

Optical-Polymer and Polymer-Clad-Silica-Fiber Data Buses for Vehicles and Airplanes

Principles, Limits and New Trends

Otto Strobel, Daniel Seibl, Jan Lubkoll, Uwe Strauß

Optical Transmission

Contents

- Introduction to Automotive Systems
 - MOST: Media Oriented Systems Transport
- Principle Considerations
 - Components for fiber-optic systems
 - System-relevant characteristics of fibers, transmitters and detectors and their limitations
- Future technologies for Automotive Systems
 - Alternative components to overcome conventional limitations
 - High speed optical data buses for automotive applications
 - Limits and future applications of high-speed automotive data buses in vehicles and airplanes

Different Data Bus Technologies in Vehicles

MOST – Media Oriented Systems Transport

- MOST: Media Oriented Systems Transport Network for Multimedia Data
- LIN: Local Interconnect Network Communication of sensors and actuators
- CAN: Controller Area Network
 Communication of ECUs

MAYBACH

Optical Data Bus Technologies for Automotive Applications

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo @2006 N.N., Hochschule Esslingen

Hochschule Esslingen University of Applied Sciences

Media Oriented Systems Transport

• Standards based upon the ISO-OSI layer model

Principle Considerations

Advantages of Fiber-Optic Systems

- Low attenuation
- High bandwidth
- Low weight and small size
- Non-sensitivity against electromagnetic interference
- Electrical isolation
- Low crosstalk

Transmission capacity = Bandwidth-length product:

$$B \cdot L = Max!$$

Demands on Optical Fibers

- Proper Waveguiding
- Low loss of optical power
- Low dispersion of optical signals
- Large temperature range operation
- Non-sensitivity against distortions

Hochschule Esslingen University of Applied Sciences

Attenuation Coefficient Versus Wavelength of Glass Fibers

Spectral Attenuation of Glassfibers and Optoelectronic Devices

Hochschule Esslingen University of Applied Sciences Attenuation Coefficient of a PMMA Fiber

Hochschule Esslingen

University of Applied Sciences

Polymer Optical Fiber (PMMA)

- Simple connector fitting
- Attenuation between 0.2 and 0.4 dB/m for red LEDs
 - o Depends on the changing wavelength of the LED between -40°C and +85°C operating temperature

Mode Dispersion of Optical Fibers

Pulse Development in an Optical Fiber

Hochschule Esslingen

University of Applied Sciences

Hochschule Esslingen
University of Applied Sciences

Fiber Types

Hochschule Esslingen University of Applied Sciences

Typical Communication Glassfibers and Woman Hair

Hochschule Esslingen

University of Applied Sciences

Polymer- and Glassfibers

Material Dispersion

Different Transit Times of Optical Pulses for different Wavelengths

Туре	Profile	Size	Attenuation Banc	width-Length Product
Plastic Fiber	Step Index	950/1000 µm	0,2 dB/m	< 100 MHz∙m
PCS Fiber	Step Index	100 - 600 µm	6 dB/km	< 10 MHz⋅km
Multimode Glass	Step Index	> 100 µm	3 - 5 dB/km	20 MHz∙km
Multimode Glass	Graded Index	50/125 µm	2 dB/km (0.85 μm) 0,4 dB/km (1,3 μm) 0,2 dB/km (1,55 μm)	500 MHz∙km
Monomode Glass		5 - 10 µm		> 100 Gbit⋅km/s

Spectral Attenuation of different Fibers

Principle Considerations

High Optical Output Power

Small Electric Input Power

Wavelength in proper Range

Small Spectral Size

Low Beam Divergence

High Speed Modulation

Injection Modulation Capability

Small Size

Reliability

Absorption and Emission

Hochschule Esslingen University of Applied Sciences Optical Power versus Injection Current of an LED

Farfield Characteristic of an LED

Irradiant Surface

Hochschule Esslingen

University of Applied Sciences

Modulation Performance at Low and High Frequencies

Hochschule Esslingen University of Applied Sciences

Spectral Width of an LED

Hochschule Esslingen University of Applied Sciences Optical Power versus Injection Current of a Semiconductor Laser

Hochschule Esslingen University of Applied Sciences Farfield Characteristics of a Laser Diode

Spectral width of LED and Laser

Vertical Cavity Surface Emitting Laser (VCSEL)

Light Sources for Fiber-Optic Systems

Principle Considerations

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo @2006 N.N., Hochschule Esslingen

Demands on Optical Detectors

- High sensibility
- Low noise
- Small size
- High bandwidth

Photon Absorption and Carrier Generation

Hochschule Esslingen University of Applied Sciences

Responsivity versus Wavelength of various Semi-Conductor Materials

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo 2006 N.N., Hochschule Esslingen

Hochschule Esslingen University of Applied Sciences Historical pn-Photodiode and Electric Field Distribution

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo ©2006 N.N., Hochschule Esslingen

Hochschule Esslingen University of Applied Sciences pin-Photodiode and Electric Field Distribution

Avalanche Photodiode (APD) and Electric Field Distribution

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo 2006 N.N., Hochschule Esslingen

System Considerations

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo C2006 N.N., Hochschule Esslingen

