
Video Compression for UAV Applications Using a
Global Motion Estimation in the H.264 Standard

Paulo Henrique Fonseca Torres Soares
Instituto Tecnológico de Aeronáutica - ITA

P. Marechal Eduardo Gomes, 50
São José dos Campos, SP Brazil - 12.228-900

paulosoares86@gmail.com

Marcelo da Silva Pinho
Instituto Tecnológico de Aeronáutica - ITA

P. Marechal Eduardo Gomes, 50
São José dos Campos, SP Brazil - 12.228-900

mpinho@ieee.org

Abstract— Video coding is used nearly in every video appli-
cation, but it is a very demanding resource process. In many
applications of unmanned aerial vehicles, a video transmission
is desired even though the onboard hardware has a low pro-
cessing capability, in general. Therefore the study of new video
compression algorithms with low complexity is an important
task in this context. One of the most time consuming step in
a video compression scheme is the motion estimation algorithm.
To design a new low complexity video coding for remote sensing
systems, in 2011, Bhaskaranand and Gibson proposed the use
of a global motion estimation. However, the solution presented
in 2011 can not be used with any video compression standard.
This work deals with the model of Bhaskaranand and Gibson
and produces a global motion estimation that can be used in
every profile of H.264 in order to significantly reduce encoding
time with a little penalty in the bit rate. The algorithm is tested
in videos obtained by unmanned aerial vehicles and the results
have shown a significant improvement in the time consuming by
motion estimation algorithm. In fact this improvement reduces
the total encoding time in 10% with a penalty of 1.5% in the bit
rate.

Index Terms— video compression, h.264 standard, motion es-
timation.

I. INTRODUCTION

Video compression (or coding) is widely used in multimedia
industry. The most of majority of digital videos used in the
world are compressed. It is true because a digital video needs a
large bandwidth to be transmitted or a high capacity device to
be stored. For example, consider a color video with moderate
resolution (640x480 pixels) and a rate of 24 frames per second
(fps). If the RGB color space is used, this will result in a
requirement of rate of transmission around 200 Mbps. In many
Unmanned Aerial Vehicle (UAV) applications, the aircraft has
a camera onboard producing a video signal that must be
transmitted to an earth station. In general, the communication
system of an UAV has the bandwidth constraint and also the
needs to be design with a low capability hardware.

The H.264 is a video compression standard [1], [2] that has
been used in many applications, such as in Brazilian System
for Digital TV (SBTVD -Sistema Brasileiro de TV Digital)
[3] and in Blu-Ray discs [4]. This standard is the preferred
choice because it gives a substantially higher compression
performance than its predecessors [5]. But it also has a higher
time complexity [6]. In fact, the time complexity of H.264

baseline decoder is two to three times higher than the H.263
[6].

Video compression standards generally use two algorithms
to reduce spatial and temporal redundancies. They are: (a) intra
frame prediction; and (b) inter frame prediction, respectively.
The first uses information of the own frame to code it while
the second uses information of previously coded frames, which
improves the compression rate. Motion Estimation (ME) is
the algorithm used by inter prediction to determine the offset
between an image and its best match from previously coded
frames. The difference between these images is called pre-
diction error and the offset position is said to be the motion
vector. Even though the ME is very time consuming, it is
one of the main stage of a video compression. Although
many optimizations methods have been proposed for ME, it
is still a bottleneck in the many video encoders. In H.264
standard, depending of the profile and the algorithm for motion
estimation, this stage can consume until 90% of the encoding
time.

In [7], Bhaskaranand and Gibson introduced the concept of
global motion estimation to design a new video coding with
a low complexity. This new algorithm was used to compress
videos from an aerial platform where the motion observed
in the signals was mainly due to the camera movements.
In this context, it was shown that the new algorithm was
efficient when compared to the standard H.264. Unfortunately,
the global motion model proposed in [7] can not be used
as the model in different video compression standards and
therefore if this algorithm is used, the compression scheme
does not keep the compatibility to those standards. In fact, the
problem arises from the fact that the motion model deals with
transforms like rotations and approximations.

