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Abstract—The cooperative power spectral density split can-
cellation (CPSC) algorithm for spectrum sensing has low com-
putational complexity and is robust under dynamical noise. We
propose a novel circular folding CPSC (CF-CPSC) algorithm that
expressively outperforms the original CPSC. Making use of the
incomplete regularized Beta function, the cumulative distribution
functions of the main random variables that form the decision
statistic of the CF-CPSC model are derived. It is also derived an
expression for the global probability of false alarm of the CF-
CPSC, which is particularized to an approximate simple closed
form that yields very accurate results. A closed-form expression
of the decision threshold is provided as well. The analytical results
are verified by Monte Carlo simulations. Other simulation results
are provided to demonstrate the suitability of the CF-CPSC for
scenarios of practical interest.

Index Terms—Cognitive radio, cooperative power spectral
density split cancellation, spectrum sensing, dynamical noise.

I. Introduction

THE development of new wireless communication systems
will have to cope with the exponentially increasing ser-

vice demand, and with the spectrum scarcity inherited by the
fixed channel allocation policy adopted around the world. A
potential solution is the cognitive radio (CR) concept, which
allows for an efficient use of the radio resources [1]. One of
the CR objectives is the dynamic access to the radio-frequency
spectrum. To this end, each secondary user (SU) of the CR
network has to implement the spectrum sensing function,
which consists of collecting samples from the licensed user, or
primary user (PU) signal in order to find vacant bands (spectral
holes) for subsequent access.

Studies have shown that multipath fading and shadowing
contribute to the performance degradation of the the spectrum
sensing, and that cooperative spectrum sensing (CSS) schemes
can combat these impairments and reduce the complexity of
the CRs [1]. In the centralized data-fusion CSS, which is one
of the CSS schemes, the CRs in cooperation send the collected
samples of the received signal, or some information derived
from these samples to a central element of the secondary
network, known as fusion center (FC). The FC makes a
global decision about whether the sensed bandwidth is vacant
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or not. Nonetheless, noise variance differences at the input
of the CRs may degenerate the CSS performance; robust
spectrum sensing techniques have been developed to tackle this
problem, for instance the cooperative power spectral density
split cancellation (CPSC) method [1], [2]. The effectiveness of
the algorithm that combines data from various CRs to reach
the global decision is critical, since incorrect detections affect
the throughput of the SUs and may cause interference to the
PUs. Consequently, designing such an algorithm is a challenge
to be faced.
The CPSC method originally proposed in [1] has the main

advantages of low computational complexity and robustness
against dynamical noise. In this letter we propose a modified
CPSC algorithm, which we call circular folding CPSC (CF-
CPSC). Significant performance improvements of the CF-
CPSC over the original CPSC are reported. We also derive the
cumulative distribution function (CDF) of the main random
variables that form the decision statistic of the CF-CPSC
model, and an expression for its global probability of false
alarm (PFA). This expression is then particularized to a simple
approximate closed form. Monte Carlo simulations confirm the
accuracy of the analytical results.

II. System Model and the CF-CPSC Algorithm
During the sensing interval, the n-th sample, n = 1, . . . , M ,

M even, of the signal received from the PU transmitter by
the u-th CR, u = 1, 2, . . . ,U, is xu (n) = wu (n) under
the H0 hypothesis (absence of the PU signal), or xu (n) =∑Z−1

z=0 hu (z)s(n − z) + wu (n) under the H1 hypothesis (pres-
ence of the PU signal), with wu (n) being the circularly-
symmetric additive Gaussian noise with zero mean. UnderH1,
the unknown and deterministic transmitted PU signal s(n) is
convolved with the unknown Z-tap channel impulse response
hu (z) that represents the time-varying channel between the
PU and the u-th CR, which is assumed to be fixed during
the sensing interval. If Z = 1, hu (z) denotes a flat and slow
shadowed-fading channel. If Z > 1, hu (z) corresponds to a
frequency-selective and slow shadowed-fading channel.

A. The CF-CPSC Algorithm
The proposed CF-CPSC algorithm follows the steps:

1O Compute Xu (k), the discrete Fourier transform (DFT) of
xu (n), k = 1, . . . , M .
2O Compute the instantaneous power spectral density (PSD) of
xu (n) as F ′u (k) = |Xu (k) |2 /M , and compute Fu (k) as

Fu (k) =



F′u (1)+F′u (M/2+1)
2 , k = 1

F′u (k )+F′u (M−k+2)
2 , k = 2, 3, . . . , M .

