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Abstract— Cognitive radio networks have been extensively
study in the last decade as a way to overcome the scarcity of
radio-frequency spectrum, by allowing unlicensed users (sec-
ondary users) to access a channel when the license holders
(primary users) are not accessing the channel. In this context,
spectrum sensing is a key procedure, performed by the secondary
users to determine whether the channel is idle or busy. However,
decisions regarding the channel state can be corrupted by fading
conditions, leading to interference to primary users, or missed
transmission opportunities to secondary users. Cooperative spec-
trum sensing schemes have been proposed as a way to mitigate
the effects of fading. Even though Cooperative spectrum sensing
in general leads to a higher performance, correlated shadowing
may reduce the benefits of cooperation. In this paper we present a
survey of techniques designed to mitigate the effects of correlated
fading on the performance of cooperative spectrum sensing.

Index Terms— Cognitive radio networks, correlated fading,
spectrum sensing.

I. INTRODUCTION

A key procedure in the context of cognitive radio is related
to the decision on whether the intended channel is vacant or
not. This procedure, known as spectrum sensing, is based on
the observation of some feature of the intended spectrum band,
and must be performed as accurately as possible. First of all,
the secondary user (i.e., users that want to opportunistically
access the channel) must be able to detect the presence of
primary users (i.e., users that hold the license to use the
channel) in the intended channel, in order to avoid interference
to primary users. On the other hand, a transmission opportunity
due to a vacant channel must not be missed, so that to increase
secondary users capacity.

Several techniques for spectrum sensing have been proposed
[1], [2], but all of them are based on observing the signal
present in the intended channel, and deciding the state of the
channel (either idle or busy) based on the observation made.
Therefore, the performance of spectrum sensing is strongly
affected by the propagation effects, such as deterministic path
loss, short-term fading and shadowing.

Cooperative spectrum sensing has been proposed to mitigate
the effects of fading on the performance of spectrum sensing.
The rationale behind the use of cooperation in spectrum
sensing is the exploitation of the spatial diversity among
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the observations made about the channel status by different
secondary users [3]. However, the effectiveness of cooperative
spectrum sensing in counteracting the effects of fading is
reduced when fading is spatially correlated. In fact, this is
a well known result in the diversity techniques field: diversity
gain is reduced when the combined signals are correlated. This
performance degradation due to correlated fading has been
investigated by many authors, resulting in several techniques
to circumvent this degradation effects.

In this paper we present a survey of techniques designed
to mitigate the effects of correlated shadowing fading on the
performance of cooperative spectrum sensing. We begin with
a brief overview of spectrum sensing in Section II, including
a review of typical correlated fading models. Next, in Section
III we review the key aspects of cooperative spectrum sensing.
In Section IV we discuss the effects of correlated shadowing
on the performance of cooperative spectrum sensing, and some
techniques for mitigating these effects are discussed in Section
V. Section VI reviews a technique that takes advantage of
correlated shadowing to increase the capacity of the secondary
network, and in Section VII we discuss an adaptive fusion rule
designed to mitigate the effects of correlated fading. Finally,
Section VIII concludes the paper.

II. SPECTRUM SENSING

Spectrum sensing techniques can be roughly classified into
three groups: (i) energy detection, (ii) matched filter and (iii)
feature detection. The energy detection technique is a good
choice when the signal to be detected is unknown, or when
low complexity is a key requirement. Spectrum sensing based
on matched filter requires knowledge on the transmitted signal,
what can be a prohibited requirement in some scenarios.
Finally, the detection feature technique has an improved per-
formance, but at the expenses of a higher complexity. These
techniques can be used to implement local spectrum sensing,
i.e., a secondary user makes a decision regarding the state
of the channel based on the local observations. Any of these
techniques can be used in a cooperative spectrum sensing
scheme, i.e., local decisions or local observations are combined
to reach a global decision.

A. Signal Model and Channel Model

In order to present a more formal description of the
performance of cooperative spectrum sensing in correlated
fading environments, we will briefly present some models for



signals and channels. We begin with the channel model, that
includes the deterministic path loss and shadowing fading. The
propagation channel gain (in terms of amplitude) between the
primary transmitter and the l-th secondary user is given by [4]

hl(t) = (dl/d0)
−η/210ζl/20, (1)

where d0 is a close-in reference distance, η is the path-loss
exponent and ζl is a zero-mean normal random variable that
models the shadowing fading.

