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Abstract— Capitalizing on a simple relationship between the statistical expressions derived from the origina}j: fading
a-p and Nakagami+n fading models, we design a new efficient model have no mathematical constraints to be used for any
simulation scheme for a-p fading channels that (i) allows real value ofu > 0. Second, in practice, if the parameter

for arbitrary real values of the fading parameters o and . to b iricall timated f field t |
u, (i) exactly matches the a-p first-order statistics, (iii) and IS {0 be empirically esimated Irom field measurements, rea

closely approximates thea-u second-order statistics. In addition, values ofu will certainly occur. Third, thev-; fading model—
we provide a detailed analysis of the first- and second-order as any other fading model available—has inherent limitegtio

statistics associated to our new simulator. More specifichl we for being indeed an approximate solution to the so-called
derive closed-form expressions for important channel stastics, 5nqom phasor problem, and these limitations can be masle les

namely, level crossing rate, average fade duration, secoratder tri t by allowi to b l-valued. Fourth int
probability density function of the channel envelope, and ¢int stringent Dy allowingu 1o be real-vajued. -ourth, non-integer

probability density function of the channel envelope and is time  vValues of multipath clusters have been extensively regarte
derivative. The envelope autocorrelation function is alsmbtained, the literature (see, for instance, [2] and the referenca®ih).
but in an integral form. Numerical examples are given that atest However, as argued before, wheris non-integer or non-half-
the good performance of our design. To our best knowledge, no integer, the originah-4: fading model has no meaning and thus

simulation scheme for o~ fading channels has been proposed tb d imulati h In fact. to the best of
yet that allows for non-integer or non-half-integer valuesof the cannot be used as a simulation scheme. In fact, o the best o

fading parameter 4. our knowledge, no simulation scheme teiu: fading channels
Index Terms—fading channels,a-p fading, simulation. has been reported yet that allows for any real valugs dhis
is still an open problem.
l. INTRODUCTION In this work, we design a solution to the above problem

The «-p distribution [1] is a generalized statistical modeby exploiting a simple relationship between tlhey and
that accounts for the joint effect of two fundamental radidNakagami fading models. As mentioned before, in the
fading phenomena: the clustering of multipath waves and thedel, thea-th power of the signal amplitude equals the sum
nonlinearity of the propagation medium. In this distrilbmti of 2, squared, zero-mean, independent identically distributed
the nonlinearity of the propagation medium is representéid.d.) Gaussian multipath components [1]. Similarly, vasl|
by a parameterx > 0, in a way that the sum of squaredknown, in the Nakagami model with fading parameterthe
multipath components equals not the square of the resultisguared signal amplitude equals the sun»afsquared, zero-
signal amplitude, but this amplitude to the powercafThe mean, i.i.d. Gaussian multipath components [3], [4]. Tfee
clustering of waves, in its turn, is represented by the patam by raising a Nakagami process with = p to the power
> 0, which is related to the number of multipath clustersf 2/«, we can generate am-u process with parameters
that compose the resulting signal. Through these two shag®l ;.. As a result, using such a simple transformation, we
parameters ( and ), the a-p distribution covers a vast can capitalize on an existing simulation scheme for Nakagam
range of propagation conditions, from light to moderate tading channels in order to readily build a corresponding
severe fading, including as special cases one-sided Gaysssimulation scheme fow-p fading channels.

Rayleigh, Nakagami, and Weibull. In principle, the above framework allows us to use any

The simulation of thex-p fading channel may be challeng-Nakagami simulator available as a basis to dhg simulator.
ing, depending on the value of the parameaterOriginally, Naturally, the better the Nakagami simulator used, theebett
in the physical fading model behind the derivation of the the expected performance of the resultingu simulator.

u distribution, 2. equals the number of multipath GaussialiVe propose the use of a recent, highly-efficient Nakagami
clusters that compose the resulting signal [1]. Therefore, simulator that (i) allows for arbitrary real values of thelifag
principle, it would only make sense to consider integer qgrarameterm, (ii) matches the exact Nakagami first-order
half-integer values of:, in which case the original-u fading statistics, (iii) and closely approximates the Nakagaroose-
model itself can be readily used as a simulation scheme.,Heseder statistics. The scheme is based on a combination of
we call this scheme the classicalu simulator. But there exist two simulation techniques called random mixture [5] anckran
many reasons to consider non-integer and non-half-integeatching [6]. Accordingly, it is called random-mixturenia
values ofyx as well, including the following. First, the manymatching RM?) Nakagami simulator [7]. As far as we know,



