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The basis of this paper is Wei and Tirkkonen, 2012, in which expressions for the key performance metrics of the sphericity test
applied to the multiantenna cooperative spectrum sensing of multiple primary transmitters in cognitive radio networks over
nonfading channels are provided. The false alarm and the detection probabilities were derived in Wei and Tirkkonen, 2012, based
on approximations obtained by matching the moments of the test statistics to the Beta distribution. In this paper we show that
the model adopted in Wei and Tirkkonen, 2012, does not apply directly to fading channels, yet being considerably inaccurate for
some system parameters and channel conditions. Nevertheless, we show that the original expressions from Wei and Tirkkonen,
2012, can be simply and accurately applied to a modified model that considers fixed or time-varying channels with any fading
statistic. We also analyze the performance of the sphericity test and other competing detectors with a varying number of primary
transmitters, considering different situations in terms of the channel gains and channel dynamics. Based on our results, we correct
several interpretations from Wei and Tirkkonen, 2012, in what concerns the performance of the detectors, both over a fixed-gain
additive white Gaussian noise channel and over a time-varying Rayleigh fading channel.

1. Introduction

The cognitive radio (CR) [1] concept has come as a promising
solution for alleviating the problem of spectrum scarcity
in wireless communication systems and is one of the key
enabling technologies of the fifth-generation (5G) of these
systems [2]. In this concept, unused spectrum bands in the
primary (incumbent) network can be opportunistically used
by secondary CR networks. In order to accomplish this task, a
spectrum sensing [3] technique detects unused bands so that
the CRs can use them without causing harm interference to
the primary users. In order to increase the reliability of the
decisions upon the occupancy of a given channel, cooperative
spectrum sensing has become the main choice [3].

As pointed out in [4],most of the literature on cooperative
spectrum sensing predominately adopt the assumption of a
single primary transmitter. However, this assumption may
fail in most real networks where the existence of more than

one primary transmitter prevails. In [4] the authors give
an important contribution to the theoretical analysis of the
performance of the spectrum sensing undermultiple primary
users. Specifically, they consider a multiantenna cooperative
spectrum sensing and adopt the covariance-based technique
known as sphericity test. Expressions for the false alarm
probability and the detection probability were derived in
[4] by means of approximations for the distributions of the
test statistics under the hypothesis of absence and presence
of the primary signals. The approximations were obtained
by matching the moments of the test statistics to the Beta
distribution. It is claimed in [4] that the derived approx-
imations are easily computable and that they are accurate
for the considered sensor sizes 𝐾, number of samples 𝑁,
number of primary users 𝑃, and corresponding signal-to-
noise ratios SNR

𝑖
, 𝑖 = 1, . . . , 𝑃. Empirical results were

compared with analytical ones in order to validate their
claims. As an incremental result, in [4] the sphericity test
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detector has been compared with competing detectors in the
presence of multiple primary users.

Opportunities for Extended Results. In the numerical results’
section of [4], it is stated that the channel between the
primary transmitters and the secondary sensors is considered
fixed during the sensing interval, which is a commonly
adopted and reasonable assumption if the sensing time is con-
siderably smaller than the coherence time of the channel. It is
also stated that the channel gains were independently drawn
from a complex Gaussian distribution, corresponding to
Rayleigh fading. However, in the sequel the authors consider
that the channel is the same in all Monte Carlo simulation
runs, which contradicts the fading channel assumption. The
simulated channel is in fact a fixed gain additive white
Gaussian noise (AWGN) channel with configurable SNRs
from the primary transmitters to the sensors. This fact has a
major impact on the results, as we show later on in this paper.

Moreover, in [4] the channel gains are normalized to
have unitary second moment, which further prevents the
derived expressions to be used when the channel is in fact
time varying.This is because such normalization changes the
fading statistics, making them depart from the predefined
ones.

Not less important, to apply the expression of the detec-
tion probability derived in [4], one must use a covariance
matrix that relies on a single realization of the channel
gains. When the channel is considered fixed and the same
in all sensing intervals (all simulation runs), and the above-
mentioned gain normalization is applied, a good agreement
is achieved between theoretical and empirical results. This is
because the same covariance matrix applies to all simulation
runs and, thus, keeps consistence with the theoretical calcu-
lations. Nevertheless, it is reasonable to accept that in a fading
channel one must not rely on a single channel realization
to predict the system performance over the varying channel
gains. In fact, if the channel is made variable and no
normalization is applied to the channel gains, rare casual
agreements are achieved between empirical results and the
theoretical results obtained from the expressions in [4].

It can also be identified that some results in [4] are
considerably inaccurate for some system parameters different
from those originally reported. It was not claimed in [4] that
accuracy is achieved for any system parameter, but it was
not mentioned either that inaccuracy could result depending
on the choice of these parameters. Moreover, in spite of the
fact that the authors of [4] have claimed that the derived
approximations are easily computable, computation errors
may result depending on the parameters chosen and software
package used.

In Section 4.2 of [4], the performance of the sphericity
test is compared with other competing detectors in terms of
receiver operating characteristic (ROC) curves. In Figures 3–
5 of that paper, such comparison has been made under the
assumption of fixed and normalized channel, using a single
channel realization for all results and all simulation runs.
However, different channel realizations change the detection
probabilities and, as a consequence, modify the correspond-
ing ROC curves. Since different detection techniques can be

differently affected by the channel gains, the performance
ranking or the performance gaps or both can be modified
from a channel realization to another.

We add that the approach adopted in [4], which moti-
vated the present paper, was also adopted in [5]. Thus, most
of the above comments also apply to [5].

The sphericity test alone is also considered in [6], where
the authors claim that their contribution is the first to
address the cooperative spectrum sensing problem in a
multiple primary user scenario, consideringmultipath fading
channels and using eigenvalue-based detectors. In [6], the
expression for the probability of detection derived in [4]
for the AWGN channel is numerically averaged over the
probability density function of the Rayleigh fading signal-
to-noise ratio (SNR). However, this approach is not correct
because the probability of detection does not depend on the
SNR in such a direct manner. In fact, it is a function of the
determinant of a covariance matrix, which in turn depends
on the channel gains from each primary transmitter to each
secondary receiver.Thus, the SNR influence is implicit in this
channel gains.

Contributions. Having highlighted the limitations of the
analytical results in [4], we can list the following main
contributions of this paper:

(i) A thorough analysis of the channel normalization
and channel dynamics on the performance of the
sphericity test is made, considering the detection
of multiple primary transmitters. Specifically, we
analyze four possible channel conditions: fixed and
normalized gains, fixed and nonnormalized gains,
time-varying and normalized gains, and time-varying
and nonnormalized gains. Interpretations of a large
number of new results are given as a consequence of
this analysis.

