
Comparison of Parallel and Pipelined CORDIC
algorithm using RCA and CSA

Diego Barragán Guerrero
FEEC - UNICAMP

Campinas, São Paulo, Brazil, 13083-852
+5519 9308-9952

diego@decom.fee.unicamp.br

Luı́s Geraldo P. Meloni
FEEC - UNICAMP

Campinas, São Paulo, Brazil, 13083-852
+5519 9778-1523

meloni@decom.fee.unicamp.br

Abstract— This paper presents an implementation of the
CORDIC algorithm in digital hardware using two types of
algebraic adders: Ripple-Carry Adder (RCA) and Carry-Select
Adder (CSA), both in parallel and pipelined architectures. Anal-
ysis of time performance and resources utilization was carried
out by changing the algorithm number of iterations. These results
demonstrate the efficiency in operating frequency of the pipelined
architecture with respect to the parallel architecture. Also it is
shown that the use of CSA reduce the timing processing without
significantly increasing the slice use. The code was synthesized us-
ing FPGA development tools for the Xilinx Spartan-3E xc3s500e
family.

Index Terms— CORDIC, pipelined, parallel, RCA, CSA,
trigonometrics functions.

I. INTRODUCTION

In Digital Signal Processing with FPGA, trigonometric
functions are used in many signal algorithms, for instance
synchronization and equalization [12]. As a first approach,
we can use Taylor series to approximate these functions, then
the problem is to cut down into a series of multiplication
and addition operations, but the program is complex and
the consumption of resources is high, which is not very
convenient. A more effective method to solve this problem is
based on Coordinate Rotation Digital Computer (CORDIC).
The CORDIC algorithm provides an iterative method for
performing vector rotations by arbitrary angles using only
shifts and adds [13]. CORDIC based VLSI architectures are
very attractive alternatives to the architectures based on con-
ventional multiply-and-add hardware for an extensive variety
of DSP algorithms.

In this article, we present a FPGA implementation of
CORDIC algorithm employing two class of adders (RCA and
CSA) and two types of architectures (parallel unrolled and
pipelined). By taking use of EDA Xilinx tools and hardware
description language VHDL, the algorithms were implemented
and verified.

II. CORDIC ALGORITHM PRINCIPLE

CORDIC is a versatile algorithm to compute a wide range
of operations including logarithmic, hyperbolic, linear, and
trigonometric functions [3]. The CORDIC algorithm provides
an iterative method for performing vector rotations or a vector
translation by arbitrary angles using only shifts and adds. The

algorithm has two modes of operation: the rotational mode
(RM) where the vector (xi, yi) is rotated by an angle θ to
obtain a new vector (xN , yN ), and the vectoring mode (VM)
in which the algorithm computes the modulus R and phase α
from the x-axis of the vector (x0, y0). The basic principle of
the algorithm is shown in Figure 1.

i
y

N
y

'
NxNx ix

'
N

y

NR

iR




N

iE

NE

'
NE

Pseudo-rotaçãoRotação

Fig. 1. CORDIC: RM and VM.

The CORDIC algorithm, executed by a finite number of N
micro-rotations indexed by i = 0: N-1, was originally described
for a circular coordinate system [9], then the algorithm was
extended to linear and hyperbolic systems and described
briefly in the following set of equations [14].

xi+1 = xi−mdi 2−i yi (1)

yi+1 = yi + di 2−i xi (2)

zi+1 = zi− di αi (3)

αi =
{
2
−i, Linear

tan−1(2−i), Circular (4)

di =
{
−sign(yi), for VM
sign(zi), for RM (5)

By choosing appropriate values for the parameters m and
αi, we can select the different coordinate systems. When m
= 0, 1 or -1, and the values of αi are tan−1

(
2−i
)
, 2−i, or

tanh−1
(
2−i
)

the algorithm operates in linear, circular, and
hyperbolic coordinate systems, respectively, which provides
the following result for rotation mode.



xn = An [x0 cos z0− y0 sin z0] (6)

yn = An [y0 cos z0 +x0 sin z0] (7)

zn = 0 (8)

An =
∏
n

√
1 + 2−2i (9)

And for vectoring mode.

xn = An

√
x20 + y2

0 (10)

yn = 0 (11)

zn = z0 + tan−1
(
y0
x0

)
(12)

An =
∏
n

√
1 + 2−2i (13)

In both cases, the rotation algorithm has a gain of An that
depends on the number of iterations.

