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Abstract— A friendly interface for electronic devices has be-
come more important in our lives, mainly, for elderly and
disabled people. In this sense, devices equipped with an automatic
speech recognition (ASR) system, that is, voice-commanded
devices, can properly address this issue, however, we still would
need to manually input information when noisy and reverber-
ant conditions were considered. When dealing with multiple
voice-commanded devices in the same environment, additional
information about the speaker, such as his position, would be
beneficial to improve the ASR performance by using, for instance,
beamforming techniques to enhance the signal of interest. In
this work, we study the orientation of a loudspeaker, modeling
a human speaker, detected by a pair of two microphones, as
additional information which would complement the position
information in the previous situation. We show that binaural
cues used as inputs for Gaussian mixture models (GMMs) can
be used to discriminate an orientation among a defined set of
orientations.

Index Terms— ASR, binaural cues, microphone array, source
orientation estimation.

I. I NTRODUCTION

In recent decades, advances in technology have gradually
changed the way we live, improving our lifestyle but making
us more dependent on it. The evolution of technology has
increasingly required technical knowledge from the user, who
often is not prepared to deal with it. For instance, the increased
number of functions and buttons on remote controls may
confuse, rather than help the user. Thus, an easy way to access
a system is of fundamental importance. Access should be
simple, easy, and intuitive, such as a plug-and-play system,
avoiding complex procedures.

ASR system is an option to be considered for interfaces,
because speech is the most common form of interaction
between humans. This mechanism of interaction would make
access to the system simpler, dynamic, and efficient. How-
ever, when either environmental conditions are unfavorable
or training conditions are different from the test conditions
in the ASR system, the system tends to fail. In this case,
we still would need to manually input information. To cope
with environmental conditions, beamforming [1], [2], noise
reduction [3], [4], speech enhancement [5], [6], [7], and speech
dereverberation [8], [9] can be used in order to improve the
quality of the signals used in the recognizer. The mismatch
between training and test conditions in an ASR system can be

handled through feature-based compensation or model-based
adaptation techniques.

Currently, information about the user, such as its estimated
location using microphone arrays has been treated as addi-
tional information for ASR systems, however little attention
has been given to the orientation of the user. In this work
we show that the user’s orientation can complement the
user’s position when dealing with multiple voice-commanded
devices.

The estimation of the head orientation (source orientation)
[10] of a user has gained interest with applications such as
intelligent robots [11], voice-commanded devices in a smart
room [12], [13], and control of powered wheelchairs for
disabled people [14], among others. In most cases, estimation
of the source orientation is based on a model of the directivity
of the source and on the intensity of the signals measured
at each microphone, although in [15] we verified that taking
also time delays of microphone pairs into account led to a
significant increase in the precision of the estimate.

Specifically in smart environments, how would the user
deal with multiple voice-commanded devices without making
access mistakes? In [13], artificial neural networks (ANNs)
were used to estimate the orientation of the user, assuming
that the user turns to the device he wants to control, and
then applied to discriminate different controlled devices. In
that approach a distributed microphone array was used to deal
with the spatial diversity.

The use of a large array [13], [16] may provide robustness
against unaccounted contributions to signal intensity, such as
microphone directivity and reverberation. However, inspired
by the human auditory system, that can roughly estimate the
orientation of an out-of-sight acoustic source, we consider
an array of only two microphones and investigate the use
of the binaural cues interaural time difference (ITD) and
interaural level difference (ILD), for orientation estimation.
This is done by maximizing the likelihood of a Gaussian
mixture model (GMM) created for each discrete orientation.
GMM was chosen because it is a well-known method used in
speaker and speech recognition tasks, whose framework can
be easily modified for the orientation estimation task.

The paper is organized as follows. Section II discusses the
problem encountered in an environment with multiple voice-



commanded devices. Section III presents the modeling of the
user and the device interface by a loudspeaker and an array
of two microphones. In Section IV the proposed GMM-based
orientation estimation method is presented. Section V presents
the experimental setup. Finally, Sections VI and VII present
the results and the final conclusions, respectively.