(ii) Numerical problems regarding the computation of
the expressions derived in [4] are explored and
guidelines are given to solve them.

(iii) We also provide a number of examples and discus-
sions regarding the situations in which the expres-
sions derived in [4] are not accurate.

(iv) We propose a simple semianalytic method that makes
use of the original expressions and show that the
method is accurate enough for analyzing the per-
formance of the sphericity test in fixed as well as
in time-varying channels with any fading statistic.
Our method is validated by simulation considering a
Rayleigh fading channel as a case study. This method
also corrects the one proposed in [6], where the
average behavior of the fading was not correctly taken
into account in the derivation of the probability of
detection over a Rayleigh fading channel.

(v) We analyze exemplifying situations in which different
detection techniques are differently affected by the
channel gains, influencing the performance ranking
of these techniques or the performance gaps or both
from a channel realization to another. We modify or
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correct accordingly the related interpretations given
in [4].

(vi) Last, but not least, we also give new interpretations
concerning the performance of the sphericity test
and other competing detectors when applied to the
detection of multiple primary users. Some of these
interpretations ratify those in [4], some of them
contradict those provided in [4].

Along with the expressions in [4], the new results and
discussions reported here constitute important tools for the
understanding, the design, and the analysis of the sphericity-
test-based cooperative spectrum sensing and other compet-
ing detectors over fading and nonfading channels, in the
presence of multiple primary users.

Paper Organization. The remaining of this paper is organized
as follows. In Section 2 we reproduce, in a condensed way, the
main results from [4] concerning the system model and the
expressions for the false alarm and the detection probabilities
of the sphericity test. Section 3 presents results for validating
the analytical and empirical computations throughout the
paper. Section 4 is devoted to the analysis of the channel
normalization and channel dynamics on the performance
assessment of the sphericity test. In Section 5 our semiana-
lytic method for computing the detection probability of the
sphericity test over time-varying fading channels is described.
The performance of the sphericity test and other competing
detectors is investigated in Section 6, for both the fixed-gain
and the time-varying fading channels. Section 7 concludes
the paper summarizing the main achievements of our work.

2. Main Results from [4]

In this section we describe the systemmodel and provide the
main expressions derived in [4] for computing the false alarm
and the detection probabilities of the sphericity test (ST).The
aim is to make this paper self-contained and facilitate the
understanding and the application of such expressions. We
use the same notation of [4] for the sake of consistency.

2.1. System Model. The system model is the standard one,
which considers a 𝐾-sensor cooperative sensing in the
presence of 𝑃 primary transmitters. The 𝐾 sensors may be
𝐾 receive antennas in one secondary receiver or 𝐾 single-
antenna secondary devices, or any combination of these. A
realization of the received data vector is

x = Hs+𝜎n, (1)

where x ∈ C𝐾, the 𝐾 × 𝑃matrix H = [h1, . . . , h𝑃] represents
the channels between the 𝑃 primary transmitters and the 𝐾
sensors, and the 𝑃 × 1 vector s = [𝑠1, . . . , 𝑠𝑃]

T represents
the zero mean transmitted signals from the primary users;
[⋅]

T denotes the transposition operation.The𝐾× 1 vector 𝜎n
represents the complex Gaussian noise with zero mean and
covariance matrix 𝜎2I

𝐾
, where 𝜎2 the noise power and I

𝐾
the

identitymatrix of order𝐾. By collecting𝑁 i.i.d. (independent

and identically distributed) observations of the vector x, the
matrix X = [x1, . . . , x𝑁] is formed.

Under the assumption of constant channel matrixH dur-
ing the sensing interval and primary user signals following an
i.i.d. zero mean Gaussian distribution and uncorrelated with
the noise, the population covariance matrix of the received
signal under the hypotheses of absence (H0) and presence
(H1) of the primary signals is, respectively,

H0 : Σ = E [XX†] = 𝜎
2I
𝐾
,

H1 : Σ = 𝜎
2I
𝐾
+

𝑃

∑

𝑖=1
𝛾
𝑖
h
𝑖
h†
𝑖
,

(2)

where † denotes complex conjugate transpose, E[⋅] denotes
the expectation operation, and 𝛾

𝑖
= E[𝑠

𝑖
𝑠
†

𝑖
] denotes the

transmission power of the 𝑖th primary user. In this case the
𝑖th received SNR is defined by

SNR
𝑖
=
𝛾
𝑖

󵄩󵄩󵄩󵄩h𝑖
󵄩󵄩󵄩󵄩

2
2

𝜎2 , (3)

where ‖ ⋅ ‖2 is the Euclidian norm of the underlying vector.
Since Σ is positive definite, that is, Σ ≻ 0, the ST tests

the null hypothesis Σ = 𝜎
2I
𝐾
against all other alternatives

corresponding to Σ ≻ 𝜎
2I
𝐾
. However, since the population

covariance matrix is not available in practice, the sphericity
test relies on the sample covariance matrix R = XX†/𝑁.
In this case, the test statistic of the ST-based detector
is

𝑇ST =
det (R)

[(1/𝐾) tr (R)]𝐾
=

∏
𝐾

𝑖=1𝜆𝑖

[(1/𝐾)∑𝐾
𝑖=1 𝜆𝑖]

𝐾
, (4)

where det(R) and tr(R) are the determinant and the trace
of R, respectively, and 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝐾
are the

ordered eigenvalues of R. If the test statistic is greater than
some threshold 𝜁, the detector declares H0; it declares H1
otherwise.

Interestingly enough, the threshold range for the ST lies
in the interval [0, 1], nomatter the systemparameters chosen.
This also differs the ST test frommost of the tests for spectrum
sensing, and represents a clear advantage in practice.

2.2. False Alarm Probability of the Sphericity Test. From
Proposition 1 in [4], for any sensor size𝐾 and sample size𝑁,
the two-first-moment Beta-approximation to the cumulative
distribution function (CDF) of 𝑇ST underH0 is

𝐹ST (𝑦) ≈
𝐵
𝑦
(𝛼0, 𝛽0)

𝐵 (𝛼0, 𝛽0)
, 𝑦 ∈ [0,∞) , (5)
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where 𝐵(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)/Γ(𝛼 + 𝛽) is the Beta function, with
Γ(⋅) being the gamma function, and 𝐵

𝑦
(𝛼, 𝛽) = ∫

𝑦

0 𝑥
𝛼−1

(1 −
𝑥)
𝛽−1

𝑑𝑥 is the incomplete Beta function. The parameters 𝛼0
and 𝛽0 are given by

𝛼0 =
M1 (M1 −M2)

M2 −M2
1

,

𝛽0 =
(1 −M1) (M1 −M2)

M2 −M2
1

,

(6)

with

M
𝑛
=
Γ (𝐾𝑁)𝐾

𝐾𝑛
Γ
𝐾 (𝑁 + 𝑛)

