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Abstract— Capitalizing on a simple relationship between the
α-µ and Nakagami-m fading models, we design a new efficient
simulation scheme for α-µ fading channels that (i) allows
for arbitrary real values of the fading parameters α and
µ, (ii) exactly matches theα-µ first-order statistics, (iii) and
closely approximates theα-µ second-order statistics. In addition,
we provide a detailed analysis of the first- and second-order
statistics associated to our new simulator. More specifically, we
derive closed-form expressions for important channel statistics,
namely, level crossing rate, average fade duration, second-order
probability density function of the channel envelope, and joint
probability density function of the channel envelope and its time
derivative. The envelope autocorrelation function is alsoobtained,
but in an integral form. Numerical examples are given that attest
the good performance of our design. To our best knowledge, no
simulation scheme forα-µ fading channels has been proposed
yet that allows for non-integer or non-half-integer valuesof the
fading parameter µ.

Index Terms— fading channels,α-µ fading, simulation.

I. I NTRODUCTION

The α-µ distribution [1] is a generalized statistical model
that accounts for the joint effect of two fundamental radio-
fading phenomena: the clustering of multipath waves and the
nonlinearity of the propagation medium. In this distribution,
the nonlinearity of the propagation medium is represented
by a parameterα > 0, in a way that the sum of squared
multipath components equals not the square of the resulting
signal amplitude, but this amplitude to the power ofα. The
clustering of waves, in its turn, is represented by the parameter
µ > 0, which is related to the number of multipath clusters
that compose the resulting signal. Through these two shape
parameters (α and µ), the α-µ distribution covers a vast
range of propagation conditions, from light to moderate to
severe fading, including as special cases one-sided Gaussian,
Rayleigh, Nakagami, and Weibull.

The simulation of theα-µ fading channel may be challeng-
ing, depending on the value of the parameterµ. Originally,
in the physical fading model behind the derivation of theα-
µ distribution, 2µ equals the number of multipath Gaussian
clusters that compose the resulting signal [1]. Therefore,in
principle, it would only make sense to consider integer or
half-integer values ofµ, in which case the originalα-µ fading
model itself can be readily used as a simulation scheme. Here,
we call this scheme the classicalα-µ simulator. But there exist
many reasons to consider non-integer and non-half-integer
values ofµ as well, including the following. First, the many

statistical expressions derived from the originalα-µ fading
model have no mathematical constraints to be used for any
real value ofµ > 0. Second, in practice, if the parameterµ
is to be empirically estimated from field measurements, real
values ofµ will certainly occur. Third, theα-µ fading model—
as any other fading model available—has inherent limitations
for being indeed an approximate solution to the so-called
random phasor problem, and these limitations can be made less
stringent by allowingµ to be real-valued. Fourth, non-integer
values of multipath clusters have been extensively reported in
the literature (see, for instance, [2] and the references therein).
However, as argued before, whenµ is non-integer or non-half-
integer, the originalα-µ fading model has no meaning and thus
cannot be used as a simulation scheme. In fact, to the best of
our knowledge, no simulation scheme forα-µ fading channels
has been reported yet that allows for any real values ofµ. This
is still an open problem.

In this work, we design a solution to the above problem
by exploiting a simple relationship between theα-µ and
Nakagami fading models. As mentioned before, in theα-µ
model, theα-th power of the signal amplitude equals the sum
of 2µ squared, zero-mean, independent identically distributed
(i.i.d.) Gaussian multipath components [1]. Similarly, aswell
known, in the Nakagami model with fading parameterm, the
squared signal amplitude equals the sum of2m squared, zero-
mean, i.i.d. Gaussian multipath components [3], [4]. Therefore,
by raising a Nakagami process withm = µ to the power
of 2/α, we can generate anα-µ process with parametersα
and µ. As a result, using such a simple transformation, we
can capitalize on an existing simulation scheme for Nakagami
fading channels in order to readily build a corresponding
simulation scheme forα-µ fading channels.

