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Abstract—This paper presents a model for the modulated 
gated additive white Gaussian noise, and evaluates its effect on 
the performance of the optimal receiver designed subject to the 
maximum a posteriori probability criterion (MAP). 

Index Terms—Gated noise, Impulsive noise, Optimum 
receiver. 

I. INTRODUCTION 

The Gated Additive White Gaussian Noise (GAWGN) 
model is often used to simulate the impulsive noise in digital 
television channels because it adheres to the experimental 
results, and it is easy to implement and analyze [1-3].  
     This model is used by the British Broadcasting Corporation 
(BBC) digital television  research group to simulate the 
impulsive noise in plant facilities and telecommunication 
companies, to facilitate the the performance evaluation of the 
equipments that are used in digital television systems, and to 
foster the development of measures to combat the noise effects 
[2-7]. 

II. COMPOSED NOISE MODEL 
This paper presents a model for the modulated gated 

additive white Gaussian noise [2], [6-8] and evaluates its 
effect on the performance of the optimal receiver designed 
under the maximum a posteriori probability criterion (MAP). 
The additive noise is composed of two parts. The first one is 
characterized as a Gaussian process with zero mean and 
variance 휎 , represented by 휂 (푡). The second part is 
characterized as a Gaussian process with zero mean and 
variance 휎 , 휂 (푡), modulated by a signal 푐(푡).   

The composite noise can be written as 
 

휂(푡) = 휂 (푡) + 푐(푡)휂 (푡).                      (1) 
 
Figure 1 shows a sample function of the process 휂(푡)  

versus time. The modulating signal 푐(푡)	is used in this 
analysis to characterize the addition of noise 
permanent		휂 (푡)	to component 휂 (푡). Random variations in 
the amplitude of 푐(푡) directly alter the variance of the 
Gaussian noise modulated 휂 (푡)  whereas random variations in 
the duration of the pulses of 푐(푡) affect the instants in which 
휂 (푡) is added to		휂 (푡). This behavior can simulate, for 
example, situations in which a signal s (t), constantly affected 

by a noisy component 		휂 (푡),	is under attack by additional 
noisy components that might occur with random variations in 
amplitude. It can be observed in Fig.1 that for the instants in 
which 푐(푡) = 0 the permanent noise 		휂 (푡)	continues to 
attack the signal  푠(푡). When 푐(푡)	takes nonzero values and 
modulates the noise  휂 (푡), there is a noise represented by the 
term 푐(푡)휂 (푡). The amplitude-modulated signal 푐(푡)휂 (푡)	can 
attack the signal 푠(푡)	during the time of one or several 
symbols. 

 

 
Fig. 1. Waveforms of gated AWGN noise. 

 
 

The signal 푐(푡) can be used to characterize both the 
amplitude variation of the process 휂 (푡) and the time intervals 
in which 휂 (푡) is added to the noise 휂 (푡). The signal 푐(푡) is a 
discrete random process characterized by a probability 
distribution and can be defined both in discrete time and 
continuous time. The noisy component 푐(푡)휂 (푡) represents 
usual situations in communication systems in which switching 
mechanisms give rise to temporary noisy signals that add to 
the permanent noise.  



 
 

Fig.2 shows the block diagram of the system used to 
simulate the noisy components of Fig.1. 

 

 
 

Fig.2. Simulink® diagram of the noise simulator GAWGN. 
 

Therefore, if 푠(푡) represents a transmitted signal in a 
signaling interval 푇, then 

  
푟(푡) = 푠(푡) + 휂 (푡) + 푐(푡)휂 (푡)                  (2) 

 
represents the received signal affected by this random noise. 