System Integration

System Modulation Transfer Function and Data Signal

Hochschule Esslingen University of Applied Sciences

Hochschule Esslingen University of Applied Sciences Limitations of Polymer Fiber Networks

Best solution in terms of costs for state of the art systems

• 1-mm-Core-Diameter POF, Red LED, Large Area Si-Photodiode

Most important component limitations

- Maximum bandwidth of LED < 100 MHz
- Maximum temperature of PMMA Fiber ≈ 85°C
- Minimum attenuation (for red LED) of PMMA Fiber \approx 0.4 dB/m
- Bandwidth-length product B · L ≈ 3000 MHz · m (e.g.150 MHz after 20 m)
- Maximum bandwidth of typ. 1 mm² area Si-Photodiode \approx 100 MHz

Resulting system limitations

- Maximum data rate ≈ 150 MBit/s
- Maximum temperature range: -40°C to +85°C
- Maximum link length < 10 m

Conclusions

- POF-Systems are not suited for data ranges in Gbit/s region, temperature demands up to 125 °C, and link length > 20m necessary for future use in
- Sensor systems for safety applications
- Engine management systems
- Drive by wire systems
- Video processing for driver assistance and autonomous driving

Therefore alternative solutions have to be found!

Future Technologies based on PCS Fibers and VCSELs

Polymer-Cladded Silica fibers (PCS) with 200 µm core

- Minimum attenuation at 850 nm ≈ 0.005 dB/m After 20 m ≈ 98% (16 % for PMMA fibers)
- Maximum temperature: 125°C
- No bandwidth restrictions, $B \cdot L = 20 \text{ GHz} \cdot \text{m}$ After 20 m \approx 1 GHz (150 MHz for PMMA fibers)

VCSEL Transmitter

Vertical Cavity Surface Emitting Laser (VCSEL) at 850 nm

Receiver

Si-pin-Photodiode

- Small area (due to small PCS fiber core) low junction capacity Maximum bandwidth ≈ 1.5 GHz
- Low coupling loss
- High spectral sensitivity at 850 nm (comp. to PMMA-Syst. at 650 nm.: 1.3 dB gain)

Passive Star Network for Safety-Relevant Systems

PCS Fiber-optic star coupler

Planar optical waveguides for star coupler structures

200 µm x 200 µm waveguides

Integration in planar flat printed circuits

Hochschule Esslingen University of Applied Sciences

Concepts for Aircrafts

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo ©2006 N.N., Hochschule Esslingen

Lightning Strike

- Nowadays aircrafts have a metal fuselage
 - Faraday's cage effect
 - good passive lightning protection granted
 - heavy, high fuel consumption
- Future aircrafts are using more and more carbon fiber fuselage
 - less weight
 - less fuel consumption
 - less/no Faraday's cage effect
 - more protections needed

Airbus Cabin Management Systems

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo ©2006 N.N., Hochschule Esslingen

Optical Data Bus for Airbus A320 (A30X) or Boeing 787 (new 737)

System Features:

10 MBit/s, 100 m, 8 by 8 ports

Actual Solutions

- Data rate: 10 MBit/s
- Operating temperature: -40 °C...+85 °C
- Distance between two nodes: 100 m
 (50 m ↔ optical star ↔ 50 m)

POF

- Simple connector fitting
- Low price
- Robustness
- 650 nm attenuation of ~0.19 dB/m

POF - Problems

– Optical power budget POF

- Combines the POF advantages with the standard silica fiber advantages
 - Low attenuation (0.008 dB/m at 850 nm)
 - Good connector fitting
 - Robust 200 µm step index fiber

Vertical-Cavity Surface-Emitting Laser (VCSEL)

- Small output beam divergence
 - high coupling efficiency
- Low current consumption
- Small spectral width
- 850 nm VCSEL
 - higher receiver relative sensitivity

VCSEL and PCS

- Higher output power
 - above 0 dBm
- Better receiver sensitivity
 - about -30 dBm
- Low fiber attenuation

30 dB link budget (incl. 3 dB margin)

- about 0.8 dB / 100 m instead of 19 dB / 100 m (POF)
- Additional design options, like reflexive optical star
 Less fibers needed, less weight

VCSEL and PCS

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo C2006 N.N., Hochschule Esslingen

- More and more carbon-fiber fuselage components
 - stronger lightning influences
 - more problems in signal transmission

- Adequate optical solutions have to be used
 - simple point-to-point connections \rightarrow POF + LED
 - complex optical networks over the whole plane \rightarrow PCS + VCSEL

Prototype

Transmitted Data Signal

Otto Strobel, Esslingen University of Applied Sciences, IWT2009, Sao Paulo ©2006 N.N., Hochschule Esslingen

Sensors for Vehicle Environment Investigation

Global Positioning System

GPS Satellite in orbit

Final Technology for Autonomous Locomotion

The donkey brings you home!

Diploma Thesis Daniel Seibl

University of Appl. Sciences in cooperation with

Internship Uwe Strauß Bachelor Thesis Jan Lubkoll

> University of Appl. Sciences in cooperation with

Thank you for your attention!

Otto Strobel http://www2.hs-esslingen.de/~strobel/