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Abstract—The cooperative power spectral density split can-
cellation (CPSC) method was recently proposed for cooperative
spectrum sensing, with the novelties of being robust against
noise uncertainty and having low computational complexity. The
probability of false alarm has been derived in the related paper,
but under assumptions that make it inaccurate. In this letter
we derive the correct cumulative distribution functions of the
main random variables that form the decision statistic of the
CPSC model. We also derive the correlation coefficient between
sub-band decisions, a necessary information that was neglected
in the reference paper, leading to an expression for the final
probability of false alarm that is more accurate than the original
one. Our theoretical results are validated with simulations.

Index Terms—Cognitive radio, cooperative power spectral
density split cancellation, spectrum sensing.

I. INTRODUCTION

HE cognitive radio (CR) concept has emerged as a

potential solution for the scarcity and idleness of the
electromagnetic spectrum in wireless communication systems
[1]. Among a myriad of cognitive tasks, the spectrum sensing
is the one that enables the opportunistic access of the CRs
of a secondary network to the vacant bands of a primary
network. Cooperative spectrum sensing (CSS) techniques have
been developed to reduce the complexity of the CR and to mit-
igate channel impairments in order to improve performance,
taking advantage of spatial diversity [2]. In centralized CSS
schemes, the sensor information from the CRs are combined
at the fusion center (FC) of the CR network, where the final
decision upon the occupation of the sensed band is made.
The information that the CRs send to the FC can be either
individual CR decisions or some soft information derived from
samples of the signals received by the CRs. The former is
known as decision fusion and the latter is usually referred to
as data fusion.

The present paper considers the cooperative power spectral
density split cancellation (CPSC) method proposed in [3],
which can be cast as a data fusion scheme. The most important
characteristics of this method are the low computational com-
plexity and the robustness against dynamical noise, or noise
uncertainty. In [3], the authors present the CPSC algorithm,
give the stochastic properties of the power spectral density
(PSD) of the received signal, derive the expressions for the
probability of false alarm (PFA) and the decision threshold,
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and show simulation results in terms of the receiver operating
characteristic (ROC) curves, attesting the robustness of the
method under dynamical noise.

Here we derive the cumulative density functions (CDFs)
of the random variables that form the decision statistic of
the CPSC model, showing that the corresponding ones as
given in [3] are not correct. Specifically, we consider the
influence of the correlation coefficient between these random
variables. We also derive the correlation coefficient between
the random variables that are associated to the CR decisions
in the sub-band level. These correlations were not taken into
account in [3], but we point out that they are intrinsic to the
CPSC method. By neglecting them, inaccurate PFA results are
produced. An approximate, yet more accurate expression for
the PFA is also derived here, and verified against simulation
results. Additionally, the CPSC method is generalized in this
letter by considering both symmetric and non symmetric
PSDs; originally, only symmetric PSDs were assumed.

The remaining of the paper is organized as follows: Section
IT briefly describes the CPSC method and give the main
definitions from [3] that allow for the readability of the rest of
the manuscript. The new CDFs related to the PFA and the new
expression for the PFA are derived in Section III. In Section
IV our theoretical results are contrasted with simulations and
with those obtained from the expressions in [3]. Section V
concludes the paper. For the sake of consistence, the same
notation of [3] is adopted here.

II. THE ORIGINAL CPSC METHOD

Consider that the received signal x,(t) [3, eq. (1)] at the
u-th CR, v = 1,2,...,U is sampled, producing a discrete-
time signal z,,(n), n =0,1,..., M — 1, being M the number
of samples collected by each CR. Briefly, the CPSC method
follows the steps: 1) Estimate the PSD of x,,(n) as Fy,(k), k =
0,1,..., M —1[3, eq. (3)]; 2) Divide F, (k) into L sub-bands
with V' elements in each, so V' = M/ L, such that M and V are
even. For each CR, the power in the total (full) band and in the
l-th sub-band, [ = 1,2,..., L, are respectively computed from
Fruu = Y37 Fu(k) and Fr = S0 Fu (L= D)V 4 B
3) To cancel the noise effect, compute r,(l) = Fu/Ffui,u
for each sub-band and each CR; 4) Average r,(l) over all CRs
to obtain the decision variable (or test statistic) for each sub-
band, 74.,4(1) [3, eq. (7)]; 5) Compare r4,4(l) to the decision
threshold + in order to decide upon each sub-band occupation,
according to [3, eq. (8)]; and finally 6) Make the final decision
according to the rule in [3, eq. (9)].