(1)
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3O Divide Fu (k) into 2L sub-bands, with V = M/(2L)
samples each. Compute F`,u =

∑V
k=1 Fu [(` − 1) V + k], with

` = 1, 2, . . . , L denoting the `-th sub-band, and Ffullu =∑M/2
k=1 Fu (k), where ` up to L and the sum up to M/2 can be

adopted due to the even symmetry of Fu (k) about M/2 + 1.
4O To cancel the noise variance, compute, for each sub-band
and each CR, ru (`) = F`,u/Ffullu , which form the test statistics
that will be sent to the FC.
5O At the FC, average ru (`) over all CRs to obtain the decision
variable for each sub-band, which is ravg(`) =

∑U
u=1 ru (`)/U.

6O Compare ravg(`), ` = 1, 2, . . . , L, with the threshold γ in
order to decide upon each sub-band occupation: if ravg(`) < γ,
decide H0; decide H1 otherwise.
7O Make the final decision H0 if all sub-bands were decided
H0; decide H1 if at least one sub-band was decided H1.
The fundamental difference between the original CPSC of

[1] and the proposed CF-CPSC is in step 2O: in the CPSC al-
gorithm Fu (k) = F ′u (k); here it is applied a modified circular-
even component [3, eq. (5.33)] of F ′u (k) in which Fu (1) =
F ′u (1) was changed to Fu (k) = [F ′u (1) + F ′u (M/2 + 1)]/2. The
acronym CF-CPSC was coined due to the fact that the circular-
even component of a sequence is defined based on the circular-
folding operation [3, p. 169].

B. Mean and Variance of Power Spectral Densities

The mean and variance of Fu (k) and F ′u (k), k > 1,
are derived in this subsection to reveal why the CF-CPSC
outperforms the CPSC. Intermediate tedious derivations are
omitted due to space restrictions.
Let the PU signal samples be written as s(n) = sI(n) +

j sQ(n), and let S(k), SI(k), SQ(k), Wu (k) and Hu (k) be the
DFTs of s(n), sI(n), j sQ(n), wu (n) and hu (z), respectively. In
order to confer tractability to the derivations, it is assumed a
flat fading channel, i.e. Hu (k) is the same for all k. Dropping
the CR index u and the frequency index k for the notational
simplicity, F ′u (k) and (1) are written respectively as

F ′u (k) = FsI + FsQ + FsIsQ + Fe
w + Fo

w + Fe
sw + Fo

sw (2)
Fu (k) = FsI + FsQ + Fe

w + Fe
sw, (3)

where the superscripts e and o denote circular-even
and circular-odd [3, eq. (5.33)] components, respectively.
FsI = |Hu (k) |2 |SI(k) |2/M , FsQ = |Hu (k) |2 |SQ(k) |2/M
and Fw = |W (k) |2/M=Fe

w+Fo
w are PSDs, with FsI and

FsQ being circular-even sequences. Using the superscripts
r and i to denote real and imaginary parts, respectively,
FsIsQ=2|Hu (k) |2

[
Sr
I (k)Sr

Q(k) + Si
I (k)Si

Q(k)
]
/M and Fsw =

2[(Hu (k)S(k))r W r(k)+ (Hu (k)S(k))i W i(k)]/M = Fe
sw+Fo

sw

are cross-PSDs, with FsIsQ being circular-odd.
Denoting E[·] as the expectation operation, it follows

that E[F ′u (k)]=E[FsI ]+E[FsQ ]+E[Fe
w], since E[Fo

w]=0 from
the definition of the odd component of a sequence and
the independence between different elements of W (k), and
E[Fe

sw]=E[Fo
sw]=0 from the independence between signal and

noise. Consequently, E[F ′u (k)]=E[Fu (k)], meaning that the
circular-even operation given by (1) does not change the mean
of F ′u (k) with respect to Fu (k).

To compute the variance of F ′u (k) and Fu (k), the
pairwise covariances of the right-hand side terms of
(2) and (3) must be derived. From [1, eqs. (11)
and (12)], E[W (k)]=E[W r]=E[W i]=0, and from the as-
sumption of zero-mean sI(n) and sQ(n), E[S(k)] =

E[Sr
I (k)]=E[Si

I (k)]=E[Sr
Q(k)]=E[Si

Q(k)] = 0. Stemming
from the fact that the covariance C[·, ·] between the
random variables X and Y is C[Z,Y ]=E[ZY ]−E[Z]E[Y ],
and from the definition of the circular-even and circular-
odd components of a sequence, one can prove that
2C[FsI, FsIsQ ]=2C[FsQ, FsIsQ ]=2C[FsI, F

e
w] = 2C[FsI, F

o
w] =

2C[FsQ, F
e
w]=2C[FsQ, F

o
w]=2C[FsIsQ, F

e
w] = 2C[FsIsQ, F

o
w] =

2C[FsI, F
e
sw]=2C[FsI, F

o
sw]=2C[FsQ, F

e
sw] = 2C[FsQ, F

o
sw] =

2C[FsIsQ, F
e
sw]=2C[Fe

w, F
e
sw]=2C[Fo

w, F
e
sw]=2C[Fe

sw, F
o
sw] =

2C[Fe
w, F

o
sw]=2C[Fo

w, F
o
sw]=2C[FsIsQ, F

o
sw]=2C[Fe

w, F
o
w]=0.