III. PARALLEL, PIPELINED, RCA AND CSA
ARCHITECTURES

A. Parallel and pipelined architectures

CORDIC is an iterative algorithm that has the same compo-
nents at each step of pseudo-rotation: three algebraic adders,
two shifters, one inverter and a LUT containing the value of
αi.

Parallel architecture, showed in Figure 2, results in two sig-
nificant simplifications. First the shifters are each a fixed shift,
which means that they can be implemented by wiring. Second,
the lookup values for the angle accumulator are distributed
as constants to each adder in the angle accumulator chain.
Those constants can be hardwired instead of using storage
space. The need for registers is also eliminated, making the
unrolled processor strictly combinatorial. However, in order to
measure the operating frequency of the architecture, a register
was added both the input and output of the circuit.

The parallel architecture is easily pipelined by inserting
registers between every iteration step. In the case of most
FPGA architectures there are already registers present in each
logic cell, so the addition of the pipeline registers has no
additional hardware cost [2]. A pipelined design conceptually
works very similar to an assembly line in that the raw material
or data inputs enter the front end, they pass through various
stages of manipulation and processing, and then exist as a
finished products or data outputs. The beauty of pipelined
design is that new data can begin processing before the prior
data has finished. Pipelines are used in nearly all very-high-
performance devices [7]. Figure 3 show pipelined architecture.

i
y

iz ix


s

BABB AA

ss

Tab[0]

>>0 >>0


s

BABB AA

ss

>>1 >>1

MSB(y)

Tab[1]

MSB(y)

MSB(y)


s

BABB AA

ss

>>n-1 >>n-1Tab[n-1]

MSB(y)

nz n
y

nx

..
.

..
.

..
.

Fig. 2. Parallel CORDIC architecture.

i
y

iz ix


s

BABB AA

ss

Tab[0]

>>0 >>0


s

BABB AA

ss

>>1 >>1

MSB(y)

Tab[1]

MSB(y)

MSB(y)


s

BABB AA

ss

>>n-1 >>n-1Tab[n-1]

MSB(y)

nz n
y

nx

..
.

..
.

..
.

Pipelined Register

Pipelined Register

Fig. 3. Pipelined CORDIC architecture.

B. RCA and CSA architectures

Because the CORDIC algorithm needs to perform a binary
sum several times throughout the process, we have imple-
mented two types of adders in order to quantify the effect
on processing time and resource consumption of the FPGA.
While Ripple-Carry Adders (RCA) have the most compact
design (O (n) area) among all types of adders, they are the
slowest types of adders (O (n) time). On the other hand, Carry
Look-ahead Adder (CLA) are the fastest adders (O (log (n))
time), but they are the worst from the area point of view



(O (n log (n)) area). Carry-Select Adder (CSA) have been
considered as a compromise solution between RCAs and
CLAs (O (

√
n) time and O (2n) area) because they offer a

good tradeoff between the compact area of RCA and the short
delay of CLA [1]. Thereby, the architectures were chosen are
Ripple-Carry Adder and Carry-Select Adder [5] [11]. Figure
4 present RCA arqcitecture.

Full AdderFull AdderFull Adder

S(0)S(1)S(2)

X(0)X(1)X(2)Y(2) Y(1) Y(0)

C
O

(0
)

C
In

(1
)

C
O

(1
)

C
In

(2
)

C
O

(2
)

M

Full Adder

S(n-1)

X(n-1)Y(n-1)

C
In

(n
-1

)

C
O

(n
-1

)

...

Fig. 4. Ripple Carry Adder.

The Ripple-Carry Adder is composed of a chain of full
adders with length n, where n is the length of the input
operands. The following boolean expressions describe the full
adder.

p = a⊕ b (14)

g = a • b (15)

Where ⊕ is exclusive OR and • represent AND operation
and where a and b are the input operands and p and g
are the propagate and generate signals respectively. Carry is
propagated if p is high or is generated if g is high.