Γ
𝐾 (𝑁) Γ [𝐾 (𝑁 + 𝑛)]

, (7)

where

Γ
𝐾 (𝑁) = 𝜋

𝐾(𝐾−1)/2
𝐾−1
∏

𝑖=0
Γ (𝑁− 𝑖) . (8)

The false alarm probability as a function of the threshold 𝜁 is
then

𝑃fa (𝜁) = 𝐹ST (𝜁) . (9)

2.3. Detection Probability of the Sphericity Test. From the
Proposition 3 in [4], for any sensor size 𝐾 and sample size
𝑁, the two-first-moment Beta-approximation to the CDF of
𝑇ST underH1 is

𝐺ST (𝑦) ≈
𝐵
𝑦
(𝛼1, 𝛽1)

𝐵 (𝛼1, 𝛽1)
, 𝑦 ∈ [0,∞) , (10)

where the parameters 𝛼1 and 𝛽1 are given by

𝛼1 =
N1 (N1 −N2)

N2 −N2
1

,

𝛽1 =
(1 −N1) (N1 −N2)

N2 −N2
1

,

(11)

with

N
𝑛
= (

𝐾

𝑏
)

𝐾𝑛
Γ (𝑎 − 𝐾𝑛) Γ𝐾 (𝑁 + 𝑛) [det (Σ)]𝑛

Γ
𝐾 (𝑁) Γ (𝑎)

, (12)

where

𝑎 =

(𝑁 + 𝑛) (∑
𝐾

𝑖=1 𝜎𝑖)
2

∑
𝐾

𝑖=1 𝜎
2
𝑖

,

𝑏 =
∑
𝐾

𝑖=1 𝜎
2
𝑖

∑
𝐾

𝑖=1 𝜎𝑖
,

(13)

with 𝜎1 ≥ 𝜎2 ≥ ⋅ ⋅ ⋅ ≥ 𝜎
𝐾
being the ordered eigenvalues of Σ.

The detection probability as a function of the threshold 𝜁
is

𝑃d (𝜁) = 𝐺ST (𝜁) . (14)

P
fa
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Figure 1: False alarm probability of the ST: Beta approximation
versus simulation for 𝑃 = 3, and variable 𝐾 and𝑁.
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Figure 2: Detection probability of the ST: Beta approximation
versus simulation, for variable 𝐾 and 𝑁, 𝑃 = 3, SNR1 = −1 dB,
SNR2 = −3 dB, and SNR3 = −10 dB.

3. Validation, Counterexamples, and Possible
Numerical Problems

In this section we reproduce some results from [4] so that
subsequent results reported here can be trusted. We also give
some counterexamples in which the theoretical results from
the expressions in [4] cannot be obtained due to numerical
limitations, or do not match empirical results.

3.1. Validation. Figures 1 and 2 show analytical and empirical
results for the false alarm and the detection probability of
the sphericity test as a function of the detection threshold,
respectively, for some values of 𝐾 and 𝑁. The adherence
between analytical and empirical results is the same observed



International Journal of Antennas and Propagation 5

in [4]; one should expect possible shifts of the 𝑃d curves
when compared with those in [4], since the realization of the
channel matrix used in [4] was almost surely different from
the one used to produce the corresponding results here. As in
[4], we assume three primary users (𝑃 = 3) with SNR1 =

−1 dB, SNR2 = −3 dB, and SNR3 = −10 dB. The entries
of the channel matrix H are independently drawn from a
standard complex Gaussian distribution.The channel is fixed
during the sensing interval and normalized as h

𝑖
← h
𝑖
/‖h
𝑖
‖2,

𝑖 = 1, . . . , 𝑃. The power of the noise is set to 𝜎
2
= 1, without

loss of generality. Thus, the transmission power of the 𝑖th
primary user is computed from (3) as 𝛾

𝑖
= 10SNR𝑖/10, and

the population covariance matrices under H0 and H1 are
formed according to (2). The empirical results were obtained
from 105 Monte Carlo simulation runs, the same number
used in [4], keeping the same realization ofH in all runs (one
simulation run corresponds to a single sensing event during
which 𝑁 samples per sensor are collected). Thus, AWGN
channels with fixed SNRs and fixed gains are considered from
the 𝑃 primary transmitters to the 𝐾 sensors. The entries of
the transmitted signal matrix X and of the noise vector n
are drawn from a zero-mean complex Gaussian distribution.
The entries of the 𝑖th row of X have variance 𝛾

𝑖
, and the

entries of the noise vector n have unitary variance. In each
curve there are 1000 threshold values whose minimum and
maximum were, respectively, obtained from the minimum
and maximum values of the test statistics underH0 andH1.
These values were precomputed from a separate Monte Carlo
simulation with 10000 runs.

In Section 4.1 of [4], where the corresponding setup is
described, the authors inadvertently state that the considered
channel is a Rayleigh fading channel. It is also where the
channel normalization h

𝑖
← h

𝑖
/‖h
𝑖
‖2 that modify the

predefined fading statistics in the case of different channel
realizations in each sensing interval is defined.

We also correct a typo in Section 4.1 of [4], where the
authors state that they have “set the powers of the zero mean
Gaussian signal and noise to be 1.” From (3), if 𝜎2

= 1 and the
channel is normalized to ‖h

𝑖
‖2 = 1, the signal powers must

be different from 1 if the SNRs are different from 0 dB.
The results shown in Figure 1 are in perfect agreement

with those given in Figure 2 of [6].

3.2. Counterexamples. In this subsection we provide some
counterexamples in which the theoretical results obtained
from the expressions in [4] do not match empirical results,
due to some inaccuracy of the Beta approximation underH1.
It can be seen from Figure 3 that when the SNRs are large or
the number of samples is small, or both, a nonnegligible dis-
agreement between theoretical and empirical results appears
in the case of the detection probability of the sphericity test.
This is an evidence that the Beta approximation under the
hypothesis H1 is not accurate for all system parameters,
whereas it is always accurate underH0.

3.3. Numerical Limitations. In spite of the fact that it is
claimed in [4] that the derived expressions are easily com-
putable, errors or limitations may result depending on the
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Figure 3: False alarm and detection probabilities of the ST: Beta
approximation versus simulation, for 𝐾 = 4, 𝑁 = 20, and 𝑁 = 10,
𝑃 = 3, SNR1 = 5 dB, SNR2 = 3 dB, and SNR3 = 0 dB.

parameters chosen, on the software package used, and onhow
these expressions are entered in the software environment.

