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Abstract— This paper presents a model based on queueing
theory where the Kernel Density Estimation Method is used
in order to evaluate the performance of the transmission link
in OFDM-TDMA systems. From the implemented model, it is
derived multiple QoS parameter estimators. The obtained results
confirm that the proposed model is efficient in describing the link
performance indicators. The use of Kernel Density Estimation to
model the arrival process improves the QoS parameter estimates
of the queueing model making their values very close to those
obtained with simulations.

Index Terms— Kernel Density Estimation, OFDM, QoS,
Queueing Analysis, TDMA, Wireless Systems.

I. INTRODUCTION

Nowadays, the OFDM (Orthogonal Frequency Division
Multiplexing [1]) is used in various type of high-speed wireless
networks such as Wi-Fi (IEEE 802.11 [2]), WiMAX (IEEE
802.16 [3]) and LTE [4]. Investments recently made in the
development and deployment of these technologies in several
countries led them to be very promising in the modern world
of telecommunications.

This paper presents a model based on queueing theory
using Kernel Density Estimation Method in order to evaluate
the performance of the transmission link in OFDM-TDMA
systems. While the transmission through an OFDM channel
increases the transmission rate for wireless communications,
the access by multiple users is ensured by TDMA (Time
Division Multiple Access [5]). A queueing model can be
established to the OFDM-TDMA mechanism [6]. To ensure
greater fidelity in the representation, in this paper, we propose
the use of a model based on Queueing Theory where the
incoming traffic is modeled by the nonparametric Kernel
Density Estimation Method [7]. From the implemented model,
it is derived multiple QoS parameters, such as the average
number of packets in the queue, the average delay for packet
transmission and the buffer overflow probability.

The obtained model can be used not only for designing
communication systems, but also as the basis of an user

admission control system in the sense that a new call can
be admitted only if the quality of service for the other calls is
maintained at a certain level.

A. Performance Analysis Based on Queue Theory

The queueing theory is important in performance analysis
of transmission systems for capturing the dynamics of the
communication channel.

Different studies on performance analysis address wireless
communication systems based on OFDM in various aspects
through the Theory of Queues. Zhang and Letaief [8] pro-
pose an algorithm for adaptive resource allocation in OFDM
systems that considers the channel’s physical conditions, the
stochastic packet arrival process, various QoS requirements
and user fairness at the link layer. Liu et al. [9] suggest an
algorithm for resource allocation in multiuser OFDM systems
which separates the subcarriers into several resource blocks
and, then, allocates non-conflicted blocks to different users.
Das, Carvalho and Prasad [10] compares the performance of
OFDM systems with dynamically adaptable subcarrier band-
width against standard OFDM systems with fixed subcarrier
bandwidth. Niyato and Hossain [11] present a model based
on Queueing Theory for different admission control strategies
in OFDM wireless networks. Chen [12] suggests a model to
evaluate the performance of the subcarrier-allocation system
and derive expressions for calculating two important system
performance measurements, the call blocking probability and
the bandwidth utilization. Wunder and Zhou [13] propose
bounds for delay and queue backlog for a large class of
scheduling policies in the context of OFDM. The developed
model is applied in the design of LTE systems. Bouchti,
Kafhali and Haqiq [14] present a performance analysis model
for OFDMA systems applied to the WiMAX environment.

These studies consider that the user traffic arrival can be
described by the Poisson model due to its simplicity. However,
it is a fact that real network traffic does not follow, in most
cases, the behavior defined by this model, restricting the



application of these works to real world situations [15]. In this
paper, the nonparametric Kernel method was used to estimate
the probability distribution of the packet arrival process, thus
obtaining a more accurate model, applicable to real systems.

II. OFDM TRANSMISSION

In this work, we considered that the transmitter has infor-
mation about the channel quality (signal-to-noise ratio, SNR)
available at the time of transmission of a frame, which allows
the use of adaptive modulation and coding. This information
can be obtained through the pilot signal [16].