In principle, the above framework allows us to use any
Nakagami simulator available as a basis to theα-µ simulator.
Naturally, the better the Nakagami simulator used, the better
the expected performance of the resultingα-µ simulator.
We propose the use of a recent, highly-efficient Nakagami
simulator that (i) allows for arbitrary real values of the fading
parameterm, (ii) matches the exact Nakagami first-order
statistics, (iii) and closely approximates the Nakagami second-
order statistics. The scheme is based on a combination of
two simulation techniques called random mixture [5] and rank
matching [6]. Accordingly, it is called random-mixture-rank-
matching (RM2) Nakagami simulator [7]. As far as we know,



Fig. 1. The classicalα-µ simulator.

the RM2 method provides the best-match solution currently
available for Nakagami fading channel simulation.

In the following, we capitalize on theRM2 Nakagami
simulator to design an efficient simulation scheme forα-µ
fading channels that (i) allows for arbitrary real values of
the fading parametersα and µ, (ii) exactly matches theα-
µ first-order statistics, (iii) and closely approximates theα-
µ second-order statistics. Each of these features is inherited
from a corresponding feature of the underlying Nakagami
simulator. We also provide a detailed analysis of the first- and
second-order statistics associated to our new simulator. More
specifically, we derive closed-form expressions for important
channel statistics, namely, level crossing rate (LCR), average
fade duration (AFD), second-order probability density function
(PDF) of the channel envelope, and joint probability density
function of the channel envelope and its time derivative. The
envelope autocorrelation function (ACF) is also obtained,but
in an integral form. Numerical examples are given that attest
the good performance of our design.

The rest of the paper is organized as follows. In Section II,
the classicalα-µ simulator and its corresponding first- and
second-order statistics are revisited. In Section III, a simple
relationship between theα-µ and Nakagami fading models is
provided as the basis to the design and analysis of our new
α-µ simulator, which is then described in Section IV. Sample
examples and performance comparisons between the classical
and proposed simulators are presented in Section V. Finally,
Section VI summarizes the paper.

II. T HE CLASSICAL α-µ SIMULATOR REVISITED

In the original physical fading model behind the derivation
of the α-µ distribution [1], the channel envelopeR is repre-
sented as theα-root of the sum of2µ squared, zero-mean,
i.i.d. Gaussian multipath componentsXi (i = 1, . . . , 2µ), i.e.

R = α

√

√

√

√

2µ
∑

i=1

X2
i . (1)

Of course, this representation is valid only for integer andhalf-
integer values ofµ, and, in these cases, it can be readily used
as a simulation scheme. We call this scheme the classicalα-µ
simulator. It is illustrated in Fig.1.

Although the classicalα-µ simulator is limited to integer
and half-integer values ofµ, it allows the derivation of
analytical expressions for many important channel statistics
with no constraints to be used for any real values ofµ. Next,
we reproduce some of these statistics. We shall use them as a
benchmark to assess the performance of our new simulator.

Departing from (1), the PDF ofR can be obtained as [1]

fR(r;α, µ, r̂) =
αµµrαµ−1

r̂αµΓ(µ)
exp

(

−µ
rα

r̂α

)

, (2)

whereα > 0 is a power parameter,µ = E2[Rα]/V [Rα] > 0 is
the inverse of the normalized variance ofRα, r̂ = α

√

E(Rα)
is the α-root mean value,Γ(·) is the gamma function, and
the variance of each underlying Gaussian processXi in (1) is
r̂α/(2µ). (E[·] denotes expectation,V [·] variance.) Note that
the α-µ envelope PDF is specified by three parameters:α,
µ, and r̂. The corresponding cumulative distribution function
(CDF) can be then obtained as [1]

FR(r;α, µ, r̂) = 1− Γ(µ, µrα/r̂α)

Γ(µ)
, (3)

whereΓ(a, b) =
∫ b

0
ta−1 exp(−t)dt is the incomplete gamma

function.
In this work, we also address important second-order

statistics of the communication channel, namely LCR, AFD,
second-order PDF ofR, joint PDF ofR and its time derivative
Ṙ, and ACF of R. In particular, for simplicity, we focus
on the scenario with isotropic scattering and omnidirectional
reception. In such a case, the joint PDF ofR and Ṙ is given
by [1]

fR,Ṙ(r, ṙ;α, µ, r̂) =
α2µµ+0.5rα(µ+0.5)−2

√
2πωr̂αµ+0.5Γ(µ)

× exp

(−µα2rα−2ṙ2

2ω2r̂α
− µrα

r̂α

)