 To evaluate the MAP receiver performance under the 
proposed switched noise, using the M-QAM modulation 
scheme, it is necessary to calculate the probability density 
function (pdf) of the noisy process 휂(푡). If 푐(푡) is a discrete 
process, then its pdf can be written as 

 
									푓 ( )(푐) = 푝 ( )(푐 )훿(푐 − 푐 ).																				(3) 

 
After some algebraic manipulations, it is possible to write 

the pdf of 휂(푡) as 
 

		푓 (휂) =
푝 ( )(푐 )

2휋 휎 + 휎 푐
	exp −

휂
2 휎 + 휎 푐

.			(4) 

 
One can note that 		푓 (휂) can be written as a sum of different 
Gaussian pdfs, therefore 
 
		푓 (휂) = 푓 (휂) + 푓 (휂) + 푓 (휂) +⋯+ 푓 (휂) + ⋯,    (5) 

 
in which 
 

푓 (휂) = ( )( )
	exp − .															(6) 

 
Equation (5) is a weighted sum of Gaussian probability 
density functions with zero mean and variance 휎 + 휎 푐 . 
The constants 푐  correspond to the amplitude levels that the 

signal 푐(푡) can take. In Fig. 1, for example, 푐(푡) takes three 
equiprobable levels with 푐 =0, 푐 =1 and 푐  =2. 
 
Fig. 2 presents the plots of three components of the pdf 		푓 (휂) 
composed by a sum of Gaussian pdfs, as shown in Eq. (). In 
this figure, 푝 ( )(0) = 푝 ( )(1) = 푝 ( )(2) = , 휎 = 2 and 
휎 = 3. 
 

 
Fig. 2. Plots of different components of the mixed pdf 풇휼(휼).  

III. EVALUATION OF THE BIT ERROR PROBABILITY  
 

To calculate the symbol error probability (SEP) at the MAP 
receiver output, one should consider that the optimum receiver 
makes its decisions based on the minimization of the Euclidian 
distance between the vectors of transmitted and received 
signals [9]. 

If 푠  represents, for example, the m-th signal of the signal 
space of on M-PAM constellation, then the received signal, 
affected by the impulsive noise is given by  

 
																																							푟 = 푠 + 휂.																																														(7) 

 
The signals 푠  can be represented in the signal space by 

vectors whose elements are 푠 = 퐸 퐴 , 푚 = 1,2,⋯ ,푀, in 

which 퐸 	represents the energy of the basic pulse 
푔(푡)	associated to each signal 푠 . The amplitudes 퐴  can be 
written as 퐴 = (2푚− 1 −푀)푑, in which 푚 = 1, 2,⋯ ,푀 
and 푑 represents the Euclidian distance between two neighbor 
symbols in the M-PAM constellation. In such a modulation 
scheme, a detection error is caused when the optimum receiver 
calculates the distance from the received signal 푟 to one of the 
M signals 푠  and this distance exceeds half the distance 

between two symbols, or |푟 − 푠 | > 푑 퐸  . The M-PAM 

constellation is one-dimensional, if its M symbols are equally 
spaced in a straight line, there will be M-1 decision intervals 
among the symbols. The average decision error probability is 
then calculated adding the errors in each M-1 intervals among 
the symbols 푠  and then weighting by the number of symbols 
M.  The SEP can be written as 
 



 
 

														푃 = (푀 − 1)푃 |푟 − 푠 | > 푑 퐸 .																			(8)  

 
As the total noise 휂 is characterized by a symmetric pdf, the 
SEP under this noise can be written as 
 

푃 =
2
푀

(푀 − 1)
푝 ( )(푐 )

2휋 휎 + 휎 푐
 

																									× exp −
휂

2 휎 + 휎 푐
푑휂.

/
								(9) 

 
Applying the Q	(푥) function definition, one can write the M-
PAM SEP expression as 
 

		푃 =
2
푀

(푀 − 1) 푝 ( )(푐 ) 	Q
푑 퐸

2 휎 + 휎 푐
.				(10) 

 
Using the relationship between the energy of the pulse 
g(푡), 	퐸 ,  and the mean energy of the signal 푠 ,  퐸av , 
 

푑 퐸 =
6

푀 − 1퐸av, 
 
the bit error probability – BEP  푃  is written as 
 

푃 =
2
푀

(푀− 1) 푝 ( )(푐 ) 	Q
6log (푀)훾 훾

(푀 − 1) 훾 + 훾 푐
,			(8) 

 
in which 훾 =  and 훾 =  are the bit energy to noise 

spectrum density ratio and the bit energy to impulsive noise 
ratio. The SEP of the M-QAM scheme can be calculated using 
the formula 

