Packet Delay for a New Version of a Simple MAC Protocol for Cognitive Wireless Networks

Adaauto Mendes Bernardes Júnior
Instituto Nacional de Telecomunicações - Inatel
P.O. Box - 37540-000
Santa Rita do Sapucaí - MG - Brazil
adauto.inatel@gmail.com

José Marcos Câmara Brito
Instituto Nacional de Telecomunicações - Inatel
P.O. Box - 37540-000
Santa Rita do Sapucaí - MG - Brazil
brito@inatel.br

Abstract—Cognitive radio is a promising technology to improve the performance of wireless networks. Multiple Access Protocol is an important issue to define the performance of the cognitive radio network. In [2] Ghasemi proposed a simple MAC protocol for cognitive wireless networks and analyze its performance based on the throughput parameter. In [3] we proposed an improvement in the Ghasemi’s algorithm in order to consider the propagation conditions of each channel in the decision process and compare the performance with Ghasemi’s version in terms of throughput. The goal of this paper is to compare the packet delay of both versions of the algorithm.

Index Terms—multiple access, cognitive radio, packet delay, performance.

I. INTRODUCTION

The exponential growth of wireless data networks and its applications demands a better utilization of the frequency spectrum. Cognitive radio is a promising technology to improve the performance of wireless networks. Cognitive radio is defined as a radio that can change its transmission parameters based on interaction with the operating environment [1].

Multiple Access Protocol is an important issue to define the performance of the cognitive radio network. In [2], Ghasemi proposed a simple MAC protocol for cognitive wireless networks and analyze its performance based on the throughput parameter. In [3], we proposed an improvement in the Ghasemi’s algorithm in order to consider the propagation conditions of each channel in the decision process. We compare the performance of both algorithms based on throughput, since this was the performance parameter used by Ghasemi in his paper. The goal of this paper is to compare the packet delay in the Ghasemi’s algorithm with the packet delay obtained with the new version of the algorithm presented in [3].

The remainder of this paper is organized as follows: Section II presents the Ghasemi’s and Adauto’s algorithms; Section III compares the performance of both versions in terms of packet delay; and the conclusions are presented in Section IV.

II. THE ALGORITHMS

The Figure 1 show the algorithm defined by Ghasemi in [2].

Each cognitive user follows these steps independently

 Initialization: Set $W_{mach} = 0$ and $S_j = F_j = F_0 = 0$ for $j \in N$

 for $t = 1, 2, \ldots$ do

 $\nu = \text{least_failure}(S^{-1}, F^{-1})$

 sense channel ν

 if busy then

 $F_{\nu} = F_{\nu}^{-1} + 1$

 else

 $S_{\nu} = S_{\nu}^{-1} + 1$

 exploit channel ν

 if exploitation is successful then

 $F_{\nu} = \max(0, F_{\nu}^{-1} - 1)$

 else

 $F_{\nu} = F_{\nu}^{-1} + 1$

 $W = 2 \frac{F_{\nu}}{S_{\nu}} - 1$

 $B = \min(W_{mach}, \text{ceil}(W \times \text{rand}))$

 $F_{\nu} = F_{\nu}^{-1} + B$

 end if

 end if

 end for

Fig. 1. The original algorithm proposed by Ghasemi and Razavizadeh [2].
occurs and, to solve it, a random backoff is added to the fail counter F_t^v. The backoff is calculated based on the algorithm known as Binary Exponential Backoff [4] [5] and its value is limited by the maximum allowable backoff value (W_{Max}). The backoff is randomly defined between zero and W (limited by the parameter W_{Max}), the function $\text{ceil}(x)$ returns the smallest integer not less than x and the rand function returns a random number uniformly distributed between [0;1].

In any wireless networks the propagation conditions and the dynamic behavior of the medium needs to be considered in the decision process. In [3] a small modification on the Ghasemi’s algorithm that can improve its performance in a real wireless communications network is proposed.

The modification proposed in [3] uses the propagation conditions of the medium to change the value of the counter F_t^v, as this is the first counter consulted by the secondary user to choose the better channel to transmit. Therefore, the channel quality is considered in the decision process in terms of propagation conditions, represented by packet error probability. The Adauto’s version is presented below in Figure 2 (the proposed modifications are highlighted with underscore lines).