,

(4)

whereω is the maximum Doppler shift in radians per second.
Using (3) and (4), the LCR and AFD of the classicalα-µ
simulator can be derived respectively as [1]

NR(r;α, µ, r̂) =
ωµµ−0.5ρα(µ−0.5)

√
2πΓ(µ) exp (µρα)

(5)

TR(r;α, µ, r̂) =

√
2πΓ(µ, µρα) exp (µρα)

ωµµ−0.5ρα(µ−0.5)
, (6)

whereρ , r/r̂ is the r̂-normalized envelope.
The second-order envelope PDF of the classicalα-µ simu-

lator has been derived in [1] as

fR(t),R(t+τ)(r1, r2;α, µ, r̂) =
α2µµ+1ρ

α
2
(µ+1)−1

1 ρ
α
2
(µ+1)−1

2

(1− δ(τ))δ
µ−1

2 Γ(µ)

× exp

(

−µ
ρα1 + ρα2
1− δ(τ)

)

Iµ−1

(

2µ
√

δ(τ)ρα1 ρ
α
2

1− δ(τ)

)

,

(7)

where t denotes time,τ is a time lag,ρi , ri/r̂, i = 1, 2,
Iv(.) is the modified Bessel function of the first kind andvth



order [8], andδ(τ) is the power autocorrelation coefficient of
each underlying Gaussian processGi in (1). It can be shown
that δ(τ) is also theα-power autocorrelation coefficient ofR,
i.e. [1]

δ(τ) =
C[Rα(t), Rα(t+ τ)]

√

V [Rα(t)]V [Rα(t+ τ)]
, (8)

whereC[·, ·] denotes covariance. The functional form ofδ(τ)
depends on the scattering conditions [9]. In particular, for
isotropic scattering and omnidirectional reception,δ(τ) =
J2
0 (ωτ), whereJ0(·) is the Bessel function of first kind and

zeroth order [8]. Finally, using (7), the ACF ofR can be
derived for the classicalα-µ simulator as [1]

AR(τ ;α, µ, r̂) =
r̂αΓ2

(

µ+ 1
α

)

µ
2

αΓ2(µ)
2F1

(

− 1

α
,
1

α
;µ; δ(τ)

)

, (9)

where2F1(·, ·; ·; ·) is the Gauss hypergeometric function [8].

III. A S IMPLE RELATIONSHIP BETWEENα-µ AND

NAKAGAMI FADING

As highlighted in [1], there is a simple relationship connect-
ing theα-µ envelope to the Nakagami envelope, as follows.
In the Nakagami fading model, the channel envelopeRN

with mean powerΩ = E[R2
N ] and fading parameterm =

E2[R2
N ]/V [R2

N ] is represented as the square root of the sum
of 2m squared i.i.d. Gaussian multipath componentsXi (i =
1, . . . , 2m) with zero mean and varianceΩ/(2m), i.e. [3], [4]

RN =

√

√

√

√

2m
∑

i=1

X2
i . (10)

Therefore, from (1) and (10), we note that a squared Nakagami
envelope with parameters

m = µ and Ω = r̂α (11)

equals theα-power of anα-µ envelopeR with parametersα,
µ, and r̂, that is

Rα = R2
N . (12)

Equivalently, Eq. (12) can be rewritten withR in terms ofRN ,

R = R
2/α
N , (13)

or with RN in terms ofR,

RN = Rα/2. (14)

In particular, inspired by Eq. (13), we can capitalize on any
existing simulation scheme for Nakagami fading channels in
order to readily build a corresponding simulation scheme for
α-µ fading channels. This is attained simply by raising the
output of the Nakagami simulator to the power of2/α. In order
to obtain a resultingα-µ envelope with desired parametersα,
µ, and r̂, we have to set the parameters of the Nakagami
simulator according to (11). The general scheme is illustrated
in Fig. 2.

In the next section, we shall use this scheme to design a
new simulator forα-µ fading channels capitalizing on a recent,
highly-efficient simulator for Nakagami fading channels, the

Fig. 2. Transformation of Nakagami envelope intoα-µ envelope.

so-calledRM2 Nakagami simulator [7]. In order to allow the
analysis of the second-order statistics of the newα-µ simulator
to be performed directly in terms of the known second-order
statistics of theRM2 Nakagami simulator, it is crucial to derive
general relationships between the second-order statistics of
the Nakagami envelopeRN and those of theα-µ envelope
generated fromRN via R = R

2/α
N . In the following, these

general relationships are presented for LCR, AFD, second-
order envelope PDF, joint PDF of the envelope and its time
derivative, and ACF.

