
to a scenario in which the channels between the primary signal
source and the secondary cognitive radios are time-varying
fading channels modeled by the general distributions α-µ, κ-
µ and η-µ .

A. Related Work

To evaluate the performance of a detection technique, two
probabilities are usually taken into consideration: the probabil-
ity of false alarm Pfa, and the probability of detection Pd. The
former is the probability of declaring a channel occupied when
it is in fact idle, and the latter is the probability of declaring the
channel busy when there is indeed a signal being transmitted
by the PU. In the case of MED, these probabilities depend on
the distribution of the largest eigenvalue, which in turn relies
on the random matrix theory [6], [7], [9].

The exact probability distributions for the largest eigen-
value of a covariance matrix for both the presence and the
absence of a primary signal is given in [7]. However, the high
complexity of these distributions renders them intractable in
most of the mathematical derivations, which brings the need
for approximations or asymptotic analyses. Expressions for
computing the probabilities of missed-detection (1− Pd) and
false alarm using the MMED are given in [6]. The asymptotic
performance analyses of the MED and the GLRT are given in
[8], considering a large number of samples and sensors.

In the above-mentioned analyses, the matrix that represents
the channel gains between the primary transmitter and the
secondary receivers are considered random, but fixed during
the sensing interval. The unique restriction imposed to it is
that it is a full-rank matrix.

A number of references consider that the entries of the chan-
nel matrix are independent and identically distributed (i.i.d.)
complex Gaussian random variables, which characterizes the
short-term behavior of flat Rayleigh fading channels [6]–[8],
[10], [11].

The short term fading statistics are characterized by sev-
eral other distributions such as Rice, Nakagami-m, Weibull,
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and Hoyt [12]. Each of these distributions is suitable for a
specific channel condition, but there are conditions in witch
none of them accurately fit experimental data. Therefore, a
more generic distribution is required to describe the wireless
channel. Three general distributions have been proposed for
this purpose, the α-µ, the κ-µ and the η-µ [13], [14]. The
parameter µ relates to the number of clusters of the multipath
waves. The parameter α accounts for the non-linearity of the
physical medium, κ is the ratio between the total power of the
dominant waves and the total power of the scattered waves,
and η is related to the unbalance between the in-phase and
quadrature components of the scattered waves. Special cases
of these general distributions are the Rice, the Nakagami-m,
the Hoyt, the Weibull, the Rayleigh, the one-sided Gaussian,
the exponential, and the Gamma distribution.

B. Contributions and Paper Structure

In this paper we present an analysis of the MED perfor-
mance in terms of the probability of detection, Pd, considering
that the primary signal is transmitted over α-µ, κ-µ and η-µ
flat fading channels. To obtain such a performance metric,
the probability density function (PDF) of the received signal-
to-noise ratio (SNR) must be obtained. Using known results
concerning the sum of squared i.i.d. κ-µ and η-µ random
variables and a moment matching approach for the sum of α-µ
random variables, the probability of detection was numerically
computed. To the best of our knowledge, no other work has
tackled this scenario before.

The rest of the paper is organized as follows. In Section II
we present the basis of the eigenvalue cooperative spectrum
sensing with generalized fading channels. The distributions of
the SNR are derived for α-µ, κ-µ and η-µ channels in Section
III. Section IV is devoted to numerical results and discussions,
and Section V concludes the paper.

II. EIGENVALUE-BASED COOPERATIVE SPECTRUM
SENSING OVER GENERALIZED CHANNEL

Consider a secondary cognitive network composed of K
CRs. Each CR collects N samples of the signal transmitted
by a single PU, and forwards these samples to the fusion
center (FC). The problem of determining the channel state
is a binary hypothesis test with H0 and H1 representing,
respectively, the absence and the presence of a PU signal. Let
y(n) = [y1(n), . . . , yK(n)]T be the vector with the samples
received by the FC at the n-th discrete-time instant, with
yi(n) being the sample obtained at the i-th CR and n-th time
instant. The operation [·]T means transposition. Under the two
hypotheses, y(n) can be written as

y(n) =

{
v(n), H0

hs(n) + v(n), H1

, (1)

where v(n) ∼ NC(0K×1, σ
2
vIK×K), s(n) is the primary signal

sample modeled as Gaussian random variable with zero mean
and variance σ2

s and h = [h1, . . . , hK ]T is an unknown
channel vector with entry hi being the channel gain between
the PU and the i-th CR. The channel is considered memoryless
and constant during the sensing interval.