In this work, we present a new video coding which uses a
global motion estimation and which the coded video can be
recovered by any H.264 decoder. The new procedure is based
on a simplification of the model global estimation introduced
in [7] and its adaptation to work in the standard H.264. The
new scheme is tested in videos produced by an UAV and
its performance is compared to the standard. This paper is
organized as follows. In Section II, the concept of motion
estimation and compensation is presented. The idea of global
motion estimation is treated in Section III. The results obtained

in this work is shown in Section IV. Closing the paper, Section
V presents the conclusion.

II. MOTION ESTIMATION

For each block, a ME algorithm looks in the pictures of the
Decoded Picture Buffer (DPB) for the block that minimizes a
cost function. This block is called the best match one. Once
this block is found, the motion vector is coded into bit stream.
Since the difference between pixels of the given block and the
best match is expected to be smooth, then it is transformed
to the frequency domain using Discrete Cosine Transform and
the higher frequency are discarded by quantization.

The Inter Prediction attempts to exploit the temporal corre-
lation between frames and ME is the algorithm that finds the
best match candidate for a given block. Thus, given a frame
F [i] and the target block Bi[j] that are being encoded in a
given moment, the ME uses blocks Bl[k] of already encoded
frames F [l], (l < i) to encode Bi[j]. Note that Bi[j] and Bl[k]
must have the same dimensions. The standard can work with
seven different block sizes: 16x16, 16x8, 8x16, 8x8, 4x8, 8x4,
4x4.

Suppose that the upper left pixel of the target block Bi[j]
is at line l and column c and that the candidate block is at
line l′ and column c′, then the motion vector candidate is by
definition mv = (l′ − l, c′ − c). This motion vector, which
represents the offset between the target block Bi[j] and the
candidate Bl[k], is also encoded into compressed video, using
an entropy code. Following the rules of this entropy code, a
motion vector with a large magnitude will produce a large
codeword and therefore the size of the output video (i.e., the
result of compression) is dependent of this magnitude too.

Ideally speaking, to know which would be the best candi-
date, it would be necessary to transform and quantize residues
for each candidate, and then applying entropy coding to these
residues and to the corresponding motion vectors. Since this
procedure is impractical, it is used a cost function that takes
two factors into consideration: the magnitude of the motion
vector and the magnitude of the residuals.

Therefore, the cost must first evaluate the amount of bits
needed to encode the motion vector. This cost partial motion
vector mv(Bl[k]) = (mvx,mvy) is given by

Costmv = bits(mvx) + bits(mvy)

where the function bits can be defined as

bits(x) =

{
0 if x = 0
2.blog2(|x|)c+ 3 otherwise

Moreover, it must be also incorporated into the overall
cost the candidate error the difference Bl[k] − Bi[j] using
some error metric. This metric is usually the Sum of Absolute
Differences because of its simplicity (avoids multiplications)
and performance (comparable to mean square error) [8]. Thus,
a solution adopted in the H.264 reference model to evaluate a
candidate according to these two costs is the Lagrangian cost1.

1Information taken from file ./lencod/src/me fullsearch.c

Cost =

M∑
m=1

N∑
n=1

|Bl[k](m,n)−Bi[j](m,n)|+

+ λ[bits(mvx) + bits(mvy)] (1)

where λ = 187 is the default value of this constant and l < i,
i.e., to encode a block of i-th frame the ME must search in
the previously encoded frames. Thus, Inter Prediction can not
be used in the first table.

Since in many videos, the rate of frames per second is
greater, then it is expected that the correlation between con-
secutive frames to be very large. In fact, the time correlation
is bigger than the spatial correlation exploited by Intra Predic-
tion. Thus, Inter Prediction outperforms Intra Prediction and
for this reason it is used as the primary prediction method. In
some cases the Intra Prediction procedure can be useful. The
most obvious case is the first frame, where there are no frames
of reference. Furthermore, the use of the Intra Prediction
periodically can be employed to reduce the encoder complexity
and to avoid an error propagation. However, if the aim is to
achieve the best compression rate, the Inter Prediction is the
right choice. Therefore, the ME algorithm is called many times
in the procedure of video compression and its complexity can
not be neglected.