From (14), we note that theα-µ envelope process crosses
a given level r at the same rate at which the Nakagami
envelope process crosses the levelrα/2. In other words, the
LCR NR(r;α, µ, r̂) of the α-µ envelopeR can be written in
terms of the LCRNRN

(rN ;m,Ω) of the Nakagami envelope
RN as

NR(r;α, µ, r̂) = NRN
(r

α
2 ;µ, r̂α). (15)

Of course, the same relationship holds true for the AFD, i.e.

TR(r;α, µ, r̂) = TRN
(r

α
2 ;µ, r̂α), (16)

whereTR(r;α, µ, r̂) andTRN
(rN ;m,Ω) denote the AFD of

theα-µ and Nakagami envelopes, respectively.
The joint PDF fR,Ṙ(r, ṙ;α, µ, r̂) of R and its time

derivative Ṙ can be written in terms of the joint PDF
fRN ,ṘN

(rN , ṙN ;m,Ω) of RN and its time derivativeṘN by
using (14) and its time derivative

ṘN =
α

2
R

α−2

2 Ṙ (17)

to perform a standard transformation of variables from
(RN , ṘN ) to (R, Ṙ). After some algebraic manipulations, we
obtain

fR,Ṙ(r, ṙ;α, µ, r̂) =
α2

4
rα−2fRN ,ṘN

(

r
α
2 ,

α

2
r

α−2

2 ṙ;µ, r̂α
)

.

(18)

The second-order PDFfR(t),R(t+τ)(r1, r2;α, µ, r̂) of
R can be written in terms of the second-order PDF
fRN (t),RN (t+τ)(rN1

, rN2
;m,Ω) of RN by using (14) as

RN (t) = Rα/2(t) andRN (t+ τ) = Rα/2(t+ τ) to perform a
standard transformation of variables from(RN (t), RN (t+τ))
to (R(t), R(t + τ)). After some algebraic manipulations, we
obtain

fR(t),R(t+τ)(r1, r2;α, µ, r̂) =
α2

4
(r1r2)

α
2
−1

×fRN(t),RN (t+τ)(r
α/2
1 , r

α/2
2 ;µ, r̂α).

(19)



Fig. 3. RM
2
α-µ fading simulator.

Finally, using (19), the ACF ofR can be generally written as

AR(τ ;α, µ, r̂) =
∫

∞

0

∫

∞

0

r1r2fR(t),R(t+τ)(r1, r2;α, µ, r̂)dr1dr2. (20)

Depending on the second-order PDF of the input Nakagami
simulator being used in the scheme described in Fig. 2, the
resultingα-µ ACF in (20) may have a closed-form solution or
not. In particular, if the classical Nakagami simulator is used,
then the resultingα-µ ACF reduces to (9).

IV. T HE PROPOSEDα-µ SIMULATOR

In the context of the general framework presented in Fig. 2,
we propose to use the recent highly-efficientRM2 Nakagami
fading simulator [7] in order to build a correspondingα-µ
fading simulator. The proposed simulator is illustrated in
Fig. 3. We call itRM2 α-µ fading simulator. As shall be seen,
theRM2 α-µ simulator (i) allows for arbitrary real values of
the fading parametersα and µ, (ii) exactly matches theα-
µ first-order statistics, (iii) and closely approximates theα-µ
second-order statistics. Each of these features is inherited from
a corresponding feature of the underlyingRM2 Nakagami
simulator. Next, we provide more detail on the operation of
the proposed simulator. In addition, we derive many important
second-order statistics associated to it, namely, LCR, AFD,
second-order envelope PDF, joint PDF of the envelope and its
time derivative, and ACF.