We have made simulations and computed the expres-
sions of [4] using the Mathcad 15 and the Matlab R2009a
software packages. If the expressions are entered in their
original forms, computations are interrupted and floating-
point error messages are prompted in Mathcad and “NaN”
(not a number) or “inf ” (infinite) values are attributed to
variables in Matlab, for values of 𝐾𝑁 around 120, which
limits the choice of important systemparameters: the number
of sensors 𝐾 and the number of samples 𝑁. These errors
occur in the computations of the moments M

𝑛
, due to

large values (>10307) of the gamma function that are not
properly handled by these softwares in the floating-point
representation. To avoid such errors, we had to do and
recommend the following:

(i) Simplify the quotient Γ
𝐾
(𝑁+𝑛)/Γ

𝐾
(𝑁) in (7) and (12)

in order to avoid using the Γ
𝐾
(𝑁) function defined in

(8). The resulting quotient for 𝑛 = 1, 2 is

Γ
𝐾 (𝑁 + 𝑛)

Γ
𝐾 (𝑁)

=
Γ (𝑁 + 1)

Γ (𝑁 − 𝐾 + 1)
(

Γ (𝑁 + 2)
Γ (𝑁 − 𝐾 + 2)

)

𝑛−1
. (15)

(ii) Replace the gamma function by its natural logarithm.
The gamma function grows rapidly for moderately
large arguments, which can cause numerical insta-
bilities and errors. Many computing environments
include a function that returns the natural logarithm
of the gamma function (which is the case of Mathcad
and Matlab). This function grows much more slowly
than the gamma function and allows for adding and
subtracting logs instead of multiplying and dividing
very large values.

(iii) Compute the CDFs (5) and (10) by applying the
alternative definition of the incomplete Beta function
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𝐼
𝑦
(𝛼, 𝛽) = 𝐵

𝑦
(𝛼, 𝛽)/𝐵(𝛼, 𝛽), which applies directly

to (5) and (10) through the use of a built-in 𝐼
𝑦
(𝛼, 𝛽)

Mathcad and Matlab function.

We have also computed the expressions of [4] using the
software package Mathematica and no computation errors
have been produced. However, it is by far more difficult
to implement the complete Monte Carlo simulation in the
Mathematica environment than in the Matlab or the Math-
cad.

4. Effect of the Channel Normalization and
the Channel Dynamics

In this section we analyze the effect of normalizing or not
normalizing the channel gains, combined with the effect of
considering a single fixed channel realization or random
channel realizations in each sensing interval. Then, there
are four scenarios, as described in the sequel. It is worth
remembering that the 𝑃fa is not affected by the channel and,
thus, it does not need to be taken into account in the present
analysis.

4.1. Fixed and Normalized Channel. This is the scenario
considered in [4] and in the previous section. Just one channel
realization is used to compute theoretical results and in all
simulation runs; the entries of the channel matrix H are
independently drawn from any complex distribution. The
channel gains are normalized as h

𝑖
← h
𝑖
/‖h
𝑖
‖2, 𝑖 = 1, . . . , 𝑃.

From a theoretical viewpoint, the fixed channel realization
keeps the empirical results consistent with theoretical ones;
that is, the same channel gains that define the population
covariance matrix used in the theoretical computations are
used in all simulation runs. In spite of possibly resulting in
a good agreement between theoretical and empirical results,
depending on the system parameters, the different channel
realization used in each time that𝑃d is calculatedwill produce
shifts in the 𝑃d curves. Some results are shown in Figure 4
for 𝑃 = 3, with SNR1 = −1 dB, SNR2 = −3 dB, and
SNR3 = −10 dB and 𝐾 = 4 and 𝑁 = 50. The entries of
the channel matrixH in each channel realization were drawn
from a zero-mean complex Gaussian distribution. Notice the
different positions of the curves for different realizations of
H.

A correct way of applying the scenario of fixed and
normalized channel is to consider that H does not change;
that is, the entries ofH, even if drawn from any distribution,
should be stored and reused to represent the same set of
channel gains of the AWGN channels from the primary
transmitters to the sensors.

4.2. Fixed and Nonnormalized Channel. Again, just one
channel realization is used to compute theoretical results, in
all simulation runs, but the channel gains are not normal-
ized. The entries of the channel matrix are independently
drawn from any complex distribution. The transmission
power of the 𝑖th primary user is computed from (3) as
𝛾
𝑖

= 10SNR𝑖/10/‖h
𝑖
‖
2
2. Similarly to the previous scenario,
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Figure 4: Variation of the detection probability of the ST with four
different realizations of the channel matrix, for 𝐾 = 4, 𝑁 = 50,
𝑃 = 3, SNR1 = −1 dB, SNR2 = −3 dB, and SNR3 = −10 dB. Scenario
A: fixed and normalized channel.
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Figure 5: Variation of the detection probability of the ST with four
different realizations of the channel matrix, for 𝐾 = 4, 𝑁 = 50,
𝑃 = 3, SNR1 = −1 dB, SNR2 = −3 dB, and SNR3 = −10 dB. Scenario
B: fixed and nonnormalized channel.

the possibility of having a different channel realization in
each time that the detection probability is calculated will
produce shifts in the 𝑃d curves, as can be noticed in Figure 5.
The system parameters are the ones used in the previous
subsection. The fixed channel realization keeps the empirical
results consistent with theoretical ones and a good agreement
between theoretical and empirical curves can be obtained,
depending on the system parameters. Notice, however, that
the spread of the curve positions is even larger in comparison
with those in Figure 4. This is caused by an increase of



International Journal of Antennas and Propagation 7

1.00.90.80.70.60.50.4

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

𝜁

Empirical
Beta approx.

P
d(
𝜁
)

Figure 6: Variation of the theoretical detection probability of the
ST with four different realizations of the channel matrix, for 𝐾 = 4,
𝑁 = 50, 𝑃 = 3, SNR1 = −1 dB, SNR2 = −3 dB, and SNR3 = −10 dB.
Scenario C: time-varying and normalized channel.

the nonnormalized channel variability with respect to the
normalized channel variability.

A careful look at Figures 3 and 4 in the low 𝑃d region
allows one to see small disagreements between theoretical
and empirical results for some channel realizations. This is
to say that the Beta approximation under the hypothesis
H1 might not be accurate for any realization of the channel
matrixH, even if the system parameters are not changed.

4.3. Time-Varying and Normalized Channel. The channel
gains are normalized, but a new channel matrix H is ran-
domly chosen in each simulation run. Again, the entries
of H are independently drawn from any complex distribu-
tion. In order to obtain the desired SNRs, the transmission
power of the 𝑖th primary user is computed from 𝛾

𝑖
=

10SNR𝑖/10/E[‖h
𝑖
‖
2
2]. If the second moment of the magnitude

of the original channel gains isΩ, then 𝛾
𝑖
= 10SNR𝑖/10/Ω𝐾.