Thus, the sum S and carry out Co signals can be expressed
as [10]:

S = a⊕ b⊕ Ci = p⊕ Ci (16)

Co = g + p • Ci (17)

The addition and subtraction operations can be combined
into one circuit with one common binary adder by including
an exclusive OR gate with each full adder. A four bit adder
subtractor circuit is shown in Figure 5. The mode input M
controls the operation. When M=0, the circuit is an adder, and
when M=1, the circuit becomes a subtractor. Each exclusive
OR gate receives input M and one of the inputs of Y. When
M=0, we have Y ⊕ 0 = Y . The full adders receive the value
of Y, the input carry is 0, and the circuit performs X plus Y.
When M=1, we have Y ⊕ 1 = Y ′ and C0 = 1. The Y inputs
are all complemented and a 1 is added through the input carry.
The circuit performs the operation X plus the 2ś complement
of Y [8].

The problem of the Ripple-Carry Adder is that each adder
has to wait for the arrival of its carry-input signal before the
actual addition can start. The basic idea of the Carry-Select
Adder is to use blocks of two Ripple-Carry Adders, one of
which is fed with a constant 0 carry-in while the other is
fed with a constant 1 carry-in. Therefore, both blocks can be

calculated in parallel. When the actual carry-in signal for the
block arrives, multiplexers are used to select the correct one of
both precalculated partial sums. Also, the resulting carry-out
is selected and propagated to the next carry-select block [6].
In other words, the Carry-Select Adder improves speed further
with more hardware.

Thus, the sum bits si and group outgoing carry ci+1 signals
can be expressed as.

sm = s0m c̄j + s0m cj ; m = j, j + 1, ..., i (18)

ci+1 = c0i+1 c̄j + c1i+1 cj (19)

The Figure 5 shows the CSA architecture.

Full AdderFull Adder

Full Adder

Out(0)Out(1)

X(0)X(1)

X(2)Y(2)

Y(1) y(0)

C
S(0

)

C
E(1

)

C
S(1

)

C
E(2

)

C
S(2

)

M

Full Adder

X(n-1)Y(n-1)

C
E(n

-1
)

C
S(n

-1
)

Full Adder

X(2)Y(2)

C
E(2

)

C
S(2

)

Full Adder

X(n-1)Y(n-1)

C
E(n

-1
)

C
S(n

-1
)

Signal

Sinal

2:1 MUX

Out(2)Out(3)

0

1

1
, ,...,
i i jx x x

1
, ,...,
i i j

y y y


0 0 0

1
, ,...,

i i js s s

1 1 1

1
, ,...,

i i js s s

1
, ,...,

i i js s s

0

1ic

1

1ic

2
:1

 M
U

X

kk

1ic 

jc

Fig. 5. Carry Select Adder.

IV. IMPLEMENTATION AND RESULTS

In order to verify the results, a Matlab simulation of the
CORDIC algorithm was realized. All implementations were
designed in VHDL using ISim simulator and ISE environment.
The previous circuits have been synthesized for an Xilinx
Spartan 3E device, which characteristics are presented in Table
I.

TABLE I
FPGA FEATURES USED IN DESIGN.

Property Name Value
Top-Level Source Type HDL

Family Spartan3E
Device xc3s500e

Package FG320
Speed -4

Synthesis Tool XST (VHDL/Verilog)
Simulator Isim (VHDL/Verilog)

Preferred Language VHDL
VHDL Source Analysis Standard VHDL-93

The input vector was generated in order to cover all four
quadrants and normalize to have a unit magnitude, so the fixed-
point format is A(1,6) in the case of 8 bit input [15]. Since



the range of convergence of CORDIC is limited from −π/2 to
π/2, every input vector is rotated by ±π/2 (added to the input
phase), moving each vector to the first and fourth quadrant in
order to extend that range. In the case of CSA, block division
adders was half the size of the input bits. Because final result
of the algorithm is multiplying with a scaled factor K, every
input is pre-divided by 1/K. The Figure 6 show the ISim output
results.

Fig. 6. Simulate Behavioral Model.