Through the use of adaptive modulation and coding, the
maximum number of information bits per sampled symbol
(Hz) which a subcarrier m can transmit to an user n during
a OFDM symbol at time t can be written as a function of
the SNR and the Bit Error Rate (BER). Although there are
several approximations to this function, all of them are upper
bounded by the following modulation level expression [17]:

cm,n (t) =

⌊
log2

(
1 +

−1, 5

ln (5Pber)
γm,n(t)

)⌋
(1)

where γm,n(t) is the instantaneous SNR on a OFDM symbol
transmitted to an user n during t by a subcarrier m, and Pber
is the bit error rate.

Let C be the maximum modulation level that can be used.
The SNR levels can be devided into C + 1 consecutive and
disjoint intervals with boundaries defined as Γc, where c =
0, 1, ..., C. Each defined region is equivalent to a modulation
level. Thus, the higher the SNR read, the higher will be
the modulation level used. The boundaries that define these
intervals do not depend on the users or on the subcarriers in
which the transmission will occur, but only on the modulation
level and the BER. Therefore, from the equation 1, these
boundaries can be obtained as:

Γc =
(2c − 1) ln (5Pber)

−1, 5
(2)

The OFDM system transmits at the maximum modulation
level as long as the bit error rate remains below the defined
threshold. Thus, the modulation level c is used when Γc ≤
γm,n ≤ Γc+1. When the modulation level is zero (c = 0), no
packet is transmitted.

We also considered that the transmission power is fixed and
the channel undergoes fast Rayleigh fading. The time-invariant
SNR average for a subcarrier m and user n is called γ̄m,n.
The received SNR, γm,n, is then a random variable with the
following probability density function:

pγ
(
γm,n

)
=

1

γ̄m,n
exp

(
−
γm,n
γ̄m,n

)
(3)

Thus, the probability of a modulation level c to be selected
for a subcarrier m and user n is given as:

Pcm,n (c) =

∫ Γc+1

Γc

pγ
(
γm,n

)
dγm,n =

exp

(
− Γc
γ̄m,n

)
− exp

(
−Γc+1

γ̄m,n

)
(4)

For each transmitted frame (with a duration T ), the number
of packets that can be transmitted (r) is defined as a function
of the modulation level:

r (c) =

⌊
T × c×∆f

L

⌋
(5)

where ∆f = B
M , B is the transmission channel bandwidth, M

is the number of subcarriers that compose the OFDM channel
and L is the size (in bits) of the transmitted packet.

For an user n, the probability of transmitting in a particular
packet rate rm on a subcarrier m can be calculated as follows:

Prm,n (rm) =
∑

rm=r(c)

Pcm,n(c) (6)

where c = 0, 1, 2, ..., C, rm = 0, 1, 2, ..., R and R =⌊
T×C×∆f

L

⌋
.

In addition, the probability mass function of the packet
transmission rate during a frame on a subcarrier m is obtained
by the equation 7:

rm,n =
[
Prm,n(0) Prm,n(1) · · · Prm,n(R)

]
(7)

Thus, the probability mass function of the total packet
transmission rate (Rn), involving all M channel subcarriers
dedicated to the user n, is given by the convolution of each
subcarrier’s probability mass function of the packet transmis-
sion rate:

Rn = r1,n ∗ r2,n ∗ ... ∗ rM,n (8)

III. OFDM-TDMA TRANSMISSION MODEL

The system under consideration involves a base station
connected to multiple subscriber stations, as shown in figure
1).

Base Station

Fig. 1. Considered scenario: a base station connected to multiple subscriber
stations

The scenario involves the downlink transmission on a chan-
nel accessed by multiple subscriber stations and controlled
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Fig. 2. OFDM-TDMA transmission model

by OFDM-TDMA. The time division based multiple access
is implemented through the round-robin scheduling algorithm
and it is assumed fairness condition among the users. There are
N users sharing a channel composed by M subcarriers. Each
user has its own buffer, the size of which is predetermined,
where incoming traffic is stored. The model of this system is
illustrated in figure 2.

It is worth noting that the OFDM transmission is per-
formed through frames, which are considered the units of
data transmission and comprises several OFDM symbols. A
frame contains, besides the data, the metadata that maps the
modulation techniques used against the transmitted symbols
and the downlink and uplink mapping over the channel, in
case of duplex communication.