II. PROBLEM DESCRIPTION

A friendly interface to access electronic devices must be
reconfigurable, reliable, appealing and simple to use. It should
also be intuitive to use mainly for elderly, handicapped, and
disabled people. In this sense, ASR system embedded devices
can properly address this problem by allowing the execution
of predefined tasks through spoken commands. This “tell-
execute” interaction describes an intuitive way to operatea
device. Classical interfaces such as remote controls will still
be available to manually input information when either noisy
and reverberant conditions are found or a system configuration
is required, providing different interaction options to the user.
However, even when environmental conditions are favorable,
in an environment equipped with voice-commanded devices,
as shown in Figure 1 (top), the simple act of controlling
a particular device such as a TV can become a difficult
task. When the user commands one device to turn on, other
devices may turn on too. This situation is showed in Figure 1
(middle). To avoid such a problem, a mechanism to correctly
select the desired device is needed. Imagine a new situation,
illustrated in Figure 1(bottom), in which the user looks at the
device he wants to control, and in this case, after a spoken
command, only one device is activated. Thus, exploring the
user orientation information, we would restrict user access to
just one device at a time.

III. U SER/SPEAKER AND DEVICE MODELING

In order to employ the user’s orientation as an additional
information to select one device, a loudspeaker placed on a
rotating table and an array of microphones were used to model
the user and the device interface, respectively, as illustrated in
Figure 2.

A Roland DS-7 loudspeaker was taken as the directional
acoustic source modeling the user’s head. For the sake of
simplicity, we assume that the normalized directivity of the
source is given by

D(φ, k, J) =
k + cos2J (φ/2)

k + 1
, (1)

whereφ is the azimuth with respect to the direction the source
is aiming,k andJ control the directivity (J = 0 leads to an
omnidirectional pattern whereasJ > 0 leads to a directional
pattern;k > 0 guaranteesD(φ = 180◦, k, J) > 0). This model
improves the basic cardioid-like emission pattern, like the one
presented in [17], by including the energy irradiated backward,
controlled byk. In Figure 3, the measured directivity of the
loudspeaker used in the experiments is compared to the model
with k = 0.05 andJ = 3.

Regarding the device we aim to control, it was assumed that
its interface has microphones for signal acquisition. Aiming at

Fig. 1. (Top): smart environment with three ASR system embeddeddevices
A, B, and C; (Middle): failed attempt to turn on only the deviceC; (Bottom):
success to turn on only the device C.
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Fig. 2. Loudspeaker and array (left and right microphones) used to model
the user and the device interface.d is the distance between microphones,L is
the distance between the loudspeaker and the array, andθ is the loudspeaker
orientation angle.

greater practical interest and inspired by the human auditory
system, an array of only two omnidirectional microphones
was considered in this study. The playback and recording
procedures for data acquisition are presented in detail in
Section V.

A. Binaural cues: ITD and ILD

The difference in arrival time and the difference in in-
tensity of a sound at two ears are defined as ITD and
ILD, respectively. These two binaural cues are important for
human perception of location and motion of acoustic sources.
Given the microphone signals and assuming that the array
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Fig. 3. Model with k = 0.05 and J = 3 (dashed line) and measured
(continuous line) values of loudspeaker directivity.

can roughly model the human auditory system, the ILD is
estimated by the ratio of the signal energies and the ITD is
estimated using the generalized cross-correlation with phase
transform (GCC-PHAT) function [18], [19],

R(τlr) =

∫ +∞

−∞

Xl(f)X
∗

r (f)

|Xl(f)X∗

r (f)|
e−j2πfτlrdf, (2)

where∗ represents conjugation, andXl(f) andXr(f) are the
spectral representations of the binaural signalsxl(t) andxr(t),
respectively. The estimate of ITD,̂τlr, corresponds to the time
difference that maximizesR(τlr), as

τ̂lr = max
τlr

{R(τlr)} . (3)

Figure 4 illustrates the framework for binaural cues esti-
mation, which could be easily integrated in an ASR system
framework.s(t) denotes the clean speech sample,hl(t) and
hr(t) denote the measured binaural impulse response, sub-
script l and r denote the left and right microphones in the
array, and̂xl(t) andx̂r(t) denote the signals measured at each
microphone.

✲ ✲ ✲hl(t)

✲ ✲ ✲hr(t)
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Fig. 4. Estimation of the binaural cues ITD and ILD.

B. Histograms

Figure 5 presents the histograms of the ITD and ILD forθ
= {0◦, 90◦, 270◦}. The histograms reflect the variation of the
statistical distribution of the binaural cues with orientation θ,
defined in Figure 2. The variation of the mean value of the
ILD with orientation can be explained by the directivity of the
source, while the variation of the mean value of the ITD can

be explained by the point sound source (the user’s mouth or
the frontend of the loudspeaker) and its center of rotation (the
user’s neck or the center of the rotating table) not being at
the same point in space. These variations are explored in the
GMM-based orientation estimation method.

