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Abstract— The main contribution of the present work is to
provide an algorithm based on parametric adjustment (using
a logistic curve) that returns good adaptation coefficients for
Automatic Speech Recognition Systems which employs Maximum
a Posteriori criteria and multi-style training.

Index Terms— Automatic Speech Recognition, Maximum a
Posteriori Adaptation, Multi-Style Training, Parametric Adjust-
ment.

I. I NTRODUCTION

It is widely known that ASR (Automatic Speech Recog-
nition) systems performance degrades when operating under
noisy conditions [1], and one reason for this fact is the mis-
match between the training and the testing acoustic conditions
[2].

There are several approaches to minimize the effects of
background disturbance even in unknown noisy conditions [3].
They can be divided in three classes:
• the first one is applied before acoustic modeling in

front-end signal preprocessing. PLPs or MFCCs helps
to minimize the effect of speaker variability. In front-
end signal processing, noise suppression methods such as
Subtraction Spectral (SS), Wiener filtering and Minimum
Mean Square Error (MMSE) estimation are effective to
reduce the intensity of noise in the speech;

• the second one take into account methods that acts
in the modeling phase. In this case, clean speech is
used on training to ensure the high quality of the final
models of speech. Then, these models can be transformed
according to noise present during recognition task. This
category comprehends: techniques which combine back-
ground noise with speech, i.e multi-condition models, or
with acoustic models such as parallel model combination
(PMC);

• the last one approach includes methods which use noisy
speech data to adapt acoustic models for a specific back-
ground condition by retraining the clean speech models
or simply by some transformation as maximum likelihood
linear regression (MLLR) or MAP adaptation.

To overcome this problem, in [4] an approach using multi-
style condition training [5] followed by a Maximum a Poste-
riori (MAP) adaptation [6] was proposed. This method can be
summarized as follows:

• in the first stage (multi-style training), a HMM is trained
using utterances corrupted by several noise types avai-
lable on AURORA database [7], at SNRs of 15 dB and
20 dB (this choice of SNRs is based on experimental
results [4]). This stage provided a 6.89 % gain in WA
(word accuracy) for noisy utterances recognition when
compared with a system trained only with clean speech.

• in the second stage, a MAP adaptation was performed to
fine tune the system for the actual noise type and SNR
that is being experienced by the recognizer. An additional
1.74 % gain in WA was obtained, and thus, the overall
gain with these two techniques is 8.63 % over the baseline
system.

The purpose of this work is to allow the selection of good
adaptation coefficient values without increasing the compu-
tational cost. The next sections are structured as follows:
in Section II, the robustness techniques used are described.
Section III presents the proposed method. In Section IV, the
experimental setup used for recognition tests is demonstrated
and Section V shows the test results. Finally, Section VI brings
the final conclusion for present work.

II. N OISE ROBUSTNESS

ASR in noisy environments has been a challenging issue
because the presence of noise decreases the accuracy of these
systems. There are several approaches to reduce the influence
of background noise on the performance of ASR systems.
This work evaluates the combination of multi-style training
and MAP estimation, techniques which are presented in the
next subsections, to overcome effects caused by different noise
types and levels.

To find the optimal value of adaptation coefficient used in
the MAP approach is a computationally expensive procedure,
since it involves a grid search. The main contribution of this
work is to find a way to do this automatically, according noise
type and level.

A. Multi-Style Training

Aiming to add robustness to Hidden Markov Models
(HMM) to several environmental variabilities, channel dis-
tortion, reverberation among other unwanted effects, this
technique relies on the availability of a collecting speech



database in a real environment. However, the construction of a
database that reflects all situations of day to day is infeasible
and impractical given the great variability of environmental
adverse conditions.

The multi-style or multi-condition training employs utte-
rances artificially corrupted by different noise type and levels
in the training stage in order to minimize the performance drop
of ASR systems operating in noisy environments [8].

Different approaches can be used in this method: the system
can be trained for a particular noise type and level according to
environmental condition, or with different levels of a specific
noise type, or even, with different noise types and levels.
According to [4], this present work employs the last approach.

B. Maximum a Posteriori Adaptation

In the MAP approach, the models are adapted with es-
timated statistics (mixture weight, mean and variance) of
the background noise. Generally, Bayesian adaptation returns
good word accuracy because it provides the modeling of the
uncertainty caused by noisy environmental statistics [9].

The main motivation to employ Bayesian adaptation of
the canonical model generated from multi-style training is to
achieve a superior performance by adapting the models for a
specific noise type and level in the recognition step.

A canonical model is a HMM generated in the training
phase using noisy or clean utterances of several speakers.
Then noise statistics from environment are used to adapt these
models. The hypothesized speech model is derived by adapting
the parameters of canonical model and a form of Bayesian
adaptation [6].