The variance of F ′u (k) is then V[F ′u (k)]=V[FsI ]+V[FsQ ]+
V[FsIsQ ]+V[Fe

w]+V[Fo
w]+V[Fe

sw]+V[Fo
sw]+2C[FsI, FsQ ].

Analogously, the variance of Fu (k) is V[Fu (k)]=V[FsI ]+
V[FsQ ]+V[Fe

w]+V[Fe
sw]+2C[FsI, FsQ ], yielding V[Fu (k)]=

V[F ′u (k)]−V[FsIsQ ]−V[Fo
w]−V[Fo

sw], from where it is
straightforward to conclude that V[Fu (k)] < V[F ′u (k)]. This
inequality means that the variance of the decision variables
ravg(`) in the proposed CF-CPSC will be smaller than the
ones of the original CPSC, since they are formed from Fu (k).
Recalling that the mean of F ′u (k) and Fu (k) are the same
for k > 1, this will lead to an improvement in the CF-CPSC
performance with respect to the CPSC.

III. Analytical Results underH0

A. Cumulative Distribution Functions
Under H0, the DFT of the received signal is Xu (k) =

Wu (k). Then, F ′u (k) can be written as F ′u (k) =

[W r
u (k)/

√
M]2 + [W i

u (k)/
√

M]2. With this result in (1), Fu (k)
can be expressed as in (4) (at the top of the next page).
It is shown in [1, eqs. (13) and (17)] that W r

u (k) and W i
u (k)

are zero-mean uncorrelated Gaussian random variables with
variance Mσ2

u/2. Therefore W r
u (k)/

√
M and W i

u (k)/
√

M are
Gaussian random variables with zero mean and variance σ2

u/2.
Knowing that Wu (k) is uncorrelated of Wu ( j) for k , j [1,
eq. (21)], and applying (4) in F`,u and Ffullu , one can verify
that the numerator and the denominator of ru (`) are Gamma
distributed, as they are composed by the sum of squared,
zero-mean, equal variance Gaussian random variables. Notice
that the modification in the circular-even operation described
in step 2O was made to guarantee that Fu (1) has the same
distribution of Fu (k) for k = 2, 3, . . . , M/2 under H0.
Let Z1 and Z2 be independent Gamma random variables

with respective scale and shape parameters (b, c1) and (b, c2).
The random variable Y = Z1/(Z1 + Z2) will follow a Beta
distribution with shape parameters c1 and c2 [4, Chapter 8].
Since the denominator of ru (`) can be split into the sum of
two Gamma random variables with shape parameters c1 = 2V
and c2 = M − 2V , then ru (`) follows a Beta distribution with
parameters c1 = 2V and c2 = M − 2V . Therefore, the closed-
form conditional CDF of ru (`), that is Fru (`) (r) = Pr[ru (`) <
r |H0], is given by

Fru (`) (r) = Ir (2V, M − 2V ) , (5)
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Fu (k) =
{

[W r
u (k)2 +W i

u (k)2 +W r
u (M/2 + 1)2 +W i

u (M/2 + 1)2]/(2M), k = 1.
[W r

u (k)2 +W i
u (k)2 +W r

u (M − k + 2)2 +W i
u (M − k + 2)2]/(2M), k = 2, 3, . . . , M .

(4)

where Ir (·, ·) is the incomplete regularized Beta function [5,
(8.392)], which is a built-in function in many mathematical
software packages such as Matlab and Mathematica.