IV. GMM- BASED ORIENTATION ESTIMATION

A. Gaussian Mixture Model

A GMM is the weighted sum ofM component Gaussian
densities expressed by [20]

P (x|λ) =
M
∑

i=1

cibi(x), (4)

where x is a D-dimensional data vector;λ = {ci,µi,Σi}
denotes the GMM parametric model with mixture weightsci,
mean vectorµi, and covariance matrixΣi; and

bi(x) = N (x;µi,Σi) (5)

are the component densities, fori = 1, . . . ,M . Each com-
ponent density is aD-variate Gaussian function. The mixture
weight is constrained by

M
∑

i=1

ci = 1. (6)

The dimensionalityD of vector x vary depends on the
number of features, for example, when modeling only ITD it
has dimensionality one, when modeling ITD and ITD together
it has dimensionality two, and so on.

B. Estimation Method

In Section III-B, histograms show that the statistical dis-
tributions of ITD and ILD vary with the user’s orientation.
Thus, creating specific statistical models for a discrete set of
orientations could be used to obtain an estimate of orientation
from measured values of ITD and ILD. The procedure is
similar to that used for speaker recognition, where each
speaker has a statistical model trained from samples of signals
generated by the speaker himself. For a test signal, the speaker
with the model that yields the highest likelihood is accepted
as the speaker who generated the test signal.

Let P (x|λ(θ)) be the GMM created for orientationθ. Given
the data setx, the orientation that generated it is assumed as
the one which maximizes the likelihood

θ̂ = argmax
θ

{P (x|λ(θ))}. (7)
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Fig. 5. Histograms of ITD and ILD forθ = 0
◦ (the loudspeaker faces the array),90

◦, and270◦.

V. EXPERIMENTAL SETUP

The experiments were conducted in a soundproof room 3.0
m long, 2.7 m wide, and 3.0 m high. Its reverberation time
T60 was around 130 ms. The measured background noise was
lower than 30 dB (A-weighted). A Roland DS-7 loudspeaker
was placed on a turntable with 360◦ of freedom and 1 m
above the floor. The distance between the rotation axis of
the table and the front of the loudspeaker was13 cm. The
array consisted of two omnidirectional Le Son microphones
separated byd = 13.6 cm, 1 m above the floor, andL = 1 m
away from the loudspeaker. Figure 6 illustrates the positions in
the experimental setup. The A/D and D/A converters (Edirol
FA-101) operating at 48 kHz sampling frequency was used for
playback and recording.

For each of 8 loudspeaker orientations, a binaural impulse
response was measured, downsampled to 16 kHz, and then
convolved with a set of samples from the TIMIT database
(two samples for each of 5 male and 5 female speakers).
Using a frame length of 256 samples, a frame shift of 128
samples, and Hamming windowing, frame ITDs were obtained
from the generalized cross-correlation with phase transform
(GCC-PHAT) function and an interpolation method, for greater
precision. Frame ILDs were taken as the ratio of the frame
energies. All processing was executed using Matlab. GMMs
were estimated using the Expectation-Maximization (EM)
algorithm applied to the features extracted from the TIMIT
data samples with full covariance matrices. Another data set
was created using different samples from the same speakers
from TIMIT and used as test set.

Two measures were used to evaluate the performance of
the GMM-based system, the correct orientation ratio (COR),
which expresses the agreement between the estimated and
the true orientations, and the average orientation error (AOE),
which denotes the angle mismatch between the estimated and
the true orientations.

Fig. 6. Positions of the loudspeaker (A) and array (B) in the soundproof
room.

VI. RESULTS

A. Single frame estimation

Figure 7 shows the variation in the COR by increasing the
number of Gaussian densities in the models. The behavior
of the COR for ILD and ITD models was expected from
the histograms presented in Figure 5. On the one hand, the
similarities between the distributions of ILD for different
orientations create a confusion in the adopted maximum
likelihood strategy, resulting in a poor performance of the
system. On the other hand, the dissimilar distributions of ITD
for each orientation positively affect the decision making.