Back to the scenario considerations, in a transmission cycle,
the channel is sequentially allocated for each user during a
time slot to send a frame, totalizing, thus, N transmitted
frames at the end of the cycle. The length of the time interval
for which the channel is dedicated to the considered user is T
seconds. The number of transmitted packets in a frame may
be different depending on the modulation level used on each
subcarrier. Short intervals are inserted between the transition
from one user to another in order to avoid interference.

IV. FORMULATION OF THE QUEUEING MODEL

We propose an analytical model based on Discrete Time
Markov Chain in order to analyze the performance of a par-
ticular user queue system. Thus, once defined the probability
mass functions of the total packet transmission rate and of the
incoming traffic (which is directly estimated from the Kernel
method), the obtained model can be applied to the user queue.

The model assumes that the queue states are observed at the
end of every frame transmission. The time interval inserted
between the transmission of each frame is ignored in order to
simplify the model, since it is considerably shorter than the
time dedicated to a frame transmission. However, this interval
may be considered in the model by dedicating a time slot in
which the transmission rate is null and no user is served.

Each user incoming traffic is modeled from series of sam-
ples of real TCP/IP network traffic. The traffic trace must
have its samples aggregated for each T seconds (where T
is the length of the time slot in which a frame is transmitted).
Thereafter, the Kernel method is applied and it is obtained

a probability density function f(v) that describes the user’s
packet arrival process. The cumulative distribution function of
f(v) is referred to by F (v).

It is assumed a number V that corresponds to the maximum
number of packets that can arrive during the time slot T . Thus,
the probability of arriving V packets is defined as f(V ) =
1− F (V − 1).

The behavior of the user queue can be modeled as a quasi-
birth and death process [18] and, due to the discrete time
domain, a transition probability matrix P of a Markov Chain
can be defined. This matrix is given by the equation 9, where
R is the highest total transmission rate.

The matrix P is square and its rows represent the number
of packets (x) in the queue, while the values px,x′ represent
the probability of the queue transitioning from the state x to
x′, in other words, it represent the probability that the queue
contains x packets now and x′ packets in the next time slot.

Once the transition matrix P is defined, one can estimate
the steady-state probabilities of the system to be found in
each possible state and, thereafter, determine multiple QoS
parameters.

For the OFDM-TDMA system, the state space of an user
queue can be defined as:

∆ = {(Xi,Ni) , 0 ≤ Xi ≤ X, 1 ≤ Ni ≤ N} (10)

where Xi is the number of packets in the queue, X is the
buffer size, Ni corresponds to the user being served during
the time slot and N refers to the number of users accessing
the transmission channel.

Once the users are served sequentially and cyclically, the
following transition matrix can represent the round-robin
scheduling:

U =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 (11)

The matrix U has N × N dimensions and each row of it
represents the user who is being served at the moment. Thus,
the row n represents the user n being served by the system
in the current time slot. The probability of the user queue
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(9)

transiting from state x to x′ depends on which user is currently
being served and it is determined by the diagonal matrix Vx,x′

of size N ×N .

[Vx,x′ ]i,i =

{ ∑
v−r=x′−x f(v)[Rn]r+1, i = n

f (x′ − x) , i 6= n, x′ ≥ x (12)

where x−D ≤ x′ ≤ x+A, r = 0, 1, ..., R and v = 0, 1, ..., V .
Rn is the vector that contais the probability mass function of
the total packet transmission rate for the user n (equation 8).
[Vx,x′ ]i,i indicates the element in row i and column i of the
diagonal matrix Vx,x′ .

The px,x′ values, which compose the system’s transition
matrix, are calculated as shown in equation 13. It is observed
that each px,x′ , in this scenario, is a matrix of size N ×N .

px,x′ = UVx,x′ (13)

By calculating all px,x′ values, for 0 ≤ x ≤ X and x−D ≤
x′ ≤ x + A, it is obtained the system’s complete transition
matrix.