As mentioned before, theRM2 scheme is based on a
cascade combination of two simulation techniques called
random mixture [5] and rank matching [6]. First, in the
random-mixture stage, for a given desired fading parameter
m, a process is obtained by drawing from a pair of different
Nakagami processes with integer and half-integer fading pa-
rameters lower than or equal tom (fading parametermL) and
greater thanm (fading parametermU ). In our case, from (11),
m = µ and, correspondingly,mL = µL andmU = µU , so that

mL = µL =
⌊2m⌋
2

=
⌊2µ⌋
2

(21)

mU = µU =
⌊2m⌋
2

+
1

2
=

⌊2µ⌋
2

+
1

2
, (22)

where ⌊·⌋ denotes floor. For instance, if the desired fading
parameter ism = µ = 1.3, then mL = µL = 1 and
mU = µU = 1.5. Note thatµL ≤ µ < µU . The Nakagami
processes with fading parametersmL = µL andmU = µU

can be in principle generated by any method available in the
literature. Here, we assume they are generated via the classical
method [3], [4], as in (10).

Note in Fig. 3 that the Nakagami process with lower fading
parametermL = µL is drawn with probabilityp(m) = p(µ),
and that with larger fading parametermU = µU is drawn with
probability [1−p(m)] = [1−p(µ)]. A central task is to design
a suitable mixture probabilityp(µ) that renders the whole
scheme a good approximation to the desired classicalα-µ
second-order statistics. This task has been performed in [7]
but for the Nakagami case. Here, instead, just to gain insight
on the potentials of theRM2 scheme forα-µ fading channels,
we pick the original design ofp(m) as performed in [5] by a
moment-based approach, namely

p(µ) =
2µL (µU − µ)

µ
. (23)

The output of the random-mixture stage provides the input
of the rank-matching stage [7]. In this second stage, a Nak-
agami output sequence is obtained from an input reference
Nakagami sequence and a set of Nakagami samples, drawn
independently. The output sequence is a mere rearrangementof
these samples, in a way that the samples in the ouput sequence
exactly match the rank of the samples in the input sequence,
that is, their minima occur in the same position, their second
minima occur in the same position, an so on. The operation
is called rank matching, and the output sequence is said to be
rank-matched to the input reference sequence. In the proposed
scheme, because of the front random-mixture stage, the input
reference sequence is either a Nakagami process with fading
parametermL = µL—with probability p(µ)—or a Nakagami
process with fading parametermU = µU—with probability
[1− p(µ)]. In addition, following (11), for a desired set ofα-
µ parametersα, µ, andr̂, the independent Nakagami samples
have to be accordingly drawn withm = µ andΩ = r̂α. The
rank-matching operation ensures that the Nakagami first-order
statistics are attained in an exact manner [7]. Then, plugging
(13)—or Fig. 2, equivalently—at the output of the rank-
matching block, theα-µ sequence with desired parameters
α, µ, andr̂ is finally obtained with exact first-order statistics.
The corresponding second-order statistics are derived next.

Let NR,ref denote the reference Nakagami process with
fading parametermref = mL or mref = mU , as required, gen-
erated by the random-mixture stage via the classical method.
In addition, letNR denote the Nakagami process with fading
parameterm generated fromNR,ref via the rank-matching
operation. In [10], it is proved that generatingNR from
NR,ref via the rank-matching operation is fully equivalent
to generatingNR from NR,ref via the well-known inversion
transformation method [11, Eq. (7-157)]

RN = F−1
RN

(FRN
(RN,ref ;mref ,Ω);m,Ω), (24)

where F−1
RN

(u;m,Ω) is the inverse CDF of the Nakagami
envelope andFRN

(r;m,Ω) is the CDF of the Nakagami



envelope. These are given by [3], [7]

FRN
(r;m,Ω) = 1−

Γ
(

m, mr2

Ω

)

Γ(m)
(25)

F−1
RN

(u;m,Ω) =

√

Ω

m
Q−1(m, 1− u), (26)

where Q−1(m,u) is the inverse of the regularized
incomplete gamma function, i.e., it gives the
solution for z in u = Γ(m, z)/Γ(m). It can
be computed in Mathematica by means of
InverseGammaRegularized[m,u].

In the analysis that follows, instead of (24), it is more
convenient to use its inverse relationship, in whichRN,ref is
written in terms ofRN , i.e.