III. THE GLOBAL MOTION MODEL

Since the motion estimation algorithm must be applied to
every block of a frame, it is a very time consuming process.
However, in UAV applications, the motion in the video signal
is mainly due to the motion of the camera, which is in the
aircraft. In fact, it was this property that motivates the use of a
global motion model, that is, a motion estimation of the entire
frame, in an algorithm to compress videos. In [7], this model
is used to design an efficient algorithm for video compression
when used to encode videos captured by aerial platforms. This
solution reduces significantly the complexity of the encoder
with a small penalty in its performance. Following a global
motion model consisted by rotation, scaling and translation,
the work in [7], [9] defines a pixel transform as[

x′

y′

]
=

[
a b
c d

]
×
[
x
y

]
+

[
e
f

]
where [x y]T is the position of the pixel in the original frame,
[x′ y′]T is the position of the pixel in the transformed frame,
[e f]T is the translation vector and a, b, c, d are the parameters
describing the rotation and scaling. It is important to notice
that the motion estimation used in many video compression
algorithms can not deal with rotation and scaling. Therefore,
the algorithm in [7], [9] is completely different from many
standards. Actually, the rotation and scaling were introduced
in the model since the tested videos were obtained by a camera
with zoom mounted in an helicopter.

In many UAV applications, the used platform is a fixed
wing aircraft with a constant altitude and the camera does not
change its zoom. In these cases, the model can be used with no

scale effect. Furthermore, if the video has a high frame rate,
the rotation effect can be neglected. In fact, using a set of
UAV videos, this work measured the performance loss when
the rotation model is withdraw from the model proposed in [7].
The results are shown in Section IV and it can be observed
that the Sum of Absolute Difference (SAD) is reduced by a
factor less than 0.5% if the rotation is considered. Based on
these results, this work proposes a new solution using only
the effect of translation. It is important to notice that if the
rotation and scale models can not be discarded, an encoder
based in the H.264 standard can not be designed.

Ignoring the rotation and zoom between frames, the model
can be written as [

x′

y′

]
=

[
x
y

]
+

[
e
f

]
But, by the definition of motion vectors, the motion vector

of any target block using any candidate block of a past frame
will be

mv = (x− x′, y − y′) = (−e,−f)

This equations shows that if the video is according to the
model, than every motion vector of a frame will be constant.
Thus, the ME can be modified to evaluate just one motion
vector by frame, which will reduce the encoding time. How-
ever, to guarantee that the compressed video can be recovered
by a H.264 decoder, all the blocks of the frame are encoded
using the same motion vector.

IV. RESULTS

Using a set of UAV videos and the version 18.4
of the H.264/AVC JM Reference Software, available in
http://iphome.hhi.de/suehring/tml/, this work measures the per-
formance of the new scheme. In a first test, the performance
of a global motion model with the effect of rotation was
compared to the performance obtained when this effect is
omitted. Table I shows the the comparison between SAD
considering the rotation and not considering it, when the tested
block was of the size of one quarter of the frame. It can be
observed from the results presented in Table I that the penalty
is less than 2.5% when the rotation effect is not used. So, it can
be concluded that ignoring this effect will not severely impact
the compression performance in our applications. Besides that,
considering rotation makes impossible to use H.264 codec and
the time to find the motion vectors would be higher. Thus, it
seems to be a good choice to ignore it.

To find the motion vector of each frame, it was designed
a pre processor. It takes as input the video sequence and
return the motion vectors of each frame as output. This pre
processor works with a block of a variable length. In this way,
the encoder has to perform just one motion estimation per
frame and the length of the block used in this estimation can
be adjusted. The fractional motion estimation of the standard
was not modified in order to give some flexibility to the codec,
specially to deal with cases where video does not suit perfectly
to the model.

TABLE I
COMPARISON BETWEEN SAD CONSIDERING THE ROTATION AND NOT

CONSIDERING IT.