Combining the measured features allows us to improve
the system performance as can be seen in Figure 7 in the
ITD+ILD, E+ITD, and E+ILD+ITD curves, where E repre-
sents the pairwise frame energies that are readily available
in the system framework. It is expected that E be greater
when the loudspeaker is facing the array than when it has
its back turned to the array. Thus, using E as a feature



could allow us to deal with the ambiguity that results from
the use of only two microphones (for instance, 0◦ and 180◦

have the same ITD and ILD). It should be noted, however,
that in the previous example they have the same theoretical
value but different distributions, which, when combined, could
improve the system performance. This fact can be observed in
ITD+ILD compared to ILD or ITD in Figure 7.
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Fig. 7. Evaluation of the system in terms of COR (%) and the logarithm
base 2 of the number of Gaussian densities{1, 2, 4, 8, 16, 32, 64, 128, 256}.

Considering GMMs with 32 Gaussian densities in Table I,
the COR and AOE are presented according to the defined set
of orientations. Note that we excluded the ILD results in the
table due to its poor performance. As can be seen in COR
columns in Table I, due to the angle ambiguity there is a lower
performance of the system in the interval135◦ ≤ θ ≤ 225◦

in all cases.

B. Multiframe estimation

In a voice command system, the entire command utter-
ance could be used in a multiframe estimation procedure,
providing a tradeoff between COR and estimation delay. A
simple multiframe estimation procedure is a majority voter,
which, assuming independent frame estimations would have a
multiframe CORN given by

CORN = 100×
N
∑

k=0

PkRk, (8)

where Pk is the probability that the correct orientation is
chosen ink frames out of a total ofN frames andRk is
the probability that in the remainingN − k frames no other
(incorrect) orientation is chosen ink′ ≥ k frames. With
p = COR/100, Pk is given by

Pk =

(

N

k

)

pk(1− p)N−k, (9)

while Rk depends on the distribution of the estimation errors.
The most favorable assumption would be to consider estima-
tion errors uniformly distributed among all incorrect orienta-
tions. A more conservative assumption, which is supported by

the experimental results, is that errors are distributed uniformly
between 2 incorrect orientations. In this case, tok < ⌊N

3
+1⌋

we haveRk = 0; to ⌊N
3
+ 1⌋ ≤ k < ⌊N

2
+ 1⌋ we have

Rk =
∑k−1

m=N−2k+1

(

N−k
m

)

0.5N−k; and tok ≥ ⌊N
2
+ 1⌋ we

haveRk = 1.
ChoosingN = 70 (which for a frame shift of 128 samples

and 16 kHz sampling frequency, corresponds to a 560 ms
delay) the values of CORN that result from the values of COR
columns in Table I are in Table II. As can be seen, there is a
great improvement over single frame estimation.

VII. C ONCLUSIONS

In this work, we studied the detection of the orientation
of a loudspeaker, modeling a human speaker, using only two
microphones. A large array could yield better results, but,
inspired by the human auditory system, we restricted our
analysis to two microphones. We showed that GMMs created
with binaural cues and pairwise frame energies can be used to
discriminate orientation. Knowing the user orientation can be
beneficial when we have several voice-commanded devices.
If we assume that the user turns to the equipment he wants
to control, we can detect the orientation of the user and
then select only the desired device. Finally, we extend the
frame detection case to the multiframe case. Using multiframe
estimation, a performance evaluation showed that a COR close
to 100% is feasible for all orientations except for180◦.

VIII. A CKNOWLEDGMENT

This work was partially supported by FAPESP under Grant
2010/18180-7.

REFERENCES

[1] L. J. Griffiths and C. W. Jim. An alternative approach to linearly
constrained adaptive beamforming.IEEE Trans. on Antennas and
Propagation, 30(1):27–34, January 1982.

[2] J-M. Valin, F. Michaud, and J. Rouat. Robust 3d localization and
tracking of sound sources using beamforming and particle filtering.
Proceedings of ICASSSP, pages IV 841–844, 2006.

[3] S. Boll. Supression of acoustic noise in speech using spectral subtraction.
IEEE Trans. Acoust. Speech Signal Process., 27(2):113–120, April 1979.

[4] G. M. Davis. Noise reduction in speech applications. CRC press, Boca
Raton, 2002.

[5] Y. Ephraim and D. Malah. Speech enhancement using a minimum-mean
square error short-time spectral amplitute estimator.IEEE Trans. Acoust.
Speech Signal Process., 32(6):1109–1121, December 1984.

[6] H. Lebart and J. M. Boucher. A new method based o spectral subtraction
for speech enhancement.Acta Acustica, 83, 1997.