RN,ref = F−1
RN

(FRN
(RN ;m,Ω);mref ,Ω)

, h(RN ;mref ,m,Ω). (27)

In addition, it is also important to write the time derivative
ṘN,ref of RN,ref in terms of the time derivativėRN of RN .
This is attained by differentiating (27) with respect to time,
which gives

ṘN,ref = h′(RN ;mref ,m,Ω)ṘN , (28)

whereh′(·; ·, ·, ·) denotes the first derivative ofh(·; ·, ·, ·) as
defined in (27). Using (25) and (26) into the definition of
h(·; ·, ·, ·), this can be obtained, after some careful algebraic
manipulations, as

h(r;mref ,m,Ω) =

√

√

√

√

Ω

mref
Q−1

(

mref ,
Γ
(

m, mr2

Ω

)

Γ(m)

)

, (29)

and its first derivative as

h′(r;mref ,m,Ω) =
mmr2m−1Γ(mref)

m
1/2
ref Ω

m−1/2Γ(m)

× exp



−mr2

Ω
+Q−1



mref ,
Γ
(

m, mr2

Ω

)

Γ(m)









×Q−1



mref ,
Γ
(

m, mr2

Ω

)

Γ(m)





mref+1/2

. (30)

Now, based on (27)–(30), via standard transformation of
variables, we are able to derive any statistics ofRN and ṘN

in terms of the corresponding statistics ofRN,ref andṘN,ref ,
which are those of the classical Nakagami simulator. Then,
the derived statistics ofRN andṘN can be replaced into the
general relationships between Nakagami andα-µ fading given
in (15), (16), (18), (19), and (20), in order to finally obtain
the required statistics of the proposedα-µ simulator. Such a
procedure can be applied for each of the reference Nakagami
processes with fading parametersmref = mL and mref =
mU . Then, because there is a random mixture of them in the
proposed scheme, the overall statistics are given as a weighted

sum of the individual statistics formref = mL andmref =
mU , the weights being given by the mixture probabilitiesp(µ)
and [1− p(µ)], respectively.

Take, for instance, the LCR and AFD. For a givenRN,ref

with fading parametermref , the LCR and AFD ofRN are
given by [7, Eqs. (27) and (28)]

NRN
(r;m,Ω) = NRN,ref

(h (r;mref,m,Ω) ;mref,Ω) (31)

TRN
(r;m,Ω) = TRN,ref

(h (r;mref,m,Ω) ;mref,Ω) . (32)

Note thatNRN,ref
(r;m,Ω) andTRN,ref

(r;m,Ω) are the LCR
and AFD of the classical Nakagami simulator, given by (5)
and (6), respectively, withα = 2, µ = m, and r̂ = α

√
Ω.

Combining (31) and (32) with the corresponding mixture
probabilities into (15) and (16), we then obtain the LCR and
AFD of the proposedα-µ simulator as

NR(r;α, µ, r̂) = p(µ)NRN,ref
(h(r

α
2 ;µL, µ, r̂

α);µL, r̂
α)

+ [1− p(µ)]NRN,ref
(h(r

α
2 ;µU , µ, r̂

α);µU , r̂
α) (33)

TR(r;α, µ, r̂) = p(µ)TRN,ref
(h(r

α
2 ;µL, µ, r̂

α);µL, r̂
α)

+ [1− p(µ)]TRN,ref
(h(r

α
2 ;µU , µ, r̂

α);µU , r̂
α). (34)

For a givenRN,ref with fading parametermref , the joint
PDF of RN and ṘN can be written in terms of the joint
PDF ofRN,ref andṘN,ref by using (27) and (28) to perform
a standard transformation of variables from (RN,ref , ṘN,ref)
to (RN , ṘN ). Performing this transformation and combining
it with the corresponding mixture probabilities into (18),we
then obtain, after some algebraic manipulations, the jointPDF
of R and Ṙ for the proposedα-µ simulator as

fR,Ṙ(r, ṙ;α, µ, r̂) =
α2

4
rα−2 {p(µ)f1 + [1− p(µ)]f2} ,

(35)

f1 , h′2(r
α
2 ;µL, µ, r̂

α)

× fRN,ref ,ṘN,ref

(

h(r
α
2 ;µL, µ, r̂

α),

α

2
r

α−2

2 ṙ h′(r
α
2 ;µL, µ, r̂

α);µL, r̂
α
)

(36)

f2 , h′2(r
α
2 ;µU , µ, r̂

α)

× fRN,ref ,ṘN,ref

(

h(r
α
2 ;µU , µ, r̂

α),

α

2
r

α−2

2 ṙ h′(r
α
2 ;µU , µ, r̂

α);µU , r̂
α
)

. (37)

In (36) and (37),fRN,ref ,ṘN,ref
(r, ṙ;m,Ω) is the joint PDF of

the envelope and its time derivative for the classical Nakagami
simulator, given by (4) withα = 2, µ = m, and r̂ = α

√
Ω.