Writing Z = r, (1) for notational simplicity, the conditional
CDF of Z under the null hypothesis, P[Z < z|Ho] =



Cu(z|Ho), is given in [3, eq. (28)], and the PFA, Py ;(v),
for each sub-band is given by [3, eq. (30)]. The global PFA,
Py (), is then computed from [3, eq. (31)].

III. NEW EXPRESSIONS IN THE CPSC METHOD

In this section, new expressions for the CDFs of r,(l)
and rq,g(l) are derived. A new expression for the global
PFA is derived as well. From these expressions and from the
results presented later on in this paper one can infer on the
inaccuracies of [3, egs. (28), (30), (31) and (32)].

A. Cumulative distribution functions

The thermal noise term in the model proposed in [3] is
a circular symmetric complex Gaussian (CSCG), independent
and identically distributed (i.i.d.) random process with variance
O’Z, not necessarily identical for different CRs. The n-th
sample of the noise waveform at the u-th CR is w,(n) =
wl(n) + jw! (n), where the superscripts denote the real (r)
and the imaginary (¢) part of the noise, which are both zero
mean Gaussian random variables with variance ¢2/2, and
independent from each other.

The first point to consider is that the summations that
form Fyy,, and F;, consider M/2 and V/2 terms respec-
tively, under the assumption that the PSD F, (k) is sym-
metric. However, in order to make the CPSC method more
general, it is considered here the summations of S x M
and S x V terms, respectively, with S = 0.5 in the case
of a symmetric F,(k), and S = 1 otherwise. So, Fryuy v

and Fj, become respectively Fyi., = ﬁixls F,(k) and
F.= kV:XlS F,[(I—=1)V + k]. Denoting the expectation

and variance operators respectively by E(:) and V(-), from
[3] we have E[F,(k)|Ho] = o2 and V[F,(k)|[Ho] = oL
Then, it is easy to see that E[Ffu.|Ho] = S x Mo?2,
V[Ffull,u|7't0] = 5 x Maﬁ, E[Fl,u|H0] = 5 x VO'?L and
V[F,u|Ho] = S x Voil. Once again, in the case of S = 0.5
these last four values specialize to those reported in [3].

For large values of M and V, Fyy, and Fj, will tend to
be Gaussian random variables according to the central limit
theorem (CLT), an assumption also adopted in [3]. Then, 7, ({)
will be the ratio of two Gaussian random variables. The CDF
of this ratio, as given in [4, eq. (4)], is

P[Z < z[H,] :1-@(“22_”1), (1)
0'102(1(2)
Where Qz) = [~ \/%ex.p (—4t%) dt, py and po are respec-
tively the mean of the variables F; ,, and F'fy,,, and o1 and
o9 are the corresponding standard deviations, with
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where p is the correlation coefficient between Fj ,, and F'ryg .
This correlation coefficient has been neglected in [3], and we
have found it to be (see Appendix A)

p=1/VL. 3)

It is worth mentioning that equation (1) is a simplification
which assumes that o5 < po. In the present derivation, it

corresponds to assuming that \/SMo4 < SMo2, which is a
reasonable assumption, specially as M gets larger (recall that
a large M has already been an assumption here and in [3] so
that the CLT applies to the distribution of Fj,, and Flfy ).

By substituting the mean and the standard deviation of Fj ,,
and F'yy, in (1), the correct CDF of r, (1), that is P[Z <
z|Ho), is given by

V—-Mz

One can see that (4) does not become equal to [3, eq. (28)]
by setting S = 0.5. To arrive at the CDF of 4,4(!), and conse-
quently Py ;(v), as in [3] we have used the fact that this CDF
obeys the same distribution of 25:1 F ./ 25:1 Frui,- Un-
der the same reasoning adopted to derive (4), the correct PFA
in each sub-band is given by

Pr()=1-Q (@ LoD
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where the second term in the right-hand part is the CDF of
Tavg(l). In this case it is also clear that setting S = 0.5 does
not make (5) equal to [3, eq. (30)].

Therefore, equations (4) and (5) unveil that the results given
in [3, eq. (28) and (30)], respectively, do not correspond to the
random variables to which they are related.