As the spectrum sensing procedure can be viewed as a
decision problem, we define two hypothesis:

H0 : channel is idle,
H1 : channel is busy. (2)

Therefore, the base-band signal observed by the l-th secondary
user in the channel of interest can be written as

r(t) =

{
ν(t) if H0 is true
hl(t) x(t) + ν(t) if H1 is true, (3)

where x(t) is the signal transmitted by the primary user and
ν(t) is the additive Gaussian noise.

Based on the observation of r(t), a decision metric is com-
puted, according to the spectrum sensing technique adopted,
and compared to a given threshold to reach a local decision.
For instance, if energy detection is used, the energy El of the
signal observed by the l-th secondary user in the channel is
computed as

El =
1

L

L∑
n=1

|rl[n]|2, (4)

where rl[n] are samples of the received signal and L is
the number of samples considered. A decision is made by
comparing the energy El to a pre-defined threshold γ0:

If El < γ0 : the channel is idle
If El ≥ γ0 : the channel is busy. (5)

The propagation environment may cause the shadowing
fading to be spatially correlated, due to large obstacles. In
other words, if a receiver is suffering from a strong fading,
there is a high probability that another receiver close to the
first one will also suffer from a strong fading. Therefore, the
random variables ζl in (1) observed at different locations will
be correlated. A spatial correlation model commonly used
in the literature is the one proposed by Gudmundson [5].
According to this model, the spatial correlation coefficient
between the channels hl(t) and hk(t) is given by

ρlk(t) =
COV [hl(t), hk(t)]

σhl
σhk

= exp

(
−dlk(t)

D

)
, (6)

where dlk is the distance between the l-th and the k-th sec-
ondary users, and D is the correlation distance. Measurements
have shown that D ≈ 8 m for urban areas at 1,7 GHz, and
D ≈ 500 m for suburban areas at 900 MHz [5].
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Fig. 1. Model for computing samples of spatially correlated shadowing
fading.

Another spatial correlation model found in the literature
is the one proposed by Chuang in [6], which is appropriate
for simulation studies. According to this model, the coverage
area is divided according to a square grid, defining grid points
with separation distance denoted correlation distance dcorr, as
shown in Figure 1. The grid points are associated with samples
of uncorrelated shadowing fading with standard deviation σdB .
The shadowing fading at a generic point P (i.e., not a grid
point) is correlated with the shadowing fading values of the
grid points of the square where the point P is located (points
A, B, C and D in Figure 1). Clearly, the shadowing value
at point P , denoted by SP , depends on the shadowing fading
at those four points surrounding P , denoted as SA, SB , SC

and SD, and on the distances X and Y from one these four
points (selected as the reference point). Using the bi-linear
regression, SP is given by

SP = G−1 {[SA X + SB (1−X)] Y +

+ [SC X + SD (1−X)] (1− Y )}, (7)

where X and Y are the distances of point P from point A
(reference point, see Figure 1), normalized with respect to the
correlation distance dcorr, and G is given by

G =
√

(1− 2X + 2X2) + (1− 2Y + 2Y 2). (8)

The factor G in (7) guarantees that the shadowing variance at
point P is equal to σdB .

Figure 2 shows an example of the shadowing fading over
a network area, generated by the procedure described above,
where it is evident the spatial correlation.

It should be noted that, in both models, the correlation
distance (dcorr or D) controls the level of spatial correlation
in the network area: larger correlation distance means higher
level of spatial correlation.

B. Performance Metrics

The performance of the spectrum sensing procedure is
measured in terms of the detection probability Pd and the false



−500
0

500

−500

0

500
−10

0

10
S

ha
do

w
in

g 
(d

B
)

Fig. 2. Example of spatial samples of correlated shadowing fading.

alarm probability Pfa. The detection probability Pd is defined
as the probability of deciding for channel occupied when the
channel is in fact in use by the primary user, i.e.,

Pd = Pr{decided that the channel is busy|H1}. (9)

On the other hand, Pfa is defined as the probability of deciding
for busy channel when the channel is idle, i.e.,

Pfa = Pr{decided that the channel is busy|H0}. (10)

The performance analysis of spectrum sensing techniques
is typically based on the Receiver Operating Characteristic
(ROC) curve, that relates the false alarm probability with the
missed detection probability Pmd, which is the complement
of the detection probability, i.e., Pmd = 1− Pd.

Clearly, we would like to have large Pd, in order to avoid
interference at the primary receiver caused by secondary
transmissions. On the other hand, we also would like to have
small Pfa, that is, we do not want to miss any transmission
opportunity. However, this two objectives are conflicting. In
fact, in order to have a high detection probability, we should
use a small threshold value γ0. However, by doing so, we also
increase the false alarm probability.