Under H1, the average received SNR at the FC is defined
as

ρ̂ =
σ2
s

σ2
v

E
[
‖h‖2

]
K

, (2)

where the E denotes the expected value operator and ‖h‖ is
the Euclidean norm of h.

The samples received at the FC are stored in a K×N matrix

Y = [y(1),y(2), . . . ,y(N)] = ahs + V (3)

where s = [s(1), s(2), . . . , s(N)] is a 1×N signal vector, V =
[v(1),v(2), . . . ,v(N)] is K×N noise matrix and a ∈ {0, 1}
indicates the absence (0) or presence (1) of a PU signal. The
sample covariance matrix is then computed as

R =
1

N
YY†, (4)

with † denoting the conjugate and transpose operation.
Let {λ1 > λ2 > . . . > λK} be the ordered eigenvalues of

R, and let T be a test statistic, or decision variable, computed
from these eigenvalues to distinguish between the hypotheses
H0 and H1. The test statistic is compared with a predefined
threshold γ and a decision upon the channel state is made. If
T > γ the FC decides in favor of H1, otherwise it decides for
H0. Therefore, the probabilities of false alarm and detection
are given by

Pfa(γ) = Pr[T > γ|H0], (5)
Pd(γ) = Pr[T > γ|H1]. (6)

Usually, the threshold is a function of a target false alarm
probability. A low value of Pfa is important to increase the
throughput of the CR network and a high Pd keeps the
interference to primary users below a predefined value.

Several tests can be constructed from the eigenvalues of
4, among which the most known are the MED, the MMED
and the eigenvalue-based GLRT. In this paper we consider
only the maximum eigenvalue detection (MED), for which the
test statistic is computed as the ratio between the maximum
eigenvalue of R and the noise variance, that is,

TMED =
λ1
σ2
v

. (7)

In [7], the exact probabilities of false alarm and detection
are derived for the MED, from where it can be shown that

Pfa(γ) = |detA|, (8)

where A is a K ×K matrix with entries

Ai,j =

(
N − j + i− 1

i− 1

)
γR(N + i− j,Nγ),

with γR(s, x) being the regularized lower incomplete gamma
function defined by

γR(s, x) =

∫ x

0

ts−1e−tdt.

The expression for computing the probability of detection
given in [7] is very complex, making any analysis a cumber-
some task. In [8], a Gaussian approximation for the probability
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of detection is given as a function of the decision threshold γ,
and conditioned on the received SNR ρ:

Pd(γ|ρ) ≈ Q
[√

N

(
γ

Kρ+ 1
− K − 1

NKρ
− 1

)]
, (9)

where Q is the standard Gaussian tail probability function.
In order to obtain the unconditional probability of detection,

Equation (9) must be averaged over the PDF of the SNR, i.e.

Pd(γ) =

∫ ∞
0

Pd(γ|ρ)fSNR(ρ)dρ (10)

where fSNR(ρ) is the PDF of the signal-to-noise ratio.
In the next section we derive fSNR(ρ) for the generalized

fading channels α-µ, κ-µ and η-µ, so that Pd(γ) can be
computed.

III. THE PDF OF THE SNR OVER α-µ, κ-µ AND η-µ
CHANNELS

The SNR of the received signal at the FC under H1 defined
in (2) can be rewritten by substituting the norm operator by a
sum operator, i.e.,

ρ =
σ2
s

σ2
v

1

K

K∑
i=1

h2i . (11)

Therefore, the PDF of the SNR is related to the sum of K
random variates h2i , being hi the random variate of the channel
fading envelope associated to the distributions α-µ, κ-µ or η-
µ. In the next subsection we derive the PDF of the SNR for
the channels under consideration.

A. The PDF of the SNR for the α-µ channel

The PDF of the signal envelope R following an α-µ
distribution with α-root mean square value r̂ = α

√
E[Rα] is

given by [13]

fR(x) =
αµµxαµ−1

Γ (µ) r̂αµ
exp

[
−µ
(x
r̂

)α]
, (12)

where α > 0 is an arbitrary parameter related to the non-
linearity of the wireless medium and µ is the inverse of the
normalized variance of Rα, i.e.,

µ =
E2[Rα]

V[Rα]
, (13)

with E[·] and V[·] being the expectation and variance operators,
respectively.

The derivation of the PDF of the sum of α-µ random vari-
ates through the exact solution is cumbersome and sometimes
no closed form expression can be obtained. However, this PDF
can be well approximated by another α-µ distribution through
moment matching. In [15], [16], the procedure for computing
the parameters of an α-µ distribution to approximate the
density of the sum α-µ and Nakagami-m random variates
respectively are described. This method can be adapted to the
approximate of the sum of α-µ random variates, as follows.