Analogously, for a givenRN,ref with fading parametermref ,
the second-order PDF ofRN can be written in terms of the
second-order PDF ofRN,ref by using (27) to perform a stan-
dard transformation of variables from(RN,ref(t), RN,ref(t +
τ)) to (RN (t), RN (t + τ)). Performing this transformation
and combining it with the corresponding mixture probabilities



into (19), we then obtain, after some algebraic manipulations,
the second-order PDF ofR for the proposedα-µ simulator as

fR(t),R(t+τ)(r1, r2;α, µ, r̂) =
α2

4
(r1r2)

α
2
−1

× {p(µ)f3 + [1− p(µ)]f4} (38)

f3 , h′(r
α
2

1 ;µL, µ, r̂
α)h′(r

α
2

2 ;µL, µ, r̂
α)

× fRN,ref(t),RN,ref (t+τ)

(

h(r
α
2

1 ;µL, µ, r̂
α),

h(r
α
2

2 ;µL, µ, r̂
α);µL, r̂

α
)

(39)

f4 , h′(r
α
2

1 ;µU , µ, r̂
α)h′(r

α
2

2 ;µU , µ, r̂
α)

× fRN,ref (t),RN,ref(t+τ)

(

h(r
α
2

1 ;µU , µ, r̂
α),

h(r
α
2

2 ;µU , µ, r̂
α);µU , r̂

α
)

. (40)

In (39) and (40),fRN,ref (t),RN,ref (t+τ)(r1, r2;m,Ω) is the
second-order PDF of the classical Nakagami simulator, given
by (7) with α = 2, µ = m, and r̂ = α

√
Ω.

Finally, using (38) into (20), the ACF of the proposedα-µ
simulator can be expressed in an integral form. Unfortunately,
it seems there is no closed-form solution to the ACF.

V. NUMERICAL EXAMPLES AND COMPARISONS

In this section, we give some sample plots in order to assess
the performance of the proposedα-µ simulator when com-
pared to the statistical expressions of the classical simulator.
We focus on LCR and AFD, for they are most representative
among the second-order statistics investigated. The LCR is
presented in Fig. 4, the AFD in Fig. 5. Note that the statistics
of the proposed simulator are shown in dashed lines, and
those of the classical simulator are shown in solid lines. In
addition, as a check, Monte Carlo simulation results for the
proposed simulator are also shown in dotted lines. In the plots,
we have used a fixed value of the parameterm = 1.75 and
varied the parameterµ as 0.75, 1.25, 1.75, 2.25 and 2.75. The
corresponding values of the parameterα are 3.13532, 2.3743,
2, 1.76638, and 1.60229. (Please refer to [1] for details on
the relationship betweenα and µ for a given value ofm.)
From Fig. 4, we see that, except for very low values ofµ,
the LCR of the proposed simulator is in very good agreement
with the classical LCR, becoming practically indistinguishable
from this asµ increases. From Fig. 5, a similar comment holds
true for the AFD.

VI. CONCLUSIONS

We have designed and analyzed a new simulator forα-µ
fading channels that (i) allows for arbitrary real values of
the fading parametersα andµ, (ii) exactly matches theα-µ
first-order statistics, (iii) and closely approximates theα-µ
second-order statistics. To our best knowledge, no simulation
scheme forα-µ fading channels has been proposed yet that
allows for non-integer or non-half-integer values of the fad-
ing parameterµ. We are currently working on the redesign
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Fig. 4. Level crossing rate for the proposedα-µ simulator.
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Fig. 5. Average fade duration for the proposedα-µ simulator.

and optimization of the mixture probabilities at the random-
mixture stage in order to further improve the performance of
the proposed simulator.
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