Frame Angle (degrees) SAD (with rotation) Error between
SAD and SAD

with rotation (%)
1 0,00 1844675 0,00
2 0,00 1546309 0,00
3 0,00 1983688 0,00
4 0,00 1910732 0,00
5 0,00 1607829 0,00
6 0,00 2141527 0,00
7 0,00 1987224 0,00
8 0,00 1709617 0,00
9 0,00 2041279 0,00
10 0,00 2203261 0,00
11 0,00 1880256 0,00
12 0,00 1935201 0,00
13 0,00 1989397 0,00
14 0,00 1859170 0,00
15 0,00 1974313 0,00
16 0,00 2107120 0,00
17 0,00 1682194 0,00
18 0,00 2083678 0,00
19 0,00 2206558 0,00
20 0,00 1911341 0,00
21 0,00 1794271 0,00
22 0,00 1753599 0,00
23 0,00 1845973 0,00
24 0,00 1789962 0,00
25 0,00 1499732 0,00
26 0,00 1886640 0,00
27 0,00 1952025 0,00
28 0,00 1540284 0,00
29 0,23 2034234 -2,44
30 0,23 1981299 -2,10
31 0,00 1549717 0,00
32 0,23 1880876 -2,78
33 -0,18 1800430 -0,75
34 0,00 1627944 0,00
35 0,22 1776902 -0,93
36 0,00 1665960 0,00
37 0,00 1631929 0,00
38 0,00 1780951 0,00
39 0,00 1652871 0,00
40 0,00 1465239 0,00
41 0,00 1718688 0,00
42 0,20 1845338 -1,18
43 0,23 1929215 -1,74
44 0,00 1923940 0,00
45 0,19 1886839 -0,99
46 0,00 1907903 0,00
47 0,00 1973602 0,00
48 0,00 1697784 0,00
49 0,00 1831392 0,00

Table II shows the bit rate of H.264 using the motion vectors
got from the pre processor. These vectors are calculated
evaluating using the cost (1) and assume that the simplified
Global Motion Model is valid. This table shows how the
block size changes the combinations between the total time
(encoding time plus pre processor execution time) and the bit
rate.

From Table II it is possible to conclude that the total time
increases when the block size is bigger, which is true because
more computations are necessary in the pre processor. But,
the bit rate does not decrease in a relevant way when this

TABLE II
COMPARISON BETWEEN BIT RATE AND TOTAL TIME USING DIFFERENT

BLOCK SIZES.

Rate (kbps) Block Encoding Pre processor Total
size time (s) execution time (s) time (s)

6312,89 16 54,566 0,24 54,77
6314,68 32 54,192 0,28 54,77
6315,67 48 54,355 0,37 54,76
6315,67 64 54,172 0,36 54,74
6309,53 80 54,548 0,44 54,73
6309,53 96 54,220 0,54 55,02
6309,53 112 54,247 0,63 55,00
6309,53 128 54,186 0,77 55,20
6312,08 144 54,099 0,93 55,22
6317,73 160 54,308 1,24 55,46
6313,84 176 54,496 1,30 55,54
6317,49 192 54,208 1,41 55,60
6319,83 208 54,500 1,66 56,13
6320,34 224 54,148 1,84 55,99
6318,39 240 54,339 2,06 56,37
6320,27 256 54,262 2,35 56,57
6318,82 272 54,321 2,79 57,09
6316,23 288 54,316 2,84 57,11
6321,10 304 54,316 3,17 57,45
6321,10 320 54,506 3,46 57,75
6321,10 336 54,761 3,81 58,17
6323,43 352 54,287 4,10 58,38
6316,76 368 54,481 4,41 58,63
6316,64 384 54,416 5,15 59,35
6319,55 400 54,305 5,30 59,59
6317,69 416 54,224 5,48 59,80
6316,09 432 54,234 5,86 60,16
6316,09 448 54,343 6,22 60,73
6316,43 464 54,282 6,61 61,01

happens. So, the best combination between total time and bit
rate is using the block of size 16x16, since the objective is to
reduce the encoding time with little penalty in the bit rate.