Considering that the states of the Markov Chain are re-
current and aperiodic [19], the probabilities of the system to
be found in each possible state are determined by the vector
π =

[
π0 π1 · · · πi · · ·

]
. This vector can be obtained

from the transition matrix of the Markov Chain by solving the
following system of linear equations:

π = πP (14)

∑
i∈S

πi = 1 (15)

V. QOS PARAMETERS ESTIMATION

The QoS parameters are calculated from the steady-state
probabilities of the system to be found in each possible state.

For each of the X possible queue states, the model considers
N different states for the round-robin scheduling. Thus, the
steady-state probability of the user queue to contain x packets
(where 0 ≤ x ≤ X) can be calculated as:

π (x) =

(x+1)×N∑
i=(x×N)+1

[π]i (16)

Based on these values, the average number of packets in
the queue (or backlog) can be obtained by:

b =

X∑
x=0

xπ (x) (17)

The average delay of a packet, defined as the average time
that a packet waits in the queue from its arrival until its
transmission, is given by Little’s law:

d =
b

λ
(18)

where λ is the average number of incoming packets per time
slot, obtained from the average of the considered traffic series.

From the law of total probability, the probability of the
queue to be in state X is obtained by the sum of the
probabilities of the buffer to contain X packets given that the
buffer has overflowed and of the buffer to contain X packets
given that the buffer has not overflowed.

π (X) = P (X|O)P (O) + P
(
X|Ō

)
P
(
Ō
)

(19)

Once the user buffer gets completely filled every time there
is an overflow, then P (X|O) = 1. Therefore:

π (X) = P (O) + P
(
X|Ō

)
P
(
Ō
)

(20)



It is verified that, when the average incoming flow is lower
than the average service flow, the probability of the buffer
to contain X packets when there is no overflow decreases
while the buffer size is increased, since the queue tends to
occupy a smaller space within the buffer considering the
system in steady-state. In this case, the probability that there
is no overflow and, therefore, the queue has X packets, is far
superior to the probability of the queue to contain X packets
when there is no overflow, ie, P (O)� P (X|Ō)P (Ō). Thus,
the probability of buffer overflow can be approximated as:

Pover ≈ π(X) (21)

VI. SIMULATION AND RESULTS

In the experiments, we analyzed the performance of an user
queue in an OFDM-TDMA system with 5 active connections.
The incoming traffic process of the users was modeled based
on real TCP/IP network traffic traces.

Real TCP/IP network traffic presents bursty features in
many scales and long range dependence among samples. The
Poisson model is inefficient to describe such characteristics,
as shown by Paxson and Floyd [15], what makes this work’s
proposal interesting for real applications.

Each sample of the series records the number of bytes that
form the transmitted packet. In this experiment, it was assumed
that the samples were collected every millisecond. The first
1500 values of the considered series are shown in figure 3.
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Fig. 3. First 1500 samples of the user’s incoming traffic series. Each sample
describes the number of packets transmitted in a frame

Further, the Kernel method was applied and the probability
density function that models the user’s incoming traffic was
obtained. The function is shown in figure 4.

The channel is composed of 512 subcarriers and has band-
width of 13.5 MHz (thus, ∆f = 26367, 19 Hz). Various
scenarios were considered in order to study the quality of the
channel by varying the average signal-to-noise ratio (SNR).
From the developed model of the OFDM channel (assuming
Pber = 10−6, C = 5, T = 100 ms and L = 329 bytes),
were obtained the probability mass functions of the channel’s
total packet transmission rate (equation 8) shown in figure 5
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Fig. 4. Probability density function that models the user’s incoming traffic

for SNR values ranging from 9.5 dB to 15 dB. As expected,
increasing the SNR reflects an improvement in the quality of
the channel, since the average transmission rate is increased.
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Fig. 5. Probability mass functions of the channel’s total packet transmission
rate for different SNR values

Once determined the functions that describe the traffic
arrival process and the transmission in the OFDM channel for
the observed user, the implemented model based on Markov
Chains to analyze the queue in OFDM-TDMA system was
applied. Assuming the user buffer with capacity for 400
packets and a limit of 200 packets that can arrive during a time
slot (X = 400 and V = 200), the steady-state probabilities
(shown in figure 6) of the user queue to be found in each
possible state were calculated.