The adaptation equations for these parameters are described
as follows. Given a noise sample and training vectors from
the hypothesized speech,X = x1, x2, ..., xT , the probabilistic
alignment of the noise into the canonical model is given by:

Pr(i|xt) =
ωipi(xt)∑M

j=1 ωjpj(xt)
(1)

whereM is the number of unimodal Gaussian densities,ω is
the mixture weight andp is the probability density function.

Then, Pr(i|xt) and xT are used to determinate noisy
statistical parameters weight (ni), mean (Ei(x)) and variance
(Ei(x2)), as described below:

ni =
T∑

t=1

Pr(i|xt) (2)

Ei(x) =
1
ni

T∑
t=1

Pr(i|xt)xt (3)

Ei(x2) =
1
ni

T∑
t=1

Pr(i|xt)x2
t (4)

Finally, these estimated statistics of background noise are
used to adapt the canonical models generating a new model.
The adaptation equations for these parameters are:

ω̂i = [αω
i ni/T + (1− αω

i )ωi] γ (5)

µ̂i = αm
i Ei(x) + (1− αm

i )µi (6)

σ̂2
i = αν

i Ei(x2) + (1− αν
i )(σ2

i + µ2
i )− µ2

i (7)

where:

• ωi, µi and σ2
i are the mixture weights, means and

variances of the multi-style trained system;
• ω̂i, µ̂i and σ̂2

i are the mixture weights, means and
variances after adaptation and

• ni, Ei(x) andEi(x2) are the noise statistics.

The adaptation coefficientsαω
i , αm

i and αν
i can assume

values in the[0, 1] interval and control the balance between
old and new estimates for the weights, means and variances,
respectively.

It seems reasonable that a good choice of these parameters
depends on the noise type and intensity, since higher values
favor the noise estimates whereas lower values tend to preserve
the original ones.

It is possible to employ different coefficient values to
adapt weights, means and variances. However, this approach
provides a small gain compared to use solely a single value
(αω

i =αm
i =αν

i ) when adapting them. Due this, this work uses a
single adjustment coefficient for all parameter as demonstrated
in [6].

A scan by choosing the appropriate value of alpha is an
arduous task due to the high computational cost. Section III
describes a method for good choice for this parameter.

III. M ODELING FORALPHA COEFFICIENT

The present work proposes an algorithm which provides
an adaptation coefficient alpha value based on statistical
characteristics of the background noise focusing the trade-off
between system performance and maximum Word Accuracy.
It suggests a new empirical approximation for modeling the
relation between SNR and adaptation coefficient for each type
of noise. The aim is to predict theα value for a wide range of
noise levels according with various environmental conditions
based on results from recognition tests for a limited range.

The aim of proposed method is to achieve a value for this
parameter that provides a good Word Accuracy to a given level
and type of each noise. Its the main effort is not to achieve
the maximum system performance but to provide a value that
returns a gain compared to the baseline.

The algorithm is outlied below:

• for each value of SNR, perform a grid search for the best
values of alpha in the [0,1] interval and record the ones
that led to performance improvement (in our experiments,
we used 0 dB, 5 dB, 10 dB, 15 dB and 20 dB).

• for a given SNR, there are several values ofα that lead to
performance improvement, but we keep only one. After
several tests, we decided to choose a weighted average,
given by:



α′ =

∑

i

WA(i)× α(i)

∑

i

WA(i)
(8)

whereWA(i) is the word accuracy obtained by using the
valueα(i), andα′ is the chosen value for theα parameter.
Therefore, after this step, there is a single valueα′ for
each value of SNR.

• By looking at the curves generated by several tests, we
observed that they resembled the format of a logistic
curve. Thus, as a final step, a logistic curve (Equation
5) with three free parameters was adjusted to the exper-
imental points [10].

f(x) =
1

1 + eb−ax
− c (9)

where x is the noise level andf(x) is the adaptation
coefficient. The configuration parametersa, b andc were
obtained by an approximation using the test results. They
can be interpreted as follows:

– a parameter determines the slope of the logistic
curve. As smaller its value, steeper is the curve;

– b parameter controls the horizontal offset. If its value
decreases, the curve is shifted to the right. Otherwise,
it is shifted to left and

– c parameter is the offset, allowing the vertical ad-
justment. If its value increases, the curve is moved
down. Otherwise, it is shifted up.

This is an important step because it allows the choice ofα
values for SNRs different than the ones used to generate
the curve.

In the next section is presented the experimental setup used
in the recognition tests.

IV. EXPERIMENTAL SETUP

In this section, the database and speech recognition engine
are described.