B. Final probability of false alarm

The correlation between Fj, and Flyy,, derived in the
Appendix A also influences the global PFA through the way
that the associated CDFs are operated in the final expression
for the PFA. Specifically in the case of the expression [3, eq.
(31)], we have also found that it is not taking into consideration
this correlation. This can be concluded by noticing firstly that
this expression results as the probability of at least 1 success
in L uncorrelated binary (Bernoulli) trials. The successes
correspond to false alarm events at the sub-band level, i.e.
deciding in favor of H; given H for each sub-band; see [3,
eq. (8)]. However, these events are correlated, since 1g.,4(()
and ravg(z') are correlated for [ # 4. This is immediate
from the definition of 74,4(l) in [3, eq. (7)], and from the
nonzero correlation coefficient between Fj,, and Fyy , i.€.
p = 1/\@ One must recall that, even if [3, eq. (31)] were
originally written to consider that the implicit Bernoulli trials
were correlated, the use of the inaccurate CDFs [3, egs.
(28) and (30)] would still produce inaccurate results. In what
follows we give a correct, yet approximated derivation of the
global PFA from the joint cumulative distribution function
(JCDF) of the decision variables at the sub-band level, which
completely takes into account the level of correlation between
Tavg(l) and 7g,,4(1).

Consider the random vector R = [Ry, Rs,...,R]T,
where []T means transpose, and where the elements are
Ry = rqug(l), I = 1,2,...,L, for the sake of notational
simplification. The JCDF of R is defined as Fgr(r) =
Fr, Ry,.. R, (T1,72,...,7L), With 71,79, ... 7 correspond-
ing to the decision threshold . From the final decision rule [3,
eq. (9)], one can see that Fr(r) corresponds to the probability



that the final decision is in favor of H, and, therefore, the
global PFA can be written as

Y[ Ho)- (6)

If it is considered that the decisions at the sub-band level are
independent of each other, which means independence among
the elements of R, equation (6) is simplified to [3, eq. (31)].
However, it was found that any two elements R; and R; of
R, for [ # i, exhibit a correlation coefficient of (see Appendix
B)

Pf(’Y) =1- FR17R27~~~,RL ('Y,"Y, s

from where one can see that pg,r, approaches zero as
the number of sub-bands L increases, as expected. For
small values of L, [3, eq. (31)] becomes not valid because
Fry Ro.... R, (7s7,---,¥|Ho) can not be written as the CDF
of Ry raised to the L-th power.

The probability density function (PDF) of R;, denoted by
fr(7), can also be derived considering the simplified PDF
of the ratio of two Gaussian random variables as given in [4,
eqg. (9)], in which we have replaced the mean and the standard
deviation of 25:1 F, , and 23:1 Ffuii,u, and the correlation
between them, p =1/ \/Z The result PDF turned out to be

abyv2exp [a/(y? — 2v/L +1/L)]
VUSMr(y2 —2v/L +1/L)3

where a = SUV(1l - 1/L)/2 and b =
exp [-2SU(M —V)/(4(1 — 1/L))].

Although fgr(y) is not Gaussian, we have generated and
analyzed 100000 samples of R; under several system parame-
ters and observed that it fits a Gaussian random variable with
a p-value of 0.48 or higher under the Kolmogorov-Smirnov
goodness-of-fit test. In this case its variance can be computed
as 0, = E[R}?] —E?[R,], in which E*[R;] = 1/L? and E[R}]
is calculated numerically as E[R?] = [ +2 fr(7)dy.

Then, it is possible to arrive at an approximate expression
for the joint PDF (JPDF) of R, as given by the Gaussian JPDF

fr(y) =

; ®)

Ir(r1,re, .., 7L[Ho) =
1 1 T -1 ) )
e ep|—c—1/L)S (r—1/1)),
e (g ey
where r = [ri,7r9,...,7.]T, with elements rq,72,...,77

corresponding to the decision threshold v in [3, eq. (8)].
|X| is the determinant of the covariance matrix X, whose
diagonal elements are afwg and the off-diagonal elements are
PRiR:Or,,, » With pg, g, obtained from (7). The JCDF of R is

Tav

then given by

FR(Tl, ro,... ,TL|H0) =
T1 TL

/ / Ry, rh, . v [ He)dridrh .. dr'
— 00 — 00

which can be solved numerically. Finally, the approximate
global PFA can be found by operating equation (9) in (10),
and then operating the result in (6).

Obviously, since the expression [3, eq. (31)] is not correct,
the expression for the decision threshold ~y given in [3, eq.
(32)] is also inexact.

(10)

IV. NUMERICAL RESULTS

This section aims at validating the expressions derived in
this paper, which are the CDFs of r, (1) and 74,4(l), and the
approximate expression for the PFA, also comparing results
obtained from these expressions and those obtained from the
original expressions in [3]. To do so, the CPSC method was
simulated under the H, hypothesis via 20000 Monte Carlo
events. We have set M = 1000, L = 5 and U = 5.
Considering that the noise signal is complex, its PSD is non-
symmetric, therefore we have set S = 1; the same conclusions
drawn from this case also apply when S = 0.5. Notice that to
use S = 0.5, the received signal at the CRs must be real.