Consider the random variable H = h2, with h having an α-
µ distribution. By means of a simple transformation of random
variables, it can be shown that the PDF of H is

fH(x) =
αµµx

αµ
2 −1

2Γ(µ)r̂
αµ
2

exp

(
−µ
(x
r̂

)α/2)
, (14)

with generalized moments

E(Hn) = r̂n
Γ(µ+ 2n/α)

µ2n/αΓ(µ)
, (15)

where Γ(·) is the gamma function.
Let S =

∑K
i=0Hi, with Hi being i.i.d. variates, each with

distribution (14). The n-th moment of S can be obtained in
closed form through [15], [16]

E (Sn) =

n∑
n1=0

n1∑
n2=0

. . .

nK−2∑
nK−1=0

(
n

n1

)(
n1
n2

)(
nK−2
nK−1

)
×E

(
Hn−n1

)
E
(
Hn1−n2

)
E (HnK1−1)(16)

The moment matching technique aims at estimating the
parameters of a given distribution as a function of moments of
the random variable. The generalized parameter µ defined in
[13] , which is parameterized by the β-th and 2β-th moments
of the underlying random variable, that is,

βµ =
E2[Hβ ]

E[H2β ]− E2[Hβ ]
. (17)

By matching the generalized parameter µ of an α-µ distri-
bution to the generalized parameter µ of the random variable
S for different values of β (e.g.: one and two), a system of
transcendental equations arises, from which the parameters α
and µ of the approximated distribution can be numerically
calculated. The system of equations is formed from

E2[Sβ ]

E[S2β ]− E2[Sβ ]
=

Γ2
(
β
αs

+ µs

)
Γ(µs)Γ

(
2β
αs

+ µs

)
− Γ2

(
β
αs

+ µs

) ,
(18)

where the αs and µs are the parameters to be obtained for the
approximate PDF of S.

The α-root mean square value is then estimated from

r̂s = µ1/αs
s

β

√
Γ(µs)E(Sβ)

Γ(µs + β/αs)
. (19)

With the estimated parameters αs, µs and r̂s, the approxi-
mated FDP of the SNR can be obtained by a simple change
of variables and is given by

fSNR(ρ) =
αsµ

µs
s

Γ(µs)

ραsµs−1

ρ̂αsµs
exp

[
−µs

(
ρ

ρ̂

)αs]
, (20)

with

ρ̂ =
σ2
s r̂s
σ2
vK

(21)

being the average SNR.
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B. The PDF of the SNR for the κ-µ channel

The κ-µ distribution is used to represent the small scale
fading of a signal envelope in the line-of-sight condition. If
R is the envelope of the signal under κ-µ fading, the PDF of
the normalized envelope P = R/

√
E(R2) is given by [14]

fP (r) =
2µ(1 + κ)

µ+1
2

κ
µ−1
2 exp (µκ)

rµ exp
[
−µ(1 + κ)r2

]
×Iµ−1

[
2µr
√
κ(1 + κ)

]
, (22)

where κ > 0 is the ratio between the total power of the
dominant components and the total power of the scattered
components, µ > 0 is given by

µ =
E2
(
R2
)

V (R2)

1 + 2κ

(1 + κ)2
,

and Iν(·) is the modified Bessel function of the first kind and
order ν [17]. The sum of K κ-µ random variables squared has
a κ-µ distribution with parameters κs = κ and µs = Kµ [14].
Therefore, after some simple algebraic manipulations, the PDF
of the SNR can be written as

fSNR(ρ) =
Kµ(1 + κ)

Kµ+1
2

κ
Kµ−1

2 exp [Kµκ]

ρ
Kµ−1

2

ρ̂
Kµ+1

2

exp

[
−Kµρ

ρ̂
(1 + κ)

]
×IKµ−1

[
2Kµ

√
κ(1 + κ)

ρ

ρ̂

]
, (23)

with ρ̂ being the average SNR, as given by (21)

C. The PDF of the SNR for the η-µ channel

The η-µ distribution is a general fading distribution best
suited to represent the small scale variation of a fading signal
envelope R in a non-line-of-sight condition. In this case, the
PDF of the normalized envelope P = R/

√
E(R2) is [14]

fP (r) =
2(η − 1)1/2−µ(η + 1)1/2+µ

√
π

exp [(1 + η)2µr2/2η]
√
ηΓ(µ)

×µ1/2+µr2µIµ−1/2

(
(η2 − 1)µr2

2η

)
, (24)

where η > 0 is the scattered-wave power ratio between the in-
phase and quadrature components of each cluster of multipath,
Iν(·) is the modified bessel function of the first kind and order
ν [17], and

µ =
E2(R2)

V(R2)

1 + η2

(1 + η)2
.