A. Database

Experiments were performed using a 40 speakers (20 male
and 20 female) clean speech database [11]. Each speaker
recorded 40 phonetically balanced utterances in Brazilian
Portuguese which were drawn from [12]. The corpus has
1600 sentences comprising 694 different words and it was
subdivided in two groups: training corpus (1200 utterances)
and testing corpus (400 utterances).

The recordings were performed in low noise environment
at 11,025 kHz sample rate and 16-bit coded. The sampling
frequency was lowered to 8 kHz to make them compatible
with the AURORA database.

The original database was artificially corrupted by the noises
(airport, babble, car, exhibition, restaurant, street, subway and
train) of the Aurora Project database [7]. For the training
material, for each clean sentence, 2 new versions were created

combining each noise type at levels 15 and 20 dB as proposed
by [4]. For each clean utterance of testing corpus, 5 new
versions were created adding each noise type at levels 0, 5, 10,
15 and 20 dB. Therefore, training and testing database have
19200 and 16000 corrupted utterances, respectively.

B. Speech recognition engine

To test our ideas, a continuous density HMM based speech
recognition engine developed by [11] was used. It uses context
independent phones as fundamental units where each of them
is modeled as a 3 state Markov chain as shown in Figure 1
and the One Pass search algorithm [13]. A mixture of 10 mul-
tidimensional Gaussian distributions with diagonal covariance
matrix was used in each state.

Fig. 1. Markov chain for each phone model

For acoustic parameters, it was used 12 mel-cepstral coeffi-
cients together with their first and second derivatives leading
to feature vectors of dimension 36. Finally, to improve the
system performance, a bigram language model was applied.

V. EXPERIMENTAL RESULTS

This section describes tests and their results. It demon-
strates by the experimental results that the proposed procedure
presented in Section III led to a performance improvement,
although not to the best possible one.

The baseline proposed is an ASR system trained using
multi-style approach and uncleaned utterances in the recogni-
tion phase. For training, all noise types available on AURORA
database at SNR level 15 and 20 db were used. Its performance
was taken as reference WA value as can be seen on subsequent
tables.

To evaluate the improvement of the recognition performance
using multi-condition training and MAP adaptation combined
together, the HMM obtained in the baseline system was
adapted for each noise type, generating new 8 models. After
that, recognition tests were performed for each one using
corrupted utterances by the same noise type than adaptation
stage.

Their results were computed and analyzed. The maximum
WA, adaptation coefficient for maximum WA and weighted
alpha for airport, babble, car, exhibition, restaurant, street,
subway and train noise, are shown in Tables I, II, III, IV,
V, VI, VII and VIII, respectively.

From Tables I, II, IV, VI, and VIII, it is possible to see that
for some SNRs it doesn’t exist a weightedα value because all
tests returned a maximum WA that is smaller than reference
value. For these cases, MAP adaptation introduced a little
performance drop or did not provide gain comparing to the



TABLE I

A IRPORT TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)

0 3.2 7.3 0.6500 0.3387 6.3
5 25.4 32.1 0.4500 0.2779 31.1
10 62.9 66.2 0.1500 0.1950 65.6
15 78.0 77.8 0.0100 − −
20 78.0 77.8 0.0100 − −

TABLE II

BABBLE TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)

0 4.6 5.9 0.1500 0.2172 5.8
5 32.2 37.4 0.2000 0.2139 37.1
10 66.3 66.7 0.1500 0.1500 66.2
15 77.1 76.9 0.0100 − −
20 77.1 76.9 0.0100 − −

TABLE III

CAR TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)

0 5.3 7.1 0.3000 0.2167 6.0
5 31.7 37.3 0.3500 0.2195 36.3
10 65.8 67.7 0.1500 0.1017 67.5
15 76.5 76.6 0.0400 0.0350 76.3
20 76.5 76.6 0.0400 0.0350 76.3

TABLE IV

EXHIBITION TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)

0 0.2 1.8 0.4000 0.2310 1.0
5 16.4 23.5 0.0900 0.2283 23.1
10 58.2 58.7 0.1500 0.1267 58.0
15 75.5 75.5 0.0200 − −
20 75.5 75.5 0.0200 − −

TABLE V

RESTAURANT TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)

0 13.8 15.4 0.2500 0.1751 14.8
5 4.4 9.1 0.3500 0.2371 8.5
10 35.5 41.6 0.3500 0.1976 41.1
15 69.2 69.7 0.0300 0.0325 69.7
20 69.2 69.7 0.0300 0.0325 69.7

TABLE VI

STREET TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)

0 15.6 18.6 0.2000 0.1043 18.4
5 56.1 57.1 0.0700 0.0600 56.3
10 73.6 73.6 0.0200 − −
15 75.8 77.1 0.0200 0.0250 76.8
20 75.8 77.1 0.0200 0.0250 76.8

TABLE VII

SUBWAY TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)

0 −0.3 3.4 0.4000 0.3186 2.7
5 18.4 25.8 0.3000 0.2594 25.6
10 57.9 61.8 0.0500 0.1193 61.7
15 73.0 73.4 0.0800 0.0650 72.9
20 73.0 73.4 0.0800 0.0650 72.9

TABLE VIII

TRAIN TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)

0 7.6 12.6 0.4500 0.3174 12.1
5 34.0 40.7 0.4500 0.2398 38.8
10 69.0 70.0 0.0400 0.0749 69.9
15 78.1 78.1 0.0100 − −
20 78.1 78.1 0.0100 − −

baseline. However, the results shows that this approach has a
good cost benefit relationship.