In addition to the probabilities Pmd and Pfa, we can define
the average error probability Pe as

Pe = αPfa + (1− α)Pmd (11)

where α is the probability that the primary user is absent [7].

III. COOPERATIVE SPECTRUM SENSING

As already mentioned, there are a number of challenges
associated with the spectrum sensing procedure. Low SNR
and fading environment are two important conditions usually
found the in wireless communications that strongly degrade
the performance of spectrum sensing. The degradation due
to low SNR condition can be minimized by increasing the
observation length. For instance, we can use a large number L
of samples when computing the energy level in (4). However,
this strategy is not so efficient to mitigate the effects of fading.
This is particularly true in the case of shadowing fading, due
to its non-ergodicity.

Cooperative spectrum sensing has been proposed by several
authors to mitigate the effects of fading. (see [1], [2], [8],
[3]). The key concept of cooperative spectrum sensing is to
combine the local decisions or local observations made by

each secondary user, using some pre-define fusion rule, in
order to reach a global decision. As it is unlikely that most of
the secondary users will suffer from a severe fading condition
at the same time, we can expect a performance improvement
when cooperative spectrum sensing is used.

Cooperation can be performed in centralized or decentral-
ized ways. In a decentralized way, the secondary users form
an ad-hoc network to exchanging their sensing information
(local decision or observation) to each other. Each secondary
user then combine all the information received to reach a final
decision on the channel state. On the other hand, in a central-
ized way, secondary users report their local observations or
decisions to a fusion center, that is responsible for combining
all local decisions.

Two forms of combinations have been investigated in the
literature: soft combination and hard combination. In the
soft decision strategy, each secondary reports its observation
about the channel. The fusion center then combines somehow
these observations in order to compute a final metric, used to
reach a global decision. In the hard decision strategy, the
secondary users report their local decisions (either channel
busy or channel idle) and then the fusion center combines
these local decisions using some hard decision rule, to reach
the global decision. When soft decision strategy is employed,
the global decision is based on local observations conveying
more information about the channel state, and we can expect a
better performance of this combination strategy. However, the
transmission of local observations to the fusion center requires
a larger bandwidth than that required to transmit the local
decision (one bit only).

Three hard-combining decision rule have been extensively
investigated in the literature, namely the AND, OR and
Majority rules. All these rules are based on local decisions,
which can be represented by bit 0 (channel idle) or 1 (channel
busy). According to the AND rule, the global decision will for
channel busy only if all local decisions are for busy channel.
Now, if the OR rule is used, the global decision will be for
busy channel if at least one local decision is for busy channel.
Finally, in the Majority rule, busy channel will be the global
decision if the majority of local decisions are for busy channel.
All these three rules can be represented by the K-out-of-N
decision rule, where N is the number of secondary users in
the cooperative technique: K = N corresponds to the AND
rule; if K = 1, we have the OR rule; if K = N/2 + 1, we
have the Majority rule.

A. Performance Metrics

As in the local spectrum sensing, the main performance
metrics in cooperative spectrum sensing are the probability of
detection and the probability of false alarm. These probabilities
will, of course, depend on both their local versions and the
combining rule adopted. For instance, if the local decisions
are independent to each other, and all secondary users have
the same local false alarm probability Pfa and detection
probability Pd, then the cooperative probability of detection
Qd and cooperative probability of false alarm Qfa for the



K-out-of-N decision rule are given by [9]

Qd =
N∑

n=K

(
N

n

)
Pn
d (1− Pd)

N−n (12)

Qfa =

N∑
n=K

(
N

n

)
Pn
fa (1− Pfa)

N−n, (13)

where K is selected according to the desired combining rule.
It should be emphasized that expressions (12) and (13) are no
longer valid if the local observations, and therefore the local
decisions, are not independent, which is the case when fading
is correlated.

We can also define the cooperative average error probability
as

Qe = α Qfa + (1− α)Qmd, (14)

where Qmd = 1−Qd.
The benefits of cooperative spectrum sensing relies on the

diversity, i.e., different views, about the channel state available
at the fusion center. Therefore, this benefit can be quantified
by means of the metric diversity order, which is a concept
commonly used to evaluate the performance of the diversity
schemes employed in wireless communications. In the context
of spectrum sensing, the diversity order d is defined as [7]

d∗ = − lim
SNR→∞

logQ∗

log SNR
, (15)

where SNR is the average signal-to-noise ratio at the sec-
ondary users, and ∗ can be d, fa or e. The diversity order can
be seen as the slope of the curve logQ∗ as SNR → ∞ [10].