 
푃 = 1− 1 − 푃√ ,                         (9) 

 
in which 푃√  can be calculated using Equation (6).  The main 
disadvantage of Equation (9) is the square term that 
complicates the BEP evaluation under fading. This difficulty 
can be overcome expressing 푃  in Equation (8) in terms of the 
expressions obtained in [10], for the BEP evaluation  under 
Gaussian noise. Using those expressions, one can write 푃  as  
 

																			푃 =
1

log (√푀)
푃 (푘),

log (√ )
																		(10) 

 
in which  

푃 (푘) =
2
√푀

푤(푖,푘,푀) 푝 ( )(푐 )	
√

			 

												× Q
3(2푖 + 1) log (푀)훾 훾

(푀 − 1) 훾 + 훾 푐
,																					(11) 

and 

 

					푤(푖, 푘,푀) = (−1) √ 2 −
푖2 − 1
√푀

+
1
2 							(12) 

 
and the term ⌊푥⌋ denotes the largest integer less than or equal 
to 푥. A similar procedure could be used to obtain BEP 
expressions for rectangular QAM evaluation under the 
proposed noise. An advantage of this expression is the absence 
of a quadratic power of the Q(푥) function. As one can see in 
Equation (10), the probability 푃 (푘) is written in terms of the 
probabilities 푝 ( )(푐 ) of the switching signal 푐(푡). Therefore, 
as the absolute value of 푐(푡) increases so does the impulsive 
noise influence. 
 
Figure 4 shows the behavior of the BEP of the M-QAM 
scheme under compound noise. In this figure the Signal to 
Impulsive Noise Ratio 훾 =   assumes four distinct values 
and the order of M-QAM constellation is 64. For this figure a 
signal 푐(푡)	with five random levels is considered, with the 
following probability distribution 
 

⎩
⎪
⎨

⎪
⎧
푃{푐(푡) = 0} = 푝 ( )(0) = 0.25
푃{푐(푡) = 1} = 푝 ( )(1) = 0.15
푃{푐(푡) = 2} = 푝 ( )(2) = 0.20	
푃{푐(푡) = 3} = 푝 ( )(3) = 0.15
푃{푐(푡) = 4} = 푝 ( )(4) = 0.25

.                (13) 

 
Fig. 4. Bit error probability of a 64-QAM modulation scheme 

under composed noise. 

 
 
Note in Fig.4 that the probability of bit error decreases with 

the increasing of the signal to permanent noise ratio - 훾 = ,  

for fixed values of the signal impulse noise ration - 훾 = .   

Since the signal energy is  퐸  when 훾 > 훾  this means that 
푁 < 푁 ,	 that is, the energy of the impulse noise is smaller 
than the power of the permanent noise. When 훾 > 훾  this 
means that 푁 > 푁  and then the BEP decreases because the 
action of the impulse noise is not constant in the system, such 



 
 

as the permanent noise  휂 (푡). Considering also the energy of 
bit fixed at 퐸  note that when 훾 = = 10	dB < 훾 = =
25	dB, the energy of impulsive noise 푁 > 푁 , and in this 
case as it was expected, the BEP increases. In the case in 
which 훾 =10 dB there is little reduction of the BEP when 훾  
increases up to 30 dB. 

Fig. 5 shows the BEP of the 64-QAM scheme under the 
compound noise considering a signal 푐(푡) with a different  
probability distribution. The Signal to Impulsive Noise Ratio  
훾 =  assumes the same values used in Fig.4. The 
probability distribution of 푐(푡) is given by 

 

⎩
⎪
⎨

⎪
⎧
푃{푐(푡) = 0} = 푝 ( )(0) = 0.25
푃{푐(푡) = 1} = 푝 ( )(1) = 0.25
푃{푐(푡) = 2} = 푝 ( )(2) = 0.20	
푃{푐(푡) = 3} = 푝 ( )(3) = 0.15
푃{푐(푡) = 4} = 푝 ( )(4) = 0.15

.                (14)

 
Fig. 5. Bit error probability of a 64-QAM modulation scheme 

under composed noise. 
 