Gaussian Although the classicab-p simulator is limited to integer
simulator ( )2 . . . .
) . and half-integer values of., it allows the derivation of
analytical expressions for many important channel stesist
Gaussian 5 N o with no constraints to be used for any real valuegi:oNext,
S er (2P 22 YO > envelope we reproduce some of these statistics. We shall use them as a
benchmark to assess the performance of our new simulator.
Departing from (1), the PDF oR can be obtained as [1]

Gaussian R Oé,LL“Ta“_l ro
sin;lzjta)tor ()2 fr(ria,p,7) = T (1) exp < ,uf‘a> ) (2)
wherea > 0 is a power parametet, = E?[R*]/V[R*] > 0 is
Fig. 1. The classicab-u simulator. the inverse of the normalized variance Bf, 7+ = {/E(R®)
is the a-root mean valuel'(-) is the gamma function, and
the variance of each underlying Gaussian proceéss (1) is
the RM? method provides the best-match solution currentl§ /(2,:). (E[-] denotes expectation/[-] variance.) Note that
available for Nakagami fading channel simulation. the a-u envelope PDF is specified by three parameters:
In the following, we capitalize on th&M? Nakagami g, and#. The corresponding cumulative distribution function
simulator to design an efficient simulation scheme fop; (CDF) can be then obtained as [1]
fading channels that (i) allows for arbitrary real values of T (p, pr /7%)
the fading parametera and p, (i) exactly matches thev- Fr(rio,p,7) =1-— ’11(7)7 3)
u first-order statistics, (iii) and closely approximates e K
1 second-order statistics. Each of these features is ieloeritvhereI'(a,b) = fob to~Lexp(—t)dt is the incomplete gamma
from a corresponding feature of the underlying Nakagarhinction.
simulator. We also provide a detailed analysis of the firstt a In this work, we also address important second-order
second-order statistics associated to our new simulatoreM statistics of the communication channel, namely LCR, AFD,
specifically, we derive closed-form expressions for imaott second-order PDF aR, joint PDF of R and its time derivative
channel statistics, namely, level crossing rate (LCR)raye R, and ACF of R. In particular, for simplicity, we focus
fade duration (AFD), second-order probability densitydiion  on the scenario with isotropic scattering and omnidiretlo
(PDF) of the channel envelope, and joint probability densiteception. In such a case, the joint PDF®fand R is given
function of the channel envelope and its time derivativee Ttby [1]

envelope autocorrelation function (ACF) is also obtairtat, 02 i 0-5 pa(0.5)—2

in an integral form. Numerical examples are given that attes frplrrma,ur) = -

the good performance of our design. ' V2mwient 0T () )
The rest of the paper is organized as follows. In Section I, X oxp <—M0427”a27"2 B MTO‘)

the classicala-p simulator and its corresponding first- and 2w2r o )

second-order stafistics are revisited. In Section Ill, rapte  \yherew is the maximum Doppler shift in radians per second.
relationship between the-;. and Nakagami fading models isysing (3) and (4), the LCR and AFD of the classicaiu

provided as the basis to the design and analysis of our ngiylator can be derived respectively as [1]

a-p Simulator, which is then described in Section IV. Sample =05 (n=0.5)

examples and performance comparisons between the classica Nr(ra, p, 7) = (5)
and proposed simulators are presented in Section V. Finally V27T (1) exp (up®)
Section VI summarizes the paper. Talricn, uf) = VERT (1, 1p™) exp (1p®) -
Il. THE CLASSICAL a-11 SIMULATOR REVISITED T wph=0-5pa(n=0-5 7
In the original physical fading model behind the derivatiowherep £ /7 is the #-normalized envelope.
of the o~ distribution [1], the channel envelop is repre- ~ The second-order envelope PDF of the classical simu-

sented as thew-root of the sum of2; squared, zero-mean,lator has been derived in [1] as

i.i.d. Gaussian multipath componemts (i = 1,...,2u), i.e. S (pt1)—1 2 (u+1)—1

Pt ps P

TRy, Rt47) (11,7250, 1, 7) = =

(1—6(r)8“ = T(u)

%3 +p%> I, <2ux/5(7)p‘f‘p§‘>
n— ’

% exp <_H1—5(7) 1—46(7)

1)