In this case a time-varying fading channel is being
considered, but this time variability can not be captured by
the theoretical results, since a single channel realization is
used to compute the population covariance matrix in (12).
A disagreement between theoretical and empirical results is
expected, as can be noticed from Figure 6. Notice also that
all empirical results merge together, as expected, since the
simulation captures the average influence of the time-varying
channel. Moreover, ‖h

𝑖
‖2 is now a random variable, which

means that the normalized channel gains do not anymore
follow the original and desired fading statistics. This can be
observed in Figure 7, where a Rayleigh probability density
function (PDF) is plotted along with empirical PDFs of the
magnitude of an entry of the normalized and nonnormalized
channel matrix. In this exemplifying situation, the entries
of H were independently drawn from a zero-mean complex
Gaussian distribution, which would correspond to a Rayleigh
fading channel if no channel normalization were made.
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Figure 7: Rayleigh PDF and empirical PDFs of the magnitude of an
entry of the normalized and nonnormalized channel matrix.

4.4. Time-Varying and Nonnormalized Channel. This is the
most realistic scenario from a practical point of view. The
channel gains are not normalized, and a new channel matrix
H is randomly chosen in each simulation run. Again, the
entries of H are independently drawn from any complex
distribution. The nonnormalized channel gains now follow
the original and desired fading statistics. The transmission
powers are computed in the same way described in the
previous scenario. Likewise the previous scenario, the time
variability of the channel cannot be captured by the the-
oretical analysis, and large disagreements between theoret-
ical and empirical results appear, as can be noticed from
Figure 8. Again, all empirical results merge together, since
the simulation captures the average influence of the time-
varying channel.The system parameters are the same as those
adopted in the previous scenario: Rayleigh fading channel,
𝐾 = 4, 𝑁 = 50, 𝑃 = 3, SNR1 = −1 dB, SNR2 = −3 dB,
and SNR3 = −10 dB.

5. A Simple Method for Computing the
Detection Probability of the ST over
Fading Channels

Awell-knownmethod for considering the random variations
of some parameter in the computation of a given quantity
is to average the expression for computing that quantity,
conditioned on the parameter, over the probability density
function of the parameter. In the present analysis, from (12)
it can be seen that the detection probability computed via
(14) can be regarded as being conditioned on the determinant
of the population covariance matrix Σ and can be rewritten
as 𝑃d(𝜁,Σ). Then, when the channel matrix is random to
represent a time-varying fading channel, the average detec-
tion probability can be computed by averaging the expression
of 𝑃d(𝜁,Σ) over the PDF of det(Σ), which in turn depends
on the channel statistics. The analytical derivation of this
average probability of detection is beyond our reach by
now. Nevertheless, we give a simple alternative numerical
computation of this average, as described and exemplified
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Figure 8: Variation of the theoretical detection probability of the
ST with four different realizations of the channel matrix, for 𝐾 = 4,
𝑁 = 50, 𝑃 = 3, SNR1 = −1 dB, SNR2 = −3 dB, and SNR3 = −10 dB.
Scenario D: time-varying and nonnormalized channel.

in the sequel. We call it a semianalytic solution. In [6], the
average probability of detection was computed by averaging
the expression of 𝑃d(𝜁) from [4] over the PDF of the fading
SNR. Since our semianalytic approach was validated here
with simulation results, there is a strong evidence that the
averaging procedure adopted in [6] is not the correct one,
though in a first look it seems to be.

Given the desired fading channel statistics, a number 𝐶
of random channel matrices is generated. The entries of the
matrix H

𝑐
, 𝑐 = 1, . . . , 𝐶, are independently drawn from any

complex distribution; the second moment of the magnitude
of each entry must be equal to 1 to guarantee the desired
received SNRs. For each of the channel matrices, a covariance
matrix is computed according to

Σ
𝑐
= 𝜎

2I
𝐾
+

𝑃

∑

𝑖=1
𝛾
𝑖
h
𝑖,𝑐
h†
𝑖,𝑐
, (16)

where h
𝑖,𝑐
is the nonnormalized 𝑖th column of the 𝑐th channel

matrix. We stress that the original channel normalization
used in [4] must not be applied, so that the desired fading
statistics are preserved.

For each covariance matrix Σ
𝑐
, detection probabilities

𝑃d(𝜁,Σ𝑐) for all values of 𝜁 are computed using (10)–(14), and
an estimate of the average detection probability is obtained as

𝑃d (𝜁) =
1
𝐶

𝐶

∑

𝑐=1
𝑃d (𝜁,Σ𝑐) . (17)

To illustrate the accuracy of this simple method, in
Figure 9 we present semianalytic and empirical results for
some sets of system parameters. The channel is a Rayleigh
fading channel and no channel normalization was applied,
meaning thatmisfits similar to those shown in Figure 8would
be produced by directly applying the expressions for 𝑃d given
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Figure 9: Empirical and semianalytic results for the ST, considering
a Rayleigh fading channel.

in [4]. We have used 𝐶 = 10000 in (17), but for practical
purposes good fits can be achieved with 𝐶 as small as 500.

Notice in Figure 9 that a misfit between the semianalytic
and the empirical results has been produced for the case of
𝐾 = 4, 𝑁 = 10, 𝑃 = 3, SNR1 = 5 dB, SNR2 = 3 dB,
and SNR3 = 0 dB, which is the set of system parameters
that have produced a misfit also in the case of the fixed-
gain AWGN channel, as shown in Figure 3. However, this
misfit has been inherited from the inaccuracy of the Beta
approximation underH1 for the corresponding parameters,
not from the average computed via (17).

We emphasize that the method just described can be
used with any distribution of the entries of the matrix H

𝑐
,

even with nonzero mean, broadening the applications of the
expressions derived in [4].

6. Performance of the ST Detector and
Other Competing Detectors

Complementing the numerical results in [4], in this sec-
tion the sphericity test (ST) detector is compared with the
eigenvalue ratio (ER) detector, John’s detector (JD), energy
detector (ED), largest eigenvalue (LE) detector, and scaled
largest eigenvalue (SLE) detector in terms of ROC curves.
The test statistics for these competing detectors are, respec-
tively, 𝑇ER = 𝜆1/𝜆𝐾, 𝑇JD = (∑

𝐾

𝑖=1 𝜆
2
𝑖
)/(∑
𝐾

𝑖=1 𝜆𝑖)
2, 𝑇ED =

(1/𝐾𝜎2
) ∑
𝐾

𝑖=1 𝜆𝑖, 𝑇LE = 𝜆1/𝜎
2, and 𝑇SLE = 𝜆1/tr(R).