Analyzing and computing these results, given the similarity
between SNR x adaption coefficient and logistic curve, the
parametric adjustment used to model this relation is based on
logistic function. Thus, the logistic curve was traced for each
noise type as shown in Figures 2, 3, 4, 5, 6, 7, 8 and 9. Table IX
shows the configuration parameters:a, b and c that describes
their behaviors.

TABLE IX

COEFFICIENTS FOR LOGISTIC CURVE.

Noise a b c

airport −0.104175 −0.810155 0.186922
babble −0.319246 1.338508 −0.009345

car −0.442008 1.445377 −0.025966
exhibition −0.124371 1.049212 0.028005
restaurant −0.148612 1.701653 −0.020750

street −1.264809 2.320370 −0.014900
subway −0.131225 1.000045 −0.049691

train −0.299248 0.882365 0.000910

An important consequence is that these logistic curves may
be used to predict a good adjustment coefficient value for a
given SNR for each noise type. Moreover, the computational
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Fig. 2. Logistic curve for recognition using airport noise
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Fig. 3. Logistic curve for recognition using babble noise
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Fig. 4. Logistic curve for recognition using car noise
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Fig. 5. Logistic curve for recognition using exhibition noise
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Fig. 6. Logistic curve for recognition using restaurant noise
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Fig. 7. Logistic curve for recognition using street noise
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Fig. 8. Logistic curve for recognition using subway noise
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Fig. 9. Logistic curve for recognition using train noise

cost is reduced which is very important for real-life applica-
tions.

To validate the proposed logistic functions, recognition tests
were performed for different preselected SNR levels using the
canonical model adapted which their correspondent adaptation
factors from respective curves. Experimental results showed
that proposed algorithm led to a good adaptation coefficient
value improving the system performance as can be observed
in Tables X, XI and XII.

VI. CONCLUSIONS

Regarding the relationship between adaptation coefficient,
noise type and level, besides strategy to determine its value,
it is possible to conclude that the logistic function provides a
good modeling of its behavior.

As a conclusion, we can state that the proposed strategy
to choose an appropriateα value for a given type and noise
level ensures an improvement of approximately 3% on system
performance compared to the reference value (multi-style

TABLE X

WORD ACCURACY FROM LOGISTIC CURVE FORSNR = 2dB.

Noise α from Reference WA using ∆WA (%)
Logistic WA (%) Logistic
Curve Curve (%)

airport 0.4591 7.9 12.8 4.9
babble 0.1310 10.5 15.4 4.9

car 0.1147 12.5 15.9 3.4
exhibition 0.1865 2.4 6.9 4.5
restaurant 0.1401 6.1 7.5 1.4

street 0.0227 30.3 31.5 1.2
subway 0.2702 2.3 9.0 6.7

train 0.1844 12.3 15.6 3.3

TABLE XI

WORD ACCURACY FROM LOGISTIC CURVE FORSNR = 7dB.

Noise α from Reference WA using ∆WA (%)
Logistic WA (%) Logistic
Curve Curve (%)

airport 0.3333 39.8 47.3 7.5
babble 0.0366 48.7 50.3 1.6

car 0.0365 49.8 50.8 1.0
exhibition 0.0999 31.3 38.4 7.1
restaurant 0.0813 11.4 15.5 4.1

street 0.0149 65.9 65.9 0.0
subway 0.1777 33.9 40.8 6.9

train 0.0476 51.6 53.4 1.8

TABLE XII

WORD ACCURACY FROM LOGISTIC CURVE FORSNR = 12dB.

Noise α from Reference WA using ∆WA (%)
Logistic WA (%) Logistic
Curve Curve (%)

airport 0.2048 71.7 72.4 0.7
babble 0.0150 73.7 74.2 0.5

car 0.0271 73.9 73.9 0.0
exhibition 0.0450 69.1 69.6 0.5
restaurant 0.0505 53.2 54.9 1.7

street 0.0149 76.0 76.0 0.0
subway 0.1205 66.8 67.3 0.5

train 0.0104 74.6 74.6 0.0

trained system), although it doesn’t necessarily provide the
best choice for this value.
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