In the delay computation the simulation setup use the same conditions used in [2]: the number of secondary users varies from 2 to 20; the network has 20 non-overlapping channels, the probability of the channel is in use by a primary station is randomly selected from the range [0.1 0.5], except for channel 10 which this probability is fixed as 0.05; and the maximum allowable backoff (W_{Max}) for each channel is set to 256 which was the value that results in the best performance for Ghasemi’s version.

A. Without consider the Propagation Conditions

First, we compare the two versions of the algorithm considering that all channels are error free. The Figure 3 shows the results for average packet delay and Figure 4 shows the standard deviation of the delay.

Based on Figures 3 and 4, we can see that the Adauto’s version always performs better than the Ghasemi’s version, in terms of average delay and jitter.

According to [2], when the secondary collisions are the main reason of the performance degradation (about 11 secondary users) the algorithm encourage users to exploit the same channel in consecutive time-slots, decrementing the collisions counter (F_t^{c-1}) and managing users to avoid collisions. Therefore, when the network has about 11 secondary users the throughput starts to increase. This behavior explain why the delay (and jitter) in Ghasemi’s algorithm decrease

III. THE DELAY COMPUTATION

In [6] QoS is defined as a set of requirements that specifies some guarantees in the level of network performance. In practical terms, is the mechanism that has as objective to ensure that the data flows in the network with certain guarantees based on their requirements. Two important parameters to define the QoS are the delay and its variation (called jitter).

In both versions of the algorithm analyzed in this paper the delay can be caused by any of these problems: collisions between primary and secondary users, collisions between two (or more) secondary users or errors due to bad propagation conditions.

In this paper, the delay was defined as the required number of time-slots to transmit a packet successfully. We compute the average delay and, as an estimation of the jitter, standard deviation.

Fig. 3. Comparing average delay between Adauto’s and Ghasemi’s versions.
B. Considering the Propagation Conditions

To consider errors due to bad propagation conditions on the available channels, we compare the performance of both versions of the algorithm considering the same packet error rate for all channels. In [7] the packet error rates reported varies from 0.018 to 0.738. In our analysis we consider a packet error rate equal to 0.3. The Figure 5 shows the average delay and the Figure 6 shows the standard deviation of delay in this condition.

Based on Figure 5 and 6, we can see, as expected, that the average delay and the standard deviation of delay increases when the packet error rate is considered. We can see also that the Adauto’s version performs better than the Ghasemi’s version.

In real wireless networks the propagation conditions can vary on each channel. Thus, now we consider a situation in which the propagation conditions are not the same for all channels. To exemplify this condition we consider that 10 channels are error-free and 10 channels has a packet error rate equal to 0.5. The Figure 7 shows the average delay and the Figure 8 shows the standard deviation of delay in this condition.

In Figure 7 when the network has 10 or less secondary users, the value of average delay for Adauto’s version has the same behavior of Figure 3 with the same number of secondary users, because the users tends to exploit channels with better propagation conditions in the Adauto’s algorithm. The Ghasemi’s version does not consider the propagation conditions and, due to this, has the average delay increased.
if this value is compared with Figure 3 for any number of secondary users. This consideration can be extended to the standard deviation of delay, as we can see comparing Figure 4 and Figure 8.

When the network has more than 10 users, the average delay and the standard deviation of delay starts to increase in Adauto’s version, because some users will exploit channels with bad propagation conditions. However, the Adauto’s version performs better than Ghasemi’s algorithm in all considered scenarios.

IV. CONCLUSIONS

In [2], Ghasemi proposed a simple MAC protocol for cognitive wireless networks and analyze its performance based on the throughput parameter. In [3], we proposed an improvement in the Ghasemi’s algorithm in order to consider the propagation conditions of each channel in the decision process. The performance of Ghasemi’s and Adauto’s algorithms is compared in [3] based on the throughput parameter. However, in terms of QoS, is important to know, besides the throughput, the delay and jitter experienced by the user.

In this paper we compare the performance of both algorithms based on the average delay and jitter. We concluded that Adauto’s version performs better than Ghasemi’s version in all analyzed scenarios.

REFERENCES