As in [4], here we also consider the effect of the worst-
case noise uncertainty in the performances of the tests ED
and LE. In this case the noise variances under H0 and H1
become 𝜎2

/𝜌 and 𝜌𝜎2, respectively, where 𝜌 = 10𝜇/10 and 𝜇 is
the noise uncertainty in dB. These modified noise variances
are differently associated with H0 and H1 in [4]. Since the
results in [4] are consistent with the correct association, this
means that, in the comparison of the test statistics for the ED
and the LEwith the threshold, the noise variance information
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has been used in [4] differently from here. This is because,
also differently from here, these test statistics were defined in
[4] without the explicitness of the noise variance information.
Here, the worst-case noise variance underH0 clearly must be
𝜎
2
/𝜌, so that the test statistic is increased and the false alarm

probability is also increased. Similarly, the worst-case noise
variance under H1 must be 𝜌𝜎2, so that the test statistic is
decreased and the detection probability is also decreased.

6.1. Performance over Fixed-Gain AWGN Channels. In Sec-
tion 4.2 of [4], the sphericity test is compared with the
above-mentioned detectors. In Figures 3–5 of that paper,
such comparison has been made under the assumption of
fixed and normalized channel, using a single channel real-
ization for all results and all simulation runs. A performance
ranking has been established under this scenario. However,

as previously shown, different channel realizations change
the detection probabilities and, as a consequence, modify
the corresponding ROC curves. Since different detection
techniques can be differently affected by the channel gains,
the performance ranking, gaps, or both can be modified
from a channel realization to another. In this section we give
an example of this situation and discuss about the related
interpretations given in [4].

In Figure 10 we present ROC curves for all detectors
under analysis, considering that the channel matrix is the one
in (18). Since we do not know which channel matrix has been
used by the authors in [4], we have found this matrix through
an exhaustive search process, attempting to approximately
reproduce Figure 5(b) of [4]. All the system parameters are
the same as those considered in [4] for the case at hand.
Consider

H

=

[
[
[
[
[

[

0.1878 + 𝑗0.4163 0.3539 − 𝑗0.0895 −0.3016 + 𝑗0.1265 −0.4806 − 𝑗0.0363 −0.1745 − 𝑗0.6630 −0.3895 + 𝑗0.5486
0.1220 + 𝑗0.5053 0.1587 + 𝑗0.6116 0.7003 − 𝑗0.4480 0.3349 + 𝑗0.5010 −0.2929 − 𝑗0.1523 −0.0773 − 𝑗0.1913
0.1178 + 𝑗0.2158 0.3337 + 𝑗0.2820 0.0256 − 𝑗0.2876 0.2685 − 𝑗0.0383 0.1899 + 𝑗0.5371 0.4272 − 𝑗0.3968
0.1820 − 𝑗0.6540 0.0691 + 𝑗0.5214 0.0270 − 𝑗0.3432 −0.3007 − 𝑗0.4906 0.3082 − 𝑗0.0392 −0.2544 − 𝑗0.3163

]
]
]
]
]

]

.

(18)

In Figure 11 we give ROC curves for the channel matrix
(19) and the same parameters considered for constructing
Figure 10. The modification in the original ranking and
relative performance gaps of the detectors is apparent. From
this counterexample we can state that the interpretations in
[4] cannot be considered as general, since most of them
are strongly dependent on the channel realization used to
assess the performance of the detectors. This is not meant to

state that the original expressions of [4] cannot be applied to
AWGN channels with randomly chosen channel gains.These
gains must carry some useful information on the the physical
conditions of the channel in what concerns their magnitudes
and phase rotations. Simply coining some channel realization
from a given distribution does not bring too much for the
performance analysis of the cooperative spectrum sensing.
Consider

H

=

[
[
[
[
[

[

0.5486 + 𝑗0.0281 −0.3934 − 𝑗0.7678 −0.3409 − 𝑗0.4037 0.1353 − 𝑗0.0493 0.1204 − 𝑗0.3276 −0.4767 + 𝑗0.0147
0.3931 − 𝑗0.6747 −0.1228 + 𝑗0.0607 0.0221 + 𝑗0.3573 −0.0924 + 𝑗0.1552 −0.0280 − 𝑗0.4959 0.0651 + 𝑗0.3648
−0.0227 − 𝑗0.2457 −0.2453 + 𝑗0.2055 0.6902 + 𝑗0.0044 −0.0536 − 𝑗0.7262 −0.0522 − 𝑗0.7338 0.4022 + 𝑗0.1842
−0.0630 + 𝑗0.1538 −0.3655 + 𝑗0.0300 0.2622 − 𝑗0.2179 −0.2540 + 𝑗0.5932 0.1351 + 𝑗0.2683 0.5833 + 𝑗0.3151

]
]
]
]
]

]

.

(19)

Particularly referring to the comparison between the
performances of the ST and the JD, the variation of 𝑃d versus
the SNR for a fixed 𝑃fa = 0.01 is reported in Table 1 of
[4] for both detectors. The system parameters are 𝑃 = 2,
𝐾 = 4, 𝑁 = 50, SNR1 = −1, −0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3 dB,
and SNR2 = SNR1 − 2 dB. From that table the authors
of [4] have concluded that “when the SNRs of the primary
users increase (eigenvalues of Σ become more distinct), ST
detector achieves better performance than John’s detector,
though the difference is small.” Using the above parameters
and the channel matrix,

H =

[
[
[
[
[

[

−0.4837 + 𝑗0.5064 −0.1171 − 𝑗0.1642
0.5408 − 𝑗0.0564 −0.0427 + 𝑗0.0459
−0.1618 − 𝑗0.0989 −0.4287 − 𝑗0.7898
0.2222 − 𝑗0.3588 −0.3766 + 𝑗0.0781

]
]
]
]
]

]

, (20)

we have found results approximately equal to those in Table
1 of [4]. Our results are shown in Table 1 and certify the
above-mentioned conclusion for the given channel matrix.
The bold-face numbers indicate the higher 𝑃d for a given
SNR; the SNR corresponding to the crossing point between
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Table 1: Detection probability as a function of SNR1 using (20).

SNR1 in dB
−1 −0.5 0 0.5 1 1.5 2 2.5 3

Pd of ST 0.3544 0.4577 0.5756 0.6954 0.8018 0.8880 0.9462 0.9781 0.9928
Pd of JD 0.3688 0.4710 0.5843 0.6995 0.8042 0.8894 0.9447 0.9773 0.9923

Table 2: Detection probability as a function of SNR1 using (21).