In order to validate the numerical results obtained with the
analytical model, we developed a simulator of the considered
system using the Matlab. The probabilities, obtained from the
simulation, of the user queue to have each possible length can
be seen in figure 7.

The results show the accuracy of the model in representing
the behavior of the queue in a real OFDM-TDMA system.
It is observed that, due to the cyclic scheduling, the user’s
packet queue tends to increase in iterations in which the user
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Fig. 6. Steady-state probabilities, obtained through the model, of the user
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Fig. 7. Steady-state probabilities, obtained by the simulation, of the user
queue to be found in each possible state

is not served, creating different higher probability regions.
Furthermore, the implemented model, due to the nonparamet-
ric estimation of the incoming traffic, is able to reproduce
irregularities that a model based on parametric estimation can
not.

The graphs in figures 6 and 7 do not include the probabilities
π(0) and π(X), the probabilities of buffer to be empty and
full, respectively. In the analyzed SNR range, the values π(0)
and π(X) are much higher than the values π(x), for 0 < x <
X , making it difficult to visualize the graphs if these values
were included. The high value of the probability of the buffer
to be empty is explained by the presence of idle capacity.
Every time the transmission rate within the frame is higher
than the number of packets in the queue plus the number of
packets arriving, the buffer becomes empty. The high value
of the probability of the buffer to be full is explained by the
occurrence of overflows in the buffer. Every time there is an
overflow, the buffer remains full at the end of the transmission
of the frame.

The figure 8 shows the average number of packets in the
buffer, or the queue average length, obtained by the equation

17.
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Fig. 8. Queue average length versus SNR

The average delay of a packet, calculated from the equation
18, can be visualized in figure 9 and the probability of buffer
overflow in the figure 10.
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Fig. 9. Average delay of a packet versus SNR
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It is observed that, as the SNR is increased, there is a
decrease in the queue average length, in the average delay
of the transmission and in the probability of the user buffer
to overflow. This effect was expected, since the improvement
of the channel conditions makes the OFDM-TDMA system,
through adaptive modulation and coding, provide higher trans-
mission rates.

The achieved results, compared to the simulation, confirm
that the model is effective in describing the considered per-
formance indicators. The Kernel method (for nonparametric
estimation) applied to model the packet arrival process im-
proves the estimates of QoS parameters, making their values
very close to simulation results. Thus, it can be said that the
developed model represents well the behavior of an user queue
in an OFDM-TDMA system.

VII. CONCLUSIONS

The OFDM is a multiplexing technique widely deployed
in actual wireless communications systems. It is characterized
by its high resistance against multipath and inter symbolic
interferences, besides its high spectral efficiency.

In this paper, the OFDM-TDMA transmission system is
studied and a model based on Queueing Theory for the
system’s queue behavior is proposed. For this purpose, models
were established for the system’s transmission process and for
the user’s packet arrival process. The first was built assuming
the channel undergoes fast Rayleigh fading and it considers the
use of Adaptive Modulation and Coding. The second model
was built by applying the Kernel method for estimating the
probability density function of the packet arrival process.

Different papers, in the reviewed literature, that study the
behavior of an user queue in OFDM systems model the traffic
arrival as a Poisson process. However, real traffic often does
not follow the behavior defined by the Poisson model. This
study employs the Kernel method in the definition of traffic
arrival process, resulting in a model more approximate of real
systems.

Through the use of Markov Chains, it was possible to define
the steady-state behavior of the user queue by calculating
the probabilities of the queue to be found in each possible
state. From these probabilities, some indicators, useful when
analyzing the performance of the considered system, were
estimated: the average number of packets in the transmission
queue, the average delay for a packet to be transmitted and
the probability of the user buffer to overflow.

The performance indicators obtained were compared to
those given by the simulations of the OFDM-TDMA system.
It was verified that the model is improved by using the Kernel
method for nonparametric estimation. The resulting estimates
for the QoS parameters were very close to the simulation
results, confirming the efficiency of the proposed model.
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