The Figure 7 show that the pipelined architecture has a
smaller processing time that is approximately 12 times smaller,
regardless of the adder type implemented. The use of CSA
adder reduces the operation time in 13.2% using 16 iterations
for the case of parallel architecture and 19.12% for pipelined
architecture. However, because the CSA adder employs twice
adders more than RCA, the former employs 7.7% more slices
than the second adder in a parallel architecture, and 20.9%
higher for the pipelined architecture with 16 iterations and 16
binary bits per word.

4 6 8 10 12 14 16
0

50

100

150

Iterations

ns

Processing time

 

 

RCA−Parallel
CSA−Parallel
RCA−Pipelined
CSA−Pipelined

4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

Iterations

S
lic

e

Number of Slices

 

 

RCA−Parallel
CSA−Parallel
RCA−Pipelined
CSA−Pipelined

Fig. 7. Processing time and number of slices used.

V. CONCLUSIONS

The trade-off of resources/speed will determine the ap-
proach to be chose in design the CORDIC algorithm in a
FPGA. Adding register layers improves timing by dividing the
critical path into several paths of smaller delay. Insertion of
registers between each iteration produces a faster computing
results, however the outcome value is available after N clock
cycles since the first data input, while the parallel architecture
will prompt the result after one clock cycle. The number of
slices used in both architectures does not change in the same
way that the processing time, because each slice has registers
that can be used to design a pipelined architecture [4]. The use

of CSA improve the timing of the circuit without significantly
increasing the use of FPGA slices.

REFERENCES

[1] B. Amelifard, F. Fallah, and M. Pedram. Closing the gap between carry
select adder and ripple carry adder: a new class of low-power high-
performance adders. In Quality of Electronic Design, 2005. ISQED
2005. Sixth International Symposium on, pages 148–152, March.

[2] Ray Andraka. A survey of cordic algorithms for fpga based computers.
pages 191–200, 1998.

[3] Diego Barragán, Karlo Lenzi, and Luı́s Meloni. Desempenho do
algoritmo paralelo cordic em implementação em fpga. XXX Simposio
Brasileiro De Telecomunicações, 2012.

[4] Xilinx Company. Spartan-3e data sheets. Online
at http://www.xilinx.com/support/documentation/spartan-
3e data sheets.htm, March 2013.

[5] C. Ebeling. Random logic implementation.
http://www.cs.washington.edu/education/courses/cse567/98au/ppt/04b-
combinational/, October 2012.

[6] Norman Hendrich. Carry-select adder (8 bit). Online at http://tams-
www.informatik.uni-hamburg.de/applets/hades/webdemos/20-
arithmetic/20-carryselect/adder carryselect.html, Julho 2012.

[7] Steve Kilts. Advanced FPGA Design: Architecture, Implementation, and
Optimization. Wiley-IEEE Press, 2007.

[8] M. Morris Mano. Digital design (2. ed.). Prentice Hall, 1990.
[9] P.K. Meher, J. Valls, Tso-Bing Juang, K. Sridharan, and K. Maharatna.

50 years of cordic: Algorithms, architectures, and applications. Circuits
and Systems I: Regular Papers, IEEE Transactions on, 56(9):1893–1907,
Sept.

[10] Behrooz Parhami. Computer arithmetic: algorithms and hardware
designs. Oxford University Press, Oxford, UK, 2000.

[11] Robert Joachim Schweers. Descripción en vhdl de arquitecturas para
implementar el algoritmo cordic. http://biblioteca.universia.net/, Julho
2009.

[12] J. Valls, T. Sansaloni, A. Perez-Pascual, V. Torres, and V. Almenar. The
use of cordic in software defined radios: a tutorial. Communications
Magazine, IEEE, 44(9):46 –50, sept. 2006.

[13] Jack E. Volder. The cordic trigonometric computing technique. Elec-
tronic Computers, IRE Transactions on, EC-8(3):330 –334, sept. 1959.

[14] J. S. Walther. A unified algorithm for elementary functions. In
Proceedings of the May 18-20, 1971, spring joint computer conference,
AFIPS ’71 (Spring), pages 379–385, New York, NY, USA, 1971. ACM.

[15] Randy Yates. Fixed-point arithmetic: An introduction.
http://www.digitalsignallabs.com/fp.pdf, Julho 2009.