Duan et al. showed that, for a cooperative spectrum sens-
ing using N statistically independent measurements of the
channel, and soft decision strategy, df = dfa = de = N ,
as expected, since the decision is based on N independent
views of the channel. To the best knowledge of the authors, no
closed form for diversity order for correlated fading condition
is found in the literature. However, intuitively we can infer
that correlated fading degrades the diversity order.

IV. SPECTRUM SENSING IN CORRELATED SHADOWING

As discussed in the previous section, cooperative spectrum
sensing is an appropriate way to deal with fading and other
propagation effects. In fact, Visotsky et al. [11] show that,
when local decisions are independent, i.e., when the fading
realizations observed at different locations are not correlated,
and all cooperating users have the same individual perfor-
mance, the missed detection probability and the false alarm
probability can be made as small as desired, by increasing the
number of cooperating nodes, thanks to the diversity gain. It
should be noted that this desired behavior, i.e., Qfa → 0 as
N → ∞, requires that all secondary users have the same the
signal-to-noise ratio. Peh and Liang [12] showed that users
with poor performance may degrade the overall performance
of cooperative spectrum sensing, what can be explained by
the fact that users with poor performance contribute with
unreliable information about the channel state.

Number of collaborating users

Qmd

D = 100

D = 300

Lower bound

Fig. 3. Cooperative missed detection Qmd vs. number of cooperating users
N for correlated shadowing, where D is the inter-distance between secondary
users. In both curves, the correlated fading environment is the same, and
therefore the level of correlation is quantified by the distance D between
users: smaller D corresponds to higher correlation.

However, when fading observed at different locations are
correlated, the diversity gain reduces, as users located close to
each other will suffer from similar levels of fading, i.e., their
observations about the channel will be similar. Consequently,
the performance of cooperative spectrum sensing is expected
to degrade. Ghasemi and Sousa [13] showed, by means of
simulation, that high correlation levels result in strong per-
formance degradation. More importantly, the same authors
showed in [14] that the performance of cooperative spectrum
sensing is upper bounded when shadowing fading is correlated.
More specifically, they showed that the cooperative missed
detection probability can not be reduced as much as we desire
by adding more cooperating users, as illustrated in Figure 3.
In fact, Ghasemi and Sousa derived the asymptotic missed
probability, i.e., for N → ∞, also show in Figure 3. This
result shows that, when fading is correlated it might not be a
good strategy to increase the number N of cooperating users
in the cooperative spectrum sensing, as discussed later.

The degradation of correlated shadowing was also investi-
gated in [15], where the performance of different hard decision
fusion rules were compared. Simulation results showed that the
effect of correlated local decisions on the performance depends
on the decision rule (see Figure 4).

On the other hand, Headley et al. [16] showed that when
some information about the correlation in the fading process
is considered in the decision process, the negative effects
of correlation can be reduced. In their study, the authors of
[16] formulated the likelihood ratio test for the soft decision
case, taking into account information about correlation among
the observations made by different secondary users, as well
as information about the reliability of local observations.
Simulation results showed that the use of these two types
of information (correlation and reliability) can improve the
performance of cooperative spectrum sensing.
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V. WHEN LESS IS MORE

As discussed above, the performance of cooperative spec-
trum sensing can be enhanced as much as we like by adding
more cooperating users only when the observations made by
cooperating users are identically and independent distributed
(i.e., the local decisions are independent and local spectrum
sensing procedures have the same performance). However,
even though increasing the number N of cooperating users
may seem to be a good strategy in the ideal situation, we
should note that N also affects other performance metrics. For
instance, in a cooperative spectrum sensing, all users have to
report their local observations or decisions to a data fusion
using control messages, adding overhead to the secondary
network. Also, user terminals may have limited energy supply,
and the amount of energy used in the whole spectrum sensing
procedure (observation and transmission) may reduce their
lifetime. Therefore, there is a cost (higher overhead, higher
congestion level, shorter battery lifetime) associated with a
larger number of cooperating users.

When propagation environment is spatially correlated, the
observations made by the sensors are no longer independent
and identically distributed, and the quality of the observations
made by a subset of users (for instance, close to each other)
may be poor, due to a strong fading caused by a large obstacle.
In this case, the performance of cooperative spectrum sensing
may degrade when we add more cooperating users, as shown
by Kasiri and Cai [17] and Mai et al. [18], and illustrated in
Figure 5.