Of course, this representation is valid only for integer hatl- @)
integer values ofi, and, in these cases, it can be readily used

as a simulation scheme. We call this scheme the classigal wheret denotes timey is a time lag,p; = r;/#, i = 1,2,
simulator. It is illustrated in Figl. I,(.) is the modified Bessel function of the first kind anith



order [8], andj(7) is the power autocorrelation coefficient of
each underlying Gaussian proc&ssin (1). It can be shown Rn 2 ( . )2!0 > R
thatd(7) is also then-power autocorrelation coefficient @,
i.e. [1]

() = _CLE(0), R*(t +7)
VVIROIVIR( + 7))

whereCT-, -] denotes covariance. The functional formdgf)

depends on the scattering conditions [9]. In particular, f ) ey i
isotropic scattering and omnidirectional receptidiiy) — analysis of the second-order statistics of the maew simulator

J2(wr), where Jo(-) is the Bessel function of first kind and®© be performed directly in terms of the known second-order
zeroth order [8]. Finally, using (7), the ACF ok can be statistics of theRM? Nakagami simulator, it is crucial to derive

derived for the classical-u simulator as [1] general relati(_)nships between the second-order statistic
the Nakagami envelop®&y and those of thex-i envelope

(8) Fig. 2. Transformation of Nakagami envelope inte. envelope.

éo-calledRM2 Nakagami simulator [7]. In order to allow the

Ap(rsa, i, 7) = T2 (n+ 3) P <_l l,ﬂ,5(7)> (9) 9enerated fromRy via R = R2/®. In the following, these
o a2 () a o’ ’ general relationships are presented for LCR, AFD, second-
wheresFy (-, - ) is the Gauss hypergeometric function [8]_0rder envelope PDF, joint PDF of the envelope and its time
T derivative, and ACF.
[1l. A SIMPLE RELATIONSHIP BETWEEN-/ AND From (14), we note that the-; envelope process crosses

NAKAGAMI FADING a given levelr at the same rate at which the Nakagami
As highlighted in [1], there is a simple relationship cortaecenvelope process crosses the level*. In other words, the
ing the a-;. envelope to the Nakagami envelope, as followd.CR Ng(r;a, u, ) of the a-p envelopel? can be written in
In the Nakagami fading model, the channel enveldpge terms of the LCRNg, (rn;m, () of the Nakagami envelope

with mean power) = E[R%/] and fading parametem = Ry as

E?[R%]/V[R%] is represented as the square root of the sum Nr(rya, u,7) = Npy (r2; p, 7). (15)

of 2m squared i.i.d. Gaussian multipath componekits(: =

1,...,2m) with zero mean and variané&/(2m), i.e. [3], [4] Of course, the same relationship holds true for the AFD, i.e.

Tr(r; o, p,7) = Try (125 1, #), (16)
Ry =

2m

> X2 (10)

i=1 whereTxr(r; v, u, 7) and Try (rn;m, ) denote the AFD of
Therefore, from (1) and (10), we note that a squared Nakagdhf «-» and Nakagami envelopes, respectively.

enve|ope with parameters The joint PDF fRVR(T,f“;a,,u,f) of R and its time
derivative R can be written in terms of the joint PDF
Fry oy (P73 m, Q) of Ry and its time derivativek y by
equals thex-power of ana-u envelopeR with parametersy, Using (14) and its time derivative

1, andr, that is

m = p and Q = 7¢ (12)

R* = R%,. (12) Ry=5R7>R 17)
Equivalently, Eq. (12) can be rewritten wifhin terms of By, o perform a standard transformation of variables from
R— R?v/a7 (13) (Rwn, Ry) to (R, R). After some algebraic manipulations, we
obtain
or with Ry in terms of R, 5
. AN a” o a 0 oa=2 .. Ay
RN:RQ/Q. (14) fR,R(Tvraaa,uvr)—ZT fRN,RN (T2,§T 2T, T )

18
In particular, inspired by Eq. (13), we can capitalize on any (18)

existing simulation scheme for Nakagami fading channels inThe second-order PDFf () r(t4r) (11, r2s @, 1, 7)  Of
order to readily build a corresponding simulation schente fg can pe written in terms of the second-order PDF
a-p fading channels. This is attained simply by raising tthN(t)_RN(HT)(TNU,«Nz;m,Q) of Ry by using (14) as
output of the Nakagami simulator to the powegt. In order RN(t)': R/2(t) and Ry (t+7) = R*/2(t+7) to perform a

to obtain a resultingv-,. envelope with desired parameters standard transformation of variables fraln (), Ry (t+7))

p, and 7, we have to set the parameters of the Nakagagy (R(t), R(t + 7)). After some algebraic manipulations, we
simulator according to (11). The general scheme is illtstra gptain

in Fig. 2.