SNR1 in dB
−1 −0.5 0 0.5 1 1.5 2 2.5 3

Pd of ST 0.5981 0.7092 0.8094 0.8891 0.9418 0.9740 0.9900 0.9968 0.9992
Pd of JD 0.6817 0.7807 0.8657 0.9260 0.9645 0.9848 0.9947 0.9984 0.9996
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Figure 10: ROCs over an AWGN channel, for 𝐾 = 4, 𝑁 = 100,
𝑃 = 6, SNR1 = 0 dB, SNR2 = −1 dB, SNR3 = −2 dB, SNR4 = −8 dB,
SNR5 = −10 dB, and SNR6 = −22 dB, with 𝜇 = 0.5 dB for the LE and
the ED. Approximate reproduction of Figure 5(b) of [4].

the performances of the JD and the ST is shifted from 0.5 dB
in [4] to 2 dB here. On the other hand, by using the channel
matrix

H =

[
[
[
[
[

[

−0.4596 − 𝑗0.6989 −0.4792 − 𝑗0.7290
0.3580 + 𝑗0.3349 −0.0949 + 𝑗0.1435
0.0310 − 𝑗0.2101 −0.3045 + 𝑗0.2642
0.1225 + 𝑗0.0054 −0.1251 − 𝑗0.1763

]
]
]
]
]

]

, (21)

we have obtained the results shown in Table 2, from where
we readily see the superior performance of the JD for all
SNR values (again, the bold-face numbers indicate the higher
𝑃d for a given SNR). In fact, we have observed that this
superiority has prevailed not only for 𝑃fa = 0.01, but in all
range [0, 1]. The difference in favor of the JD is higher than
the differences in favor of the ST or the JD reported in [4]. As
stated in [4], their performance gap is not expected to be large
due to their same asymptotic performance asmeasured by the
Pitman efficiency.Notice, however, that𝐾 = 4 and𝑁 = 50 are
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Figure 11: ROCs over an AWGN channel, for 𝐾 = 4, 𝑁 = 100,
𝑃 = 6, SNR1 = 0 dB, SNR2 = −1 dB, SNR3 = −2 dB, SNR4 = −8 dB,
SNR5 = −10 dB, and SNR6 = −22 dB, with 𝜇 = 0.5 dB for the LE
and the ED. Same scenario of Figure 5(b) of [4], but with a different
channel realization.

not large enough to be analyzed under the asymptotic regime,
which justify the larger gaps observed in Table 2. Moreover,
from Figure 11 it is clear the superior performance of the
JD for the given channel matrix (19), in the situation of the
number of primary users larger than the number of sensors.
This is in contrast with [4].

From the previous paragraph we see that the correspond-
ing conclusions drawn in [4] relative to the performances of
the ST and the JD are not always valid, for they depend on the
channel matrix realization and on the size of𝐾 and𝑁.

In the case of two sensors, the JD and the ST detectors
indeed achieve the same performance, since their test statis-
tics are the same, up to a linear transformation, when 𝐾 = 2.
Then, their performances change with the channel realization
but are the same. In the case of a single primary transmitter,
the JD is indeed preferable, no matter the realization of the
channel matrix. These statements are in agreement with [4].

Comparing the SLE and the ER detectors, it is concluded
in [4] that, when the number of active primary users is
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Figure 12: ROCs over a Rayleigh fading channel, for𝐾 = 4,𝑁 = 400, 𝑃 = 1, and SNR1 = −3 dB, with 𝜇 = 0 dB (a) and 𝜇 = 0.5 dB (b) for the
LE and the ED.

more than one, the ST detector outperforms the SLE detector.
However, from Figure 11 one can see a contradiction.

It is also stated in [4] that the ST always outperforms
the ER detector, which is justified by the fact that, “for the
ER detector, the test statistic depends only on the extreme
eigenvalues of the sample covariance matrix R, whereas
the test statistic of the ST detector is a function of all the
eigenvalues of R.” The superiority of the ST against the ER
can also be verified from our results.

Also agreeingwith [4], when there is nonoise uncertainty,
the ED and the LE detectors almost always outperform the ST
detector. However, the performances of the ED and the LE
detectors are very sensitive to noise uncertainty.

6.2. Performances over Time-Varying Fading Channels. In this
subsection, the performances of the detectors over fading
channels are assessed. New interpretations are given about
the performance raking and gaps. When considering a time-
varying fading channel, the interpretations are general for
the considered fading statistics, since the average detection
and false alarm probabilities capture the average influence of
the fading statistics, in addition to the average influence of
the transmitted signal and noise statistics. However, there is
still the possibility of variations in the performance ranking
and gaps due to different configurations of the SNRs, which
corresponds to different primary transmit powers, even if the
sumof these powers is kept unchanged.This is not considered
as an influencing situation in [4].

We consider Rayleigh fading channels from the primary
transmitters to the sensors. The channels are fixed during
the sensing interval and the entries of H are independently
drawn from a zero-mean complex Gaussian distribution
with unitary second moment. This situation corresponds to

the scenario D described in Section 4. The entries of the
transmitted signal matrix X and of the noise vector n are
drawn from a zero-mean complex Gaussian distribution.The
entries of the noise vector n have unitary variance. In order
to obtain the desired SNRs, the transmission power of the
𝑖th primary user is computed from 𝛾

𝑖
= 10SNR𝑖/10/𝐾, so the

entries of the 𝑖th rowofX have variance 𝛾
𝑖
.The analytic results

for the ST test were computed according to Section 5. To plot
each empirical ROC curve, 1000 equally spaced threshold
values were used in a Monte Carlo simulation with 5 × 10

6

runs. The minimum and maximum threshold values were,
respectively, obtained from the minimum and maximum
values of the test statistics under H0 and H1. These values
were precomputed from a separate Monte Carlo simulation
with 10000 runs. In simulations, the threshold for the ST
was varied throughout the corresponding range, and the
threshold for the remaining detectors were computed from
the ST thresholds as follows, taking the ER test as an example
(the other ones were determined analogously):

𝜁ER = (𝜁ST − 𝜁STmin
)(

𝜁ERmax
− 𝜁ERmin

𝜁STmax
− 𝜁STmin

)+ 𝜁ERmin
. (22)

In Figures 12–14 we have adopted the same system
parameters used to plot Figures 3–5 of [4], respectively, but
only for 𝜇 = 0 dB and 𝜇 = 0.5 dB. To plot Figures 15 and
16 we have used the parameters adopted in [4] for Figures
4 and 5, respectively, but only for 𝜇 = 0.5 and for equal
SNRs (equal primary transmitters’ powers), keeping the same
total transmit power. These parameters are summarized in
the captions of these figures.