The PDF of the sum of K squared η-µ random variables
has a η-µ distribution with parameters ηs = η and µs = Kµ
[14]. Then, it can be shown that the PDF of the SNR when
the channel fading is characterized by an η-µ distribution is

fSNR(ρ) =

√
π(Kµ)Kµ+1/2

(
2 + η−1 + η

)Kµ
Γ(Kµ) (η−1 − η)

Kµ−1/2
ρKµ−1/2

ρ̂Kµ+1/2

× exp

[
−Kµ

(
2 + η−1 + η

2

)
ρ

ρ̂

]
×IKµ−1/2

(
Kµ

η−1 − η
2

ρ

ρ̂

)
(25)

where ρ̂ is the average SNR, computed from (21)

IV. NUMERICAL RESULTS

In this section, the probability of detection of the MED is as-
sessed, considering that the primary user signal is transmitted
over the generalized fading channels α-µ, κ-µ and η-µ. The
theoretical results were obtained by numerically evaluating
(10) for the SNR densities derived in Section III. The Monte
Carlo simulation results were obtained by counting a minimum
of 500 detection events or 50000 simulation runs, whichever
occurs first, for each decision threshold. We have considered
a cognitive network with K = 6 CRs, each one collecting
N = 400 samples. The primary signal was modeled as a
Gaussian random process with zero mean and variance σ2

s = 1,
and the additive Gaussian noise variance was set to σ2

v = 1.
In this case, the second moment of the channel gains was set
according to (2) to produce the desired average SNR of −10
dB. This value was chosen so as to represent the important
condition of low SNR, which is particularly challenging for
any spectrum sensing technique.

Figure 1 shows the probability of detection as a function
of the decision threshold for the α-µ channel with µ = 2
and some different values of α. Its noteworthy that in the
region of most practical interest, which corresponds to high
probabilities of detection, the larger the value of α the higher
will be the probability of detection for the same threshold.
This is consistent with the fact that a higher α are associated
with better channel conditions. Recall that the probability of
false alarm is independent of the channel, thus the probability
of detection unveils the spectrum sensing performance.
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Fig. 1. Probability of detection versus threshold for the MED under the α-µ
fading, for µ = 2 and variable α.

In Figure 2 it is shown the probability of detection as a
function of the decision threshold for the κ-µ channel with
κ = 1 and some different values of µ. Now, in the region of
high probabilities of detection, the larger the value of µ the
higher will be the performance for the same threshold. This
is consistent with the fact that a higher µ are associated with
better channel conditions

In Figure 3, the probability of detection versus the decision
threshold is shown for the MED over a η-µ channel, for η =
0.2 and variable µ. Again considering the region with high
probability of detection, the higher the value of µ the better
is the performance of the spectrum sensing.
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Fig. 2. Probability of detection versus threshold for the MED under the κ-µ
fading, for κ = 1 and variable µ.
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Fig. 3. Probability of detection versus threshold for the MED under the η-µ
fading, for η = 0.2 and variable µ.

Finally, in Figure 4 we show the influence of the number
of coopering CRs on the spectrum sensing performance. The
probability of detection versus the threshold is depicted in
η-µ (for lack of space, the figure for α-µ and κ-µ were
omitted) channel with K = 2, 4, 6, 8 . Increasing the number
of cognitive radios leads to a better performance, but, on
the other hand, it also leads to a greater complexity of the
eigenvalues computation and to a overuse of the reporting
control channel.
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Fig. 4. Probability of detection versus threshold for the MED under the η-µ
fading, for η = 0.2 and µ = 0.5

V. CONCLUSION

In this paper, non-closed form expressions for the proba-
bility of detection of the maximum eigenvalue detection tech-
nique were derived and numerically computed, assuming that
the channels between the primary transmitter and the cognitive
radios are modeled by the generalized fading distributions α-
µ, κ-µ and η-µ. We have shown that the theoretical results are
in close agreement with simulation results. The performance
analysis of the spectrum sensing over such channel models is
of more practical appeal, since the most common analysis that
consider pure AWGN channels lead to better, but unrealistic
performances.
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