In the next section, we shall use this scheme to design a
new simulator for-p fading channels capitalizing on a recent,
highly-efficient simulator for Nakagami fading channelse t foN(t),RN(HT)(r?/Q,rg‘/Q;;L,f*“).

2
~ « a_
TRy, R4y (11,725 00 1, ) = I(’l"l’f'g) >t (19)



Nakagami simulator | ~up with probabilty can be in principle generated by any method available in the

with fading parameter (1-p(k) . . .
my= (L2ul12) +172 \_D i . literature. Here, we assume they are generated via thaadhss
s Rank-matchin utpu
Lo e |l o] it method [3], [4], as in (10). | _ _

Nakagami simulator _ITD T ® Note in Fig. 3 that the Nakagami process with lower fading

ith fadi - . i i i — 1 1 ili —

iR Tading parameter [ rababiy i e e oo | parameterny, =y, is o_lrawn with probabllltyp(m) = p(u_),
1 i [ and that with larger fading parametei; = p is drawn with
! random-mixturestage ! rank-matehingstage ! probability [1 —p(m)] = [1 —p(u)]. A central task is to design

a suitable mixture probability(y) that renders the whole
scheme a good approximation to the desired classieal
second-order statistics. This task has been performed]in [7
but for the Nakagami case. Here, instead, just to gain imsigh
on the potentials of thRM? scheme forv- fading channels,

Fig. 3. RM?2 a-u fading simulator.

Finally, using (19), the ACF ofk can be generally written as

Ap(ria, p, ) = we pick the original design gf(m) as performed in [5] by a
oo oo moment-based approach, namely
/ / 172 fR(t), R(t+) (11, 23 @y, 7)dridra. (20)
o Jo _ 2pr (pu — 1) 23
Depending on the second-order PDF of the input Nakagami pp) = 1 ' (23)

simulator being used in the scheme described in Fig. 2, the
resultinga- ACF in (20) may have a closed-form solution or  The output of the random-mixture stage provides the input
not. In particular, if the classical Nakagami simulator sed, Of the rank-matching stage [7]. In this second stage, a Nak-
then the resultingv-1« ACF reduces to (9). agami output sequence is obtained from an input reference
Nakagami sequence and a set of Nakagami samples, drawn
independently. The output sequence is a mere rearrangefment
In the context of the general framework presented in Fig. these samples, in a way that the samples in the ouput sequence
we propose to use the recent highly-effici®t[> Nakagami exactly match the rank of the samples in the input sequence,
fading simulator [7] in order to build a correspondingy that is, their minima occur in the same position, their selcon
fading simulator. The proposed simulator is illustrated iminima occur in the same position, an so on. The operation
Fig. 3. We call itRM? a-1 fading simulator. As shall be seenjis called rank matching, and the output sequence is said to be
the RM? a-u simulator (i) allows for arbitrary real values ofrank-matched to the input reference sequence. In the pedpos
the fading parameters and p, (ii) exactly matches ther- scheme, because of the front random-mixture stage, the inpu
1 first-order statistics, (iii) and closely approximates the:  reference sequence is either a Nakagami process with fading
second-order statistics. Each of these features is iglddiom parametern;, = p,—with probability p(r)—or a Nakagami
a corresponding feature of the underlyifgVi> Nakagami process with fading parametei;; = py—with probability
simulator. Next, we provide more detail on the operation ¢f — p(x)]. In addition, following (11), for a desired set of
the proposed simulator. In addition, we derive many impurta;. parametersy, ., andr, the independent Nakagami samples
second-order statistics associated to it, namely, LCR, AFBave to be accordingly drawn witthh = o and Q2 = #*. The
second-order envelope PDF, joint PDF of the envelope and iigk-matching operation ensures that the Nakagami fidssor
time derivative, and ACF. statistics are attained in an exact manner [7]. Then, phgygi
As mentioned before, th&M? scheme is based on a(13)—or Fig. 2, equivalently—at the output of the rank-
cascade combination of two simulation techniques calledatching block, then-p sequence with desired parameters
random mixture [5] and rank matching [6]. First, in thev, u, and is finally obtained with exact first-order statistics.
random-mixture stage, for a given desired fading paramefre corresponding second-order statistics are derivetd nex
m, a process is obtained by drawing from a pair of different Let Ng,.; denote the reference Nakagami process with
Nakagami processes with integer and half-integer fading fading parameten,.; = my, or m,et = my, as required, gen-
rameters lower than or equal to (fading parametem ;) and erated by the random-mixture stage via the classical method
greater thann (fading parametem). In our case, from (11), In addition, let Ny denote the Nakagami process with fading
m = p and, correspondinglypr, = iz, andmy = uy, so that parameterm generated fromVg ¢ via the rank-matching