Based on the facts that (i) correlated observations do not
add much information about the channel state to the decision
process, and (ii) poor quality observations may, in indeed,
degrade the performance of cooperative spectrum sensing,
several schemes for selecting a subset of cooperating users
were proposed. In fact, Figure 3 shows that, under correlated

Number of collaborating users

Qmd

Independent

Correlated

Fig. 5. Cooperative missed detection Qmd vs. number of cooperating users
N for correlated shadowing, when the quality of observations are different:
adding more users in the cooperative scheme may cause degradation.

fading, having few cooperating users spread over a larger area
may lead to a higher performance than having a larger number
of users.

Kasiri and Cai [17] proposed a user selection scheme that
removes from the set of cooperating users those users that
suffer from the worst shadowing fading (lowest observation
quality), and those with the highest correlation with the former.

Cacciapouti et al. [19] proposed a scheme to select users
with uncorrelated observations in a correlated fading environ-
ment. Their scheme is based on estimating the correlation
among the signals received by users, and selecting those users
with correlation below a given threshold. They compared the
proposed scheme against a distance-based selection scheme
(i.e., users with the largest distances between any two of them
are selected) and a random selection scheme, to show that
their scheme requires a smaller number of cooperating users
to achieve the same performance.

VI. TAKING ADVANTAGE OF CORRELATED SHADOWING

In the previous section, we have discussed strategies to
mitigate the negative effects of correlated shadowing. In fact,
in the works reviewed in the previous section correlated
shadowing was treated as a source of degradation of the
performance of cognitive radio networks .

Pratas et al. [20] took a different look at the effects of
correlated shadowing. When a secondary user is under a
strong shadowing fading, i.e., the power of the primary signal
received at the secondary user is very low, we may assume
that there is a large obstacle in the path between the primary
user and that secondary user. Therefore, a transmission form
that the secondary user will probably not cause harmful
interference to the primary user, as this strong fading condition
will protect the primary user. In other words, strong fading
may represent transmission opportunities for secondary users.
However, if local observations made by all secondary users
are combined in order to reach a global decision regarding
the channel status (idle or busy), then these transmission
opportunities are missed.
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Based on this idea of relating strong shadowing conditions
to transmission opportunities, Pratas et al. [20] proposed a
clustering scheme where secondary users experiencing similar
channel fading conditions (i.e., correlated fading) are grouped
together in clusters, and spectrum sensing are performed
separately within each cluster (see Figure 6).

Figures 7 and 8 illustrate the rationale behind the scheme
proposed by Pratas et al.. Two binary variables related to
the channel states are defined: the experienced channel state
Ue refers to the actual state of the channel, before spectrum
sensing is performed; and the sensed channel state Us, which
is the result of local spectrum sensing. If the sensed channel
states are combined, all secondary users will have to follow
the global decision reached by the data fusion, as illustrated
in Figures 7. If, instead, users experiencing correlated fading
conditions (i.e., suffering from similar fading conditions) are
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Fig. 8. Illustration of the concepts of experienced channel state and sensed
channel state: similar local decisions are clustered together.

grouped together, transmission opportunities can be identified,
as exemplified in Figure 8. Pratas et al. also proposed a clus-
tering scheme based on the correlation among local decisions.

VII. ADAPTIVE COUNTING RULE

In Section III, typical hard-decision fusion rules were pre-
sented, which can be summarized by the K-out-of-N rule.
Pratas et al. [21] showed that the optimal value of K depends
on the level of correlation between local decisions, which is
related to the correlated shadowing fading. Additionally, they
showed that when K is increased, both the probability of
detection and the probability of false alarm increase. Based
on this observation, the authors of [21] proposed an adaptive
counting rule scheme that adjusts the value of K according to
the level of correlation experienced by secondary users. More
specifically, the proposed scheme decrements K whenever
the channel is assumed to be idle (by the spectrum sensing
procedure), but it is found to be not idle. This means that,
to avoid further erroneous decisions, a smaller number K of
local decisions must be positive to result in a positive global
decision. On the other hand, whenever the channel is assumed
to be busy, but it is indeed idle, the value of K must be
increased. To find out the true state of the channel, the authors
proposed the use of any a priori procedure. For instance, the
success (or not) of a secondary transmission can be used as
an indication of the true state of the channel.

VIII. CONCLUSION

Even though cooperative spectrum sensing is shown to be a
very efficient way to overcome the degradation due to fading,
the gain achieved by cooperative spectrum sensing may be
reduced when shadowing fading is spatially correlated. In
this paper we presented a survey of techniques designed to
mitigate the effects of correlated fading on the performance
of cooperative spectrum sensing.
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