The first important observation from Figures 12–16 is
the close agreement between the empirical and semianalytic
performances of the ST, again certifying the accuracy of the
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Figure 13: ROCs over a Rayleigh fading channel, for 𝐾 = 4, 𝑁 = 200, 𝑃 = 3, SNR1 = −1 dB, SNR2 = −3 dB, and SNR3 = −10 dB, with
𝜇 = 0 dB (a) and 𝜇 = 0.5 dB (b) for the LE and the ED.
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Figure 14: ROCs over a Rayleigh fading channel, for 𝐾 = 4, 𝑁 = 100, 𝑃 = 6, SNR1 = 0 dB, SNR2 = −1 dB, SNR3 = −3 dB, SNR4 = −8 dB,
SNR5 = −10 dB, and SNR6 = −22 dB, with 𝜇 = 0 dB (a) and 𝜇 = 0.5 dB (b) for the LE and the ED.

method proposed in Section 5. It is in order to highlight that
the small disagreement observed in Figures 13 and 15 (and
before in Figure 3) is a consequence of the inaccurate Beta
approximation underH1, not from the method described in
Section 5.

As in the previous subsection, let us first compare the
performances of the ST and the JD detectors. From Figures
12–16 one can see that their performance gap is not large, but

the JD outperforms the ST in all situations analyzed, with
a very small gap in the case of Figure 16. Even in higher
SNR regimes, we did not find a situation in which the ST
performs better than the JD in the fading channel, as found in
the case of the nonfading channel. However, from the small
gap shown in Figure 16, we believe that such situation can
show up in the fading environment. As highlighted in [4], a
complete understanding of the conditions under which the
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Figure 15: ROCs over a Rayleigh fading channel, for 𝐾 = 4, 𝑁 =

200, 𝑃 = 3, and SNR1 = SNR2 = SNR3 = −3.3239 dB, with 𝜇 =

0.5 dB for the LE and the ED.
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Figure 16: ROCs over a Rayleigh fading channel, for 𝐾 = 4, 𝑁 =

100, 𝑃 = 6, and SNR1 = SNR2 = SNR3 = SNR4 = SNR5 = SNR6 ≈

−3.6986 dB, with 𝜇 = 0.5 dB for the LE and the ED.

JD outperforms the ST, or vice-versa, seems difficult due to
the nonexistence of an accurate analytical ROC computation
for the JD test.

In the case of two sensors, since the JD and the ST test
statistics are the same, up to a linear transformation, their
performances are the same also in the fading channel.

From Figures 13–16 one can observe that the SLE detector
outperforms the ER detector only in the situation depicted

in Figure 13. This partially contradicts the conclusion in [4]
which states that when the number of active primary users is
more than one, the ST detector outperforms the SLE detector.

Agreeing with the arguments in [4], which also apply
to the fading channel, one can see that the ST always
outperforms the ER detector.

Also agreeingwith [4], when there is nonoise uncertainty,
the ED and the LE detectors always outperform the ST
detector. However, the performances of the ED and the LE
detectors are very sensitive to noise uncertainty.

Finally, now we investigate the possibility of variations in
the performance ranking and gaps due to different configu-
rations of the SNRs, which corresponds to different primary
transmit powers. Figures 15 and 16 report results for equal
SNRs, keeping the same total transmit power adopted for
the scenarios depicted in the lower part of Figures 13 and 14,
respectively. In both figures one can notice changes in per-
formance ranking and gaps. All tests had their performances
degraded from the situation of unequal SNRs to equal SNRs,
except the ED, which has unveiled an improvement. It is an
expected result, since the combination of the energies from
each sensor becomes optimum when the SNRs are the same
[7]. The LE detector seems to be less sensitive to the change
from the unequal to the equal SNRs. The JD, ST, ER, and
SLE have approximately the same sensitivity, although the
smaller sensitivity of the ER in the case of 𝑃 = 3 has been
enough for allowing it to be bet by the SLE detector from
the equal to the unequal SNRs scenario. Also, from Figures
15 and 16, it can be noticed that the sensitivity to the change
from the unequal to the equal SNRs is larger for the JD, ST,
ER, and SLE tests when the number of primary transmitters is
larger.

The variations in the performance ranking and gaps
due to different configurations of the SNRs can be justified
as follows: although the eigenvalues of the received signal
covariance matrix carry the interaction of the 𝑃 signal
eigenvalues and the 𝐾 − 𝑃 noise eigenvalues, their spread
is highly influenced by the transmit powers. Since the test
statistics operate differently on the eigenvalues, it is rea-
sonable to expected that they will be affected in different
amounts for different sets of the transmit powers.This fact has
also been noticed in [8], in the context of eigenvalue-based
estimation of the number of sources, where one can see the
large influence of the source powers on the accuracy of the
estimate.

If the results considering a fading channel are compared
with those considering nonfading scenarios, one can notice
the small performance degradation when fading is taken
into account. This expected small degradation is due to
the diversity gain (proportional to 𝐾) produced by the
cooperative spectrum sensing over fading channels.

Last but not least, if we compare the performances of the
ST over Rayleigh fading channels, as shown in Figures 12, 13,
and 14, with those in Figures 3, 4 and 5 of [6], respectively,
we can see that they are not in agreement. This confirms our
belief that the expression used to compute the probability
of detection derived in [6] is not correct, since our analytic
results were validated by simulations; no simulation results
were given in [6] for validating the results reported.
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7. Conclusions

In this paper we have shown that the system model adopted
in [4] does not apply directly to fading channels, yet
being considerably inaccurate for some system parameters
and channel conditions. We have shown that the original
expressions from [4] can be simply and accurately applied
to a modified model that considers fixed or time-varying
channels with any fading statistic. We have also analyzed
the performance of the sphericity test and other competing
detectors with a varying number of primary transmitters,
considering different situations in terms of the channel gains
and channel dynamics. Based on a bunch of new results,
we have corrected several interpretations from [4] in what
concerns the performance of the detectors, not only over a
fixed-gain additive white Gaussian noise channel, but also
over a time-varying Rayleigh fading channel. Some typos
identified in [4] have been corrected as well.

The main conclusions drawn from our results are related
to the comparison among the sphericity test and other detec-
tors. Although some well-grounded interpretations given in
[4] were verified in this paper, some of them were contra-
dicted, mainly because the high influence of the channel
realization used for computing the detection probability over
a fixed-gain AWGN channel. Specifically, a single channel
realization randomly obtained from a given distribution
cannot be used to access the performance of the spectrum
sensing, unless this single realization carries some physical
meaning in what concerns the actual channel over which
the system is expected to operate. Based on this fact, we
have identified the possibility of changes in the performance
ranking and performance gaps of the detectors depending
on the coined channel matrix. Moreover, we have also
identified that the performance ranking and gaps are also
affected by theway inwhich the primary transmission powers
are distributed, which further prevents the assumption of
all conclusions and interpretations given in [4] as general
ones.

Along with the expressions in [4], the results reported
here constitute important tools for the understanding, the
design and the analysis of the sphericity-test-based cooper-
ative spectrum sensing and other competing detectors over
fading and nonfading channels, in the presence of multiple
primary users.
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