IV. THE PROPOSEDa-p SIMULATOR

12m] 2] operation. In [10], it is proved that generatingz from
ML= pL = 5= = 5~ (21)  Ng,er via the rank-matching operation is fully equivalent
to generatingVgr from Ng .. via the well-known inversion
my = py = [2m] + 1 [2n n 1 (22) transformation method [11, Eq. (7-157)]
2 2 2 2’
where || denotes floor. For instance, if the desired fading Ry = Fr\ (Fry (RN ror; ey, );m, ), (24)

parameter ism = p = 1.3, thenm;, = pur = 1 and
my = py = 1.5. Note thatuy, < p < py. The Nakagami where Fg}\li (u;m, Q) is the inverse CDF of the Nakagami
processes with fading parameters, = p;, andmy = uy  envelope andFg, (r;m, ) is the CDF of the Nakagami



envelope. These are given by [3], [7] sum of the individual statistics fom,.; = mr and mes =
) my, the weights being given by the mixture probabilitigs,)
r ( g %) and[1 — p(u)], respectively.
Fry (rym, Q) =1~ T(m) (25) " Take, for instance, the LCR and AFD. For a OIVER of
with fading parametem,.t, the LCR and AFD ofRy are

Fi (usm, ) = \/%Q_l(m, | _w). (26 dvenby|[7, Egs. (27) and (28)
NRN (T7 m, Q) = NRN,,-ef (h' (T7 Mref, M, Q) 3 Meref, Q) (31)

where Q~'(m,u) is the inverse of the regularized

incomplete  gamma function, i.e., it gives the Tra (r;m, Q) = Try oo (h (73 wer, m, Q) 306, ) . (32)
soluton for 2z in wu = T(m,z)/T(m). It can

be computed in Mathematica by means ofote thatNg, . (r;m,Q) andTg, . (r;m,Q) are the LCR

I nver seGanmaRegul ari zed[ m u] . and AFD of the classical Nakagami simulator, given by (5)

In the analysis that follows, instead of (24), it is mor@nd (6), respectively, wittx = 2, 4 = m, and# = Q.
convenient to use its inverse relationship, in whigk s is Combining (31) and (32) with the corresponding mixture
written in terms ofRy, i.e. probabilities into (15) and (16), we then obtain the LCR and
AFD of the proposedv-;; simulator as

RN,rcf - F]%i (FRN (RN, m, Q)7 Meref, Q)
= h(By;mper,m, Q). 27)  Nr(rsa,pu,#) = p() Ny o (W(r s s, 79); . )
In addition, it is also important to write the time derivativ +[1 = p(W)INRy o (h(r 25 pur, 1, 7); p, #) - (33)

R rof Of Ry 1of in terms of the time derivativéy of Ry.
This is attained by differentiating (27) with respect to éim Tr(

ra, ’T‘A = T o h’f'%; ) 772(1; a,ﬁa
which gives s 7) = p(p) Riv et (1 WL s PY); por, 7Y)

+ (1= p()| Try o (R(r 2 i, 1, #); o, 7). (34)

. o For a givenRy;, ref with fading parametein,.¢, the joint
where /(- -, -) denotes the first derivative Gf(-;-,-) 8 PDF of Ry and Ry can be written in terms of the joint
defined in (27). Using (25) and (26) into the definition oppE of Ry ret and RN rot by using (27) and (28) to perform
h(:;-,-,-), this can be obtained, after some careful a|gebraépstandard transformation of variables from]\(’reﬁRN ref)
manipulations, as to (R, Rn). Performing this transformation and combining

RN,rcf = h/(RN, Myef, M, Q)RN7 (28)

o it with the corresponding mixture probabilities into (18)e
(1 Mg, m, Q) = 0 Q-1 [ mres, r (m, Q ) . (29) then obtain, after some algebraic_manipulations, the joDIE
Myef (m) of R and R for the proposed-x simulator as