In the case of ravg(`), it is distributed as the sum of
Beta random variables, which has not a general solution. The
authors of [1], under another assumption for the underlining
distributions, considered that of ravg(`) has approximately
the same distribution of

∑U
u=1 F`,u/

∑U
u=1 Ffullu . Applying this

reasoning to our analysis, it follows that
∑U

u=1 F`,u/
∑U

u=1 Ffullu
will be the quotient between the sum of Gamma random
variates, yielding a Beta random variate. Then, ravg(`) will
follow a Beta distribution with parameters c1 = 2VU and
c2 = (M − 2V )U, for which the closed-form conditional CDF,
Fravg (`) (r) = Pr[ravg(`) < r |H0], is

Fravg (`) (r) = Ir (2VU, (M − 2V )U) . (6)

B. Probability of False Alarm
Consider the random vector R = [R1, R2, . . . , RL]T with

elements R` , ravg(`), ` = 1, 2, . . . , L, where [·]T means trans-
pose. Since each element of R is a Beta random variable, the
joint PDF (JPDF) fR (r1, r2, . . . , rL−1) will follow a Dirichlet
distribution [6], which is the multivariate generalization of the
Beta distribution [4, Chapter 13], that is,

fR (r1, r2, . . . , rL−1) =
Γ(2VUL)
Γ(2VU)L

L−1∏
`=1

(r`rL )2VU−1 , (7)

with rL = 1 −∑L−1
i=1 ri , r` ≥ 0 for all `, and

∑L−1
`=1 r` ≤ 1.

The joint CDF (JCDF) of R is FR(r) , FR(r1, r2, . . . , rL ),
with r1, r2, . . . , rL corresponding to the threshold γ, i.e. r` = γ.
From step 7O of the CF-CPSC algorithm, one can see that
FR(r) is the probability that the FC decides in favor of H0.
Thus, the global PFA can be computed as

Pfa(γ) = 1 − FR(γ), (8)

where the JCDF of R is given by

FR(γ)=
∫ γ

0
· · ·

∫ γ

0
fR(r1, . . ., rL−1)H (γ−rL ) dr1· · ·drL−1,

and where H(·) is the Heaviside step function [5]. Notice that
fR (r1, r2, . . . , rL−1) is not an explicit function of rL , since rL
is expressed as a function of the other variables ri , i < L. Then,
if equation (7) is directly integrated, the domain constraint
defined by rL < γ would not be satisfied. The multiplication of
(7) by H[γ− (1−∑L−1

i=1 ri )] will be (7) itself if 1−∑L−1
i=1 ri < γ,

and zero otherwise, which accounts for rL < γ as needed.

C. A Simple Closed-Form Probability of False Alarm
If it is considered that the decisions at the sub-band level

are approximately independent of each other, which means
independence among the elements of R, (8) simplifies to

P̃fa(γ) = 1 − {Iγ (2VU, (M − 2V )U)}L . (9)

It was found in [2, eq. (17)] that any two elements Ri and
Rj of R, for i , j, exhibit a correlation coefficient ρRiR j =

−1/(L−1), from where one can promptly infer that ρRiR j → 0
as the number of sub-bands increases. Then, for sufficiently
large values of L, (9) becomes valid since FR(r, r, . . . , r |H0)
can be written as the CDF of R` raised to the L-th power. We
postpone the discussion about the accuracy and usefulness of
this approximation to the next section.
The decision threshold for a target PFA PfaT can be de-

termined from (9) using the inverse incomplete regularized
Beta function, which is also present in many mathematical
softwares. Specifically, γ = I−1

(1−PfaT)1/L (2VU, (M − 2V )U).

IV. Numerical Results and Discussion

In this section, the performances of the CF-CPSC and the
original CPSC are compared. The eigenvalue-based general-
ized likelihood ratio test (GLRT) is also considered, since it is
one of the best-performing detectors under the unknown noise
level condition [7]; the GLRT statistic is the ratio between
the maximum eigenvalue and the average eigenvalues of the
received signal covariance matrix. Subsequently, the empirical
PFA is contrasted with the PFA obtained from (8) and (9). The
PU transmits a quaternary phase-shift keying (QPSK) signal at
baseband level with 4 samples per symbol; other modulation
could be adopted as well. The sensing interval corresponds
to 40 symbols, yielding M = 160 samples collected by each
CR. The number of sub-bands is L = 5. The shadowed-fading
channel tap gains in hu (z) follow a log-normal shadowing
combined with a Rayleigh fading. The gains are fixed during
each sensing interval, and independent between successive
intervals, different CRs and different taps. The shadowing
process has a standard deviation of 4 dB, is independent
between different sensing intervals, and is correlated between
different CRs; the correlation level was established from a
practical decorrelation distance [8] of 30 meters. When the
PU-SU channel is flat, we let Z = 1; otherwise Z = 4 to
represent a highly frequency-selective fading, since the delay
spread in this case is equal to the symbol length. The im-
pulse response follows a typical outdoor negative exponential
shape, with average tap gains [1, 0.464, 0.215, 0.1]. The signal-
to-noise ratio (SNR) is −10 dB to represent a low SNR
regime. When the noise variances at the input of the CRs
are unequal, which is a common situation in practice, they are
[0.8, 0.9, 0.95, 1.1, 0.85, 1.15]; otherwise they are unitary. Each
value of the empirical PFA and probability of detection (PD)
was computed from 50000 Monte Carlo events.