Fig. 1 shows the CDFs of r,(I) and 74,4(l) as given
respectively by [3, eq. (28)] and the second term in the right-
hand side of [3, eq. (30)], along with the corresponding CDFs
derived in this paper, that is, (4) and the second term in the
right-hand side of (5). The associated empirical CDFs from
simulations are also shown, considering [ = 1 without loss of
generality. We point out that to plot the theoretical results from
[3], we have set M = 2000 because the original expressions
consider S = 0.5 (refer to Subsection III-A). From Fig. 1 it is
clear the adherence between the simulation results and those
obtained from the CDFs derived in this paper. It is also evident
the large discrepancy between the CDF of r, () derived [3]
and the corresponding CDF derived in this paper. Regarding
the CDF of r4,4(1), the discrepancy is less pronounced, though
it can be seen by magnifying the curves.

In terms of performance, Fig. 2 presents ROC curves in
which the probability of detection P; was computed from
the empirical CDF of the test statistic [3, eq. (7)] under the
hypothesis H;, and the probability of false alarm P; was
computed using the associated expressions from [3] and those
derived here. Monte Carlo simulation results are also shown.
The signal-to-noise (SNR) ratio at the CRs was set to —10
dB in the case of M = 1000 and L = 5, and it was set
to —25 dB in the case of M = 50000 and L = 25. To
plot the corresponding theoretical results from [3], we have
respectively set M = 2000 and M = 100000. For M = 1000
and L = 5, it is clear from this figure that our result is in
agreement with the simulation, whereas the result obtained
from the expressions in [3] is considerably inaccurate and
overestimates the spectrum sensing performance.

If M is large and L is further increased, with V' = M/L
large, then p and pg,r, will tend to zero. In this case, the
expressions derived in [3] become valid, and the theoretical
results obtained from [3] tend to merge with ours and with
the simulations, as shown in Fig. 2 when M = 50000 and
L = 25, mainly at low values of PFA.

For small L, as M is decreased our results and those from
[3] are still different from one another, but they tend to depart
from the simulations because the CLT becomes not applicable,
since the sub-band decision variable will tend to exhibit a less
Gaussian behavior. In this case, however, our results stay closer
to the simulations than those from [3]. This can be verified
in Fig. 3, in the group of ROC curves associated to L = 5.
For this figure M = 100 and the remaining parameters are
identical to those adopted in the case of Fig. 2. Again, the



result obtained from the expressions in [3] overestimates the
spectrum sensing performance.

Now, if L is increased and the remaining parameters are
kept as in the previous paragraph, our results and the ones
from [3] merge, but they depart from the simulations, again
due to the noncompliance with the CLT. This situation can
be seen in Fig. 3, in the group of ROC curves associated to
L = 25.
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Fig. 2. ROC curves for different values of SNR, M and L with U = 5.

V. CONCLUSIONS

The intrinsic correlations associated with the random vari-
ables that form the test statistic of the CPSC method were not
taken into account in [3], resulting in inaccurate expressions.
By taking into account these correlations, in this letter we
derived more accurate expressions and validated them against
simulation results. Given the robustness against noise uncer-
tainty and the low computational complexity of the CPSC
method, new deployments of it are to come and will benefit
from the expressions derived here.
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APPENDIX A
CORRELATION COEFFICIENT BETWEEN Fj ,, AND Fpy 4

For notational simplicity, let us define the random variables
X=F.Y=Fpu,and W=Y —X.If VIX] = 02, then
V[Y] = L x o2, since there are L sub-bands and F ,, is inde-
pendent of F; ,, for [ # i. The correlation coefficient between
X and Y is then p = (E[XY] - E[X]E[Y])/+/V[X]V[Y],

which can be rewritten as

p = (E[X°] + E[XW] - B*[X] - E[X]E[W])/(02VL).
(11)
Using the fact that E[XW] = E[X]E[W] from the inde-
pendence between Fj, and Fj, for [ # 4, and the identity
E[X?] — E2[X] = 02, then (11) simplifies to (3).

APPENDIX B
CORRELATION COEFFICIENT BETWEEN R; AND R;

The correlation coefficient between R; and R; is
prir; = (E[RiR;] — E*[R)])/(E[R}] — E*[Ry]).  (12)

From [3, eqgs. (6) and (7)] one can realize that Zle R; =
S Tavg(l) = 1. Then Ry = 1- Y17, 1 Ru, from where,

)

under the reasonable assumption that E[R,] = E[Ry]--- =
E[RL], one obtains E[R;] = 1/L and E[R,R;] = (E[R)] —
E[R?])/(L — 1). Substituting these results in (12), and after
some simple manipulations, for [ # 4, (7) is found.
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