2

Fre s #) = 2 {p(u) fu + [1 = plu)] fo}

and its first derivative as

m 2771711"l rof
W (s veg, . ©2) = mmr (Myer) (35)
1/2ym—1/2
Myet Q F(m) A 120 % e
F( mr2) flzh (TZ;,LLLvﬂaT )
m, (5 ~ov
X exp _% + Q_l Mref, T x fRN,ref-,RN,ref (h(?‘Z sHL, [T )’
m a— o
St h'(ﬁ;uL,uf“);uL,f‘“) (36)
2 mx'ef+1/2 2
. '{m, "5 )
X Q" | Myet, ———% . (30 o o
I'(m) (30) fa 2 RP(r%; py, p, P)
Now, based on (27)—(30), via standard transformation of X TR et B (R s, 1, 7%),
variables, we are able to derive any statisticsgf and Ry X g (r2; pu, p, 7); MU,fO‘) . (37)
in terms of the corresponding statistics B ,of and Ry ref, 2

which are those of the classical Nakagami simulator. Thelm, (36) and (37)jRN et B f(r 7;m, Q) is the joint PDF of
the derived statistics aRy and Ry can be replaced into thethe envelope and its time derlvatlve for the classical Nakaig
general relationships between Nakagami and fading given simulator, given by (4) withw = 2, = m, and# = /.

in (15), (16), (18), (19), and (20), in order to finally obtain Analogously, for a giverR y .. with fading parametein,¢,
the required statistics of the proposee. simulator. Such a the second-order PDF dRx can be written in terms of the
procedure can be applied for each of the reference Nakagamtond-order PDF of ¢ by using (27) to perform a stan-
processes with fading parameters.; = m; and m,e = dard transformation of variables fro(Ry ref(t), R ver(t +
my. Then, because there is a random mixture of them in th¢) to (Rx(¢), Rn(t + 7)). Performing this transformation
proposed scheme, the overall statistics are given as a tedigrand combining it with the corresponding mixture probateifit



10

into (19), we then obtain, after some algebraic maniputetio increasing:
the second-order PDF @t for the proposedv-.. simulator as (drecreasing)
2 o 1 R |
~ (0% a_q = b ________-= e
PR, R+ (11,250, 1, 7) = == (172 2 g
o
x {p(p)fs +[1 —p(p)]fa} (38) % 01F P .
f3 éhl(rf;MLa,ua/f'a)h/(T;;,uLaMa,ﬁa) é 0.017//// il
a classical method (solid
X fRN,ref(t)-,RN,ref(tJrT) (h(T‘lz SHL [y 7;(1)’ proposed methc (dashed
a / simulation (dotted)
h(7°22§MLaMa72a)§MLa7A°Q) (39) e T S
normalized envelope, 20Lgg), [dB]
fa £ hI(TF U [y fa)h/(rzi YU Ky fa) Fig. 4. Level crossing rate for the proposedu simulator.
X TR et (8), v, et (t47) (h(rf;uwu,f‘*), o
B(rd s 7,7 ) . (40)
i 1L (increasingy) i
In (39) and (40), fry ,ot(t), Riv e (t47) (71,725 M, Q) IS the 2
second-order PDF of the classical Nakagami simulator,rgivg
by (7) with o« = 2, o = m, and# = V. £ o1 |
Finally, using (38) into (20), the ACF of the proposeeu E
simulator can be expressed in an integral form. Unfortupate £
it seems there is no closed-form solution to the ACF. S ooif E

classical method (solid)
proposed methc (dashed
V. NUMERICAL EXAMPLES AND COMPARISONS

In this section, we give some sample plots in order to assess0.001, 1 e e

the performance of the proposedy simulator when com-

pared to the statistical expressions of the classical sitoul

We focus on LCR and AFD, for they are most representative  Fig. 5. Average fade duration for the proposeei simulator.

among the second-order statistics investigated. The LCR is

presented in Fig. 4, the AFD in Fig. 5. Note that the stasstic

of the proposed simulator are shown in dashed lines, addd optimization of the mixture probabilities at the random

those of the classical simulator are shown in solid lines. mixture stage in order to further improve the performance of

addition, as a check, Monte Carlo simulation results for tiBe proposed simulator.

proposed simulator are also shown in dotted lines. In thisplo

we have used a fixed value of the parameter= 1.75 and

varied the parameter as 0.75, 1.25, 1.75, 2.25 and 2.75. Theltl M. D. Yacoub, “Thea-y distribution: A Physical Fading Model for the
Stacy Distribution,” inlEEE Trans. on vehicular technology, vol. 56,

simulation (dotted)

normalized envelope, 20Lqg), [dB]
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