[7] E. Hansler and G. Schmidt.Speech and Audio Processing in Adverse
Environmentss. Springer, Berlin, 2008.

[8] C. Avendano and H. Hermansky. Study on the dereverberation of speech
based on temporal envelope filtering.Proceedings of ICSLP, 2:889–892,
Oct. 1996.

[9] E. A. P. Habets. Multi-channel speech dereverberation based on a
statistical model of late reverberation.Proceedings of ICASSP, pages
173–176, March 2005.

[10] C. Segura, C. C-Ferrer, A. Abad, J. R. Casas, and J. Hernando.
Multimodal head orientation towards attention tracking in smartrooms.
Proceedings of ICASSP, pages II 681–684, 2007.

[11] S Hwang, Y. Park, and Y. Park. Sound direction estimationusing an
artificial ear for robots.Robotics and Autonomous Systems, 59(3–4):208–
217, March 2011.



TABLE I

PERFORMANCE OF THEGMM-BASED METHOD IN SINGLE FRAME CASE.

ITD E+ITD ILD+ITD E+ILD+ITD
Angle(◦) COR(%) AOE(◦) COR(%) AOE(◦) COR(%) AOE(◦) COR(%) AOE(◦)

0 88.0 16.7 98.3 2.5 95.3 6.6 95.5 6.4
45 84.9 14.8 91.4 8.1 90.7 8.9 91.4 8.2
90 83.9 9.7 80.1 13.6 79.1 14.4 80.4 13.7

135 66.0 19.9 60.2 23.6 63.7 22.4 58.1 24.9
180 29.5 54.1 48.3 41.7 43.6 43.3 48.1 41.4
225 65.5 29.4 58.1 38.1 63.4 31.7 66.6 29.3
270 86.9 7.3 88.4 7.5 88.7 7.0 88.8 6.8
315 97.2 2.2 97.8 1.2 96.7 2.1 96.9 1.9

Avg. 75.2 19.3 77.8 17.0 77.6 17.0 78.2 16.6

TABLE II

PERFORMANCE OF THEGMM-BASED METHOD IN MULTIFRAME CASE.

ITD E+ITD ILD+ITD E+ILD+ITD
Angle(◦) COR(%) COR(%) COR(%) COR(%)

0 100 100 100 100
45 100 100 100 100
90 100 100 100 100

135 99.9 99.9 99.9 99.9
180 12.0 97.2 88.0 97.0
225 99.9 99.9 99.9 99.9
270 100 100 100 100
315 100 100 100 100

Avg. 89.0 99.6 98.5 99.6

[12] A. Abad, D. Macho, C. Segura, J. Hernando, and C. Nadeu. Effect of
head orientation on the speaker localization performance insmart-room
environment. Proceedings of Interspeech, pages 145–148, September
2005.

[13] A. Nakano, S. Nakagawa, and K. Yamamoto. Distant speech recognition
using a microphone array network.IEICE Transaction on Information
and Systems, E93-D(9):2451–2462, September 2010.

[14] A. Sasou. Acoustic head orientation estimation appliedto powered
wheelchair control.2nd Int. ICST Conf. on Robot Communication and
Coordination, pages 1–6, May 2009.

[15] A. Y. Nakano, S. Nakagawa, and K. Yamamoto. Automatic estimation
of position and orientation of an acoustic source by a microphone array
network. J. Acoust. Soc. Am., 126(6):3084–3094, December 2009.

[16] J. M. Sachar and H. F. Siverman. A baseline algorithm for estimating
talker orientation using acoustical data from a large-aperture microphone
array. Proceedings of ICASSSP, pages IV 65–68, 2004.

[17] A. Brutti, M. Omologo, and P. Svaizer. Inference of acoustic source
directivity using environment awareness.Proceedings of 19th European
Signal Processing Conference, pages 151–155, 2011.

[18] C. H. Knapp and G. C. Carter. The generalized correlation method for
estimation of time delay.IEEE Trans. Acoust. Speech, Signal Processing,
ASSP-24(4):320–327, August 1976.

[19] M. Brandstein and D. Ward.Microphone Arrays: Signal Processing
Techniques and Applications. Springer, New York, 2001.

[20] D. A. Reynolds and R. C. Rose. Robust text-independent speaker
identification using gaussian mixture speaker models.IEEE Trans.
Speech and Audio Processing, 3(1):72–83, 1995.