Fig. 1 shows receiver operating characteristic (ROC) curves
considering frequency-flat fading PU-SUs channels, with equal
noise variances and no shadowing. It can be seen that the
CF-CPSC expressively outperforms the CPSC in all cases.
The GLRT wins due to the favorable and not realistic equal
noise variance condition. It can also be noticed the expected
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Fig. 1. ROC curves considering frequency-flat PU-SUs fading channels, equal
noise variances and no shadowing.

TABLE I
Areas under ROC curves

PU-SU channel Scenario CF-CPSC CPSC GLRT
1. flat, no shadowing, equal noise 0.8935 0.7615 0.9385
2. selective, no shadowing, equal noise 0.8921 0.7655 0.9234
3. selective, shadowing, equal noise 0.8504 0.7355 0.8240
4. selective, shadowing, unequal noise 0.8631 0.7504 0.6037

performance improvement as the number U of CRs increases,
which is due to the diversity gain achieved with CSS.

Table I lists the areas under the ROC curves (AUC) for
the detection techniques under analysis, considering scenarios
of frequency-flat or -selective fading PU-SUs channels, with
presence or absence of spatially-correlated shadowing, and
equal or unequal noise variances at the CRs’ inputs. The same
system parameters considered in Fig. 1 were adopted, but only
for U = 6 SUs. The AUCs for Scenario 1 correspond to Fig. 1,
U = 6. The presence of frequency selectivity in Scenario 2
slightly degrades the performance of all detectors. Keeping in
mind that the signal is distorted but its power is not changed on
average, this is an expected result. The presence of shadowing
in Scenario 3 is responsible for a noticeable performance
degradation of all detectors, especially of the GLRT. In this
more realistic scenario, the CF-CPSC outperforms the CPSC
and the GLRT. The most realistic Scenario 4 considers the
presence of frequency selectivity, shadowing and unequal
noise variances. In this case the performances of the CF-CPSC
and the CPSC remain practically unchanged with respect to
Scenario 3, which is due to the intrinsic robustness of these
techniques to dynamical noise. The GLRT, however, suffers
from a drastic performance penalty in this scenario. Finally,
from Table I it can be concluded that both the CF-CPSC and
the CPSC are able to maintain their performances practically
unchanged under the variation in the channel scenario, with
the CF-CPSC always winning.

Fig. 2 contrasts Pfa(γ), as given by (8), the approximate
P̃fa(γ), as given by (9), and empirical (symbols) PFAs ob-
tained from simulations under the H0 hypothesis. Besides the
parameters considered to plot Fig. 1, results for L = 4 and
L = 8 sub-bands were added. From this figure one can see

0.15 0.20 0.25 0.30
10−3

10−2

10−1

100

L = 4L = 5L = 8

Empirical

Threshold, γ

P
ro
b
a
b
il
it
y
o
f
fa
ls
e
a
la
rm

Pfa (γ)

P̃fa (γ)

0.15 0.20 0.25 0.30
10−3

10−2

10−1

100

Threshold, γ

P
ro
b
a
b
il
it
y
o
f
fa
ls
e
a
la
rm

U = 4

U = 6

U = 8

Fig. 2. Global PFA using (8), (9), and simulation (symbols) with M = 160.

that all empirical PFA curves are in very close agreement with
the theoretical ones, especially for PFA below 0.2, which is
a typical operation region of the spectrum sensing system.
As the number of sub-bands L is increased, it is noteworthy
that whereas (8) might take hours and prompt lots of warning
while computed in Mathematica (or even not handled, when
L = 8 for instance), the approximate formula (9) is com-
puted practically instantaneously in Mathematica and Matlab,
independently of the number of sub-bands. Nevertheless, it is
indeed when L becomes large that the correlation coefficient
ρRiR j becomes small, favoring the use of (9) instead of (8).
In summary, in this letter we have proposed a new CF-CPSC

algorithm and made a theoretical analysis of its performance in
terms of PFA. The numerical results validated the theoretical
achievements and unveiled expressive improvements of the
CF-CPSC over the original CPSC, which stems from the noise
variance reduction in the decision variables of the proposed
CF-CPSC with respect to the original CPSC (see II-B). The
numerical results also demonstrated the superiority of the CF-
CPSC over the GLRT in the practical appealing scenarios of
frequency-selective shadowed-fading channels with different
noise levels at the CRs.
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