 
In this second case, the amplitude levels 0 and 1 of 푐(푡) are 
more probable than the amplitudes 3 and 4, which have 
probability 0.15. This behavior of 푐(푡),	causes the modulated 
signal)	푐(푡)휂 (푡)	(which represents the impulsive noise 
component) to have a larger amplitude variation, with lower 
probability, and a smaller variation in amplitude, with higher 
probability. Note, in Fig. 5, that the curve decreases more than 
BEP in Fig. 4 wherein the amplitudes 4 and 0 of 푐(푡)	 are 
equiprobable. It is noticed that with a SNR of 25 dB  (훾 ) it is 
possible to achieve a BEP of 10   with 훾 	equal to 25 dB. In 
this case, 훾 = 훾 , 푁 = 푁  and as 휂 (푡) affects 푠(푡)	with a 
smaller probability, the BEP can reach lower values. 
 

Fig. 6 shows the behavior of the BEP 256-QAM scheme 
subject to the proposed noise. In this figure the Signal to 
Impulsive Noise Ratio 훾 =  assumes four distinct values. 
The signal 푐(푡) has five random levels and the following 
probability distribution 

 

⎩
⎪
⎨

⎪
⎧
푃{푐(푡) = 0} = 푝 ( )(0) = 0.30
푃{푐(푡) = 1} = 푝 ( )(1) = 0.25
푃{푐(푡) = 2} = 푝 ( )(2) = 0.20	
푃{푐(푡) = 3} = 푝 ( )(3) = 0.15
푃{푐(푡) = 4} = 푝 ( )(4) = 0.10

.	               (15) 

 

 
 

 
For the probability distribution shown in (15), the highest 

probability of occurrence was assigned to 푐(푡) = 0, meaning 
that 푐(푡) spends more time at the zero amplitude level and 
consequently the likelihood of an attack by impulse noise on 
the signal 푠(푡) is higher. Because of the order of the 
constellation used, M = 256, the symbols damaged by noise  
are closer, and therefore the reception is more susceptible to 
errors. This is the reason why the BEP does not decrease, for a 
value 훾  ≤ 30 dB, to less than 10 . 

The evaluation of the influence of the order M in BEP is 
shown in Figure Fig. 7 for four values of M, considering 
훾 = 25 dB. 

 

 
Fig. 7 Bit error probability of M-QAM schemes of different 

orders under composed noise. 

 
The probability distribution of the possible amplitude levels of 
	푐(푡) é given by 
 



 
 

⎩
⎪
⎨

⎪
⎧
푃{푐(푡) = 0} = 푝 ( )(0) = 0.45
푃{푐(푡) = 1} = 푝 ( )(1) = 0.15
푃{푐(푡) = 2} = 푝 ( )(2) = 0.20	
푃{푐(푡) = 3} = 푝 ( )(3) = 0.10
푃{푐(푡) = 4} = 푝 ( )(4) = 0.10

.																							(16) 

 
 
Even when 	푐(푡) spends more time with zero amplitude, one 
can see in Fig. 7 that for 훾  equals to 25 dB the BEP does not 
decrease below 10  for 훾  below 30 dB, for constellations 
with M above 64. 
 

CONCLUSIONS 
This article has presented a new analytical approach to 
evaluate the effect of additive noise modeled as a composition 
of white Gaussian process, 휂 (푡), and another component, 
휂 (푡), called impulsive noise.  
 
The term 	푐(푡)휂 (푡) can be seen as an amplitude modulation 
of 	휂 (푡) by 푐(푡), and characterizes the emergence of the 
noise 	휂 (푡) at random instants. The reception of the 
modulated signal M-QAM, corrupted by the compound noise, 
was evaluated by means of new expressions for the BEP, 
obtained using the optimum maximum likelihood receiver. 
The curves obtained have shown that the system performance 
depends on a function of the signal to permanent noise and 
signal to impulsive noise ratio.  
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