One of the most efficient algorithm to estimate the motion
vector is the algorithm EPZS (Enhanced Predictive Zonal
Search). In fact, in [8] there are comparisons between the al-
gorithms EPZS and some alternatives, such as the PMVFAST
(Predictive Motion Vector Field Adaptive Search Technique),
the Diamond Search and the MVFAST (Predictive Motion
Vector Field Adaptive Search Technique). In general, the
results show that EPZS is a good choice which outperforms the
others algorithms for motion estimation in speed and which
leads to a good bit rate performance. Therefore, this work
uses the standard H.264 with the EPZS algorithm to evaluate
the improvement in coding time that can be achieved when
the global motion estimation is adopted. Table III shows the
comparison between the proposed model operating with block
size of 16× 16 and the standard H.264 with EPZS algorithm.
These results were obtained using the main profile. From Table
III it can be observed that it was achieved a reduction of 9.35%
in terms of encoding time but it was noticed that the penalty
was of 1.50% in the bit rate.

It is important to notice that the reduction in execution time
obtained by the use of the global estimation is not only 9.35%.
In fact, the results from Table II show that the encoding time
is around 54.57 seconds and the pre processor execution time
is 0.24 second. Table III shows that the encoding time changes

TABLE III
COMPARISON BETWEEN BIT RATE OF EPZS AND THE PROPOSED

ALGORITHM.

Motion Estimation Encoding Bit rate (kbps)
algorithm time (s)
Proposed 54,77 6312,89

EPZS 60,42 6219,62

from 54.57to 60.42 seconds when the EPZS algorithm is used.
Therefore, the difference between the time consuming by the
EPZS algorithm is around 5.85 seconds (against 0.24 second
(spent by the global model). It is easy to see that in a different
framework (with a faster coding procedure), the improvement
can be much higher than 9.35%.

V. CONCLUSION

In this paper, it was presented a new scheme to compress
video using a global motion model in the standard H.264
which keep the compatibility with this standard (i.e, a H.264
decoder can recover the compressed video). This new scheme
was used to compress videos obtained by unmanned aerial
vehicles and the measured performance shows a significant
improvement in terms of execution time with a small penalty
in the achieved bit rate. The tests were done using the version
18.4 of the JM reference software in the main profile, but
the algorithm can be used in every profile of H.264 with the
proper modification. When compared to the H.264 using the
algorithm EPZS for motion estimation, the total coding time
is reduced in 9.35% and the bit rate is increased in 1.5% only.

ACKNOWLEDGEMENTS

Marcelo da Silva Pinho would like to thank FAPESP (Proc.
2010/11695-1) for financial support.

REFERENCES

[1] I. E. G. Richardson, The H.264 Advanced Video Compression Standard,
Wiley and Sons, 2010.

[2] T. Wiegand, G. J. Sullivan, G. Bjntegaard, A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits,
Systems and Video Technology, vol. 13, pp. 560—576, 2003.

[3] Digital Terrestrial Television — Video Coding and Multiplexing. Part 1:
Video Coding, ABNT, NBR 15602-1: 2008.

[4] Application Definition Blu-ray Disc Format - BD-J Baseline Application
and Logical Model Definition for BD-ROM, Blu-ray Disk Association
(BDA), 2005.

[5] N. Kamaci, Y. Altunbasak, “Performance comparison of the emerging
h.264 video coding standard with the existing standard,” Proceedings of
IEEE International Conference on Multimedia & Expo, pp. 345—348,
2003.

[6] M. Horowitz, A. Joch, F. Kossentini, A. Hallapuro, “H.264/AVC baseline
profile decoder complexity analysis,” IEEE Transactions on Circuits,
Systems and Video Technology, vol. 13, no. 7, pp. 704—716, 2003.

[7] M. Bhaskaranand, J. D. Gibson, “Low complexity video encoding for uav
reconnaissance and surveillance,” Proceedings of 2011 Military Commu-
nications Conference - Track 4 - Middleware Services and Applications,
2011.

[8] Alexis M. Tourapis, “Enhanced predictive zonal search for single and
multiple frame motion estimation,” Proceedings of SPIE — Visual Com-
munications and Image Processing, vol. 4671, pp. 1069—1079, 2002.

[9] M. Bhaskaranand, J. D. Gibson, “Global motion compensation and spec-
tral entropy bit allocation for low complexity video coding,” Proceedings
of IEEE International Conference on Communications, 2012.

