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I. Introduction

The ever-growing needs for cheaper, faster, and more reliable
communication and storage systems have forced many researchers
to seek means to attain the ultimate limits on reliable information
transmission and storage.

Low-density parity-check (LDPC) codes are currently the most
promising coding technique to achieve the Shannon capacities (or
limits) for a wide range of channels.

Discovered by Gallager in 1962 [1].

A brief visit by Tanner in 1981 - graphical representation and
message-passing concepts were introduced.
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Resurrected in the late 1990’s by MacKay, Ruby and others.

Ever since, a great deal of research effort has been expended in
design, construction, encoding, decoding algorithms, structure,
performance analysis, generalizations and applications of these
remarkable codes.

Numerous papers and patents have been published on these
subjects.
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Many LDPC codes have been chosen as the standard codes for
various next generations of communication systems, such as
wireless, optical, satellite, space, digital video broadcast (DVB),
multi-media broadcast (MMB), 10G BASE-T Ethernet, NASA’s
LANDSAT and other space missions.

Applications to data storage systems, such as hard disk drives and
flash memories are now being seriously considered.

This rapid dominance of LDPC codes in applications is due to their
capacity-approaching performance which can be achieved with
practically implementable iterative decoding algorithms.
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Figure 1: Picture of communication and storage systems.
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More applications are expected to come.

Future is promising.

However, there are still many things unknown about these codes,
especially their fundamental structure. Further study is needed.

The most urgent need are methods to design and construct
efficient encodable and decodable codes that can achieve very low
error rates, say a BER of 10−15, for very high speed
communications and very high density data storage.
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Theme

This presentation is to give an overview of LDPC codes
and their recent developments.
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II. Definition and Classifications of LDPC Codes

An LDPC code over GF(q), a finite field with q elements, is a q-ary
linear block code given by the null space of a sparse parity-check
matrix H over GF(q).

An LDPC code is said to be regular if its parity-check matrix H

has constant column weight, say γ, and constant row, say ρ. Such
a q-ary LDPC code is said to be (γ,ρ)-regular.

If the columns and/or rows of the parity-check matrix H have
multiple weights, then the null space over of H gives an irregular
LDPC code.
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If H is an array of sparse circulants of the same size over GF(q),
then the null space over of H gives a q-ary quasi-cyclic
(QC)-LDPC code.

If H consists of a single sparse circulant or a column of sparse
circulants, then the null space of H gives a cyclic LDPC code.

For q = 2, the null space of H over the binary field GF(2) gives a
binary LDPC code.

At the present, only binary LDPC codes are being used for
applications.

Non-binary LDPC codes and their (efficient) decoding are now
being seriously investigated.
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LDPC codes can be classified into two general categories:
1) random or pseudo-random codes, and
2) Algebraic codes.

Random or pseudo-random codes are constructed using
computer-based algorithms or methods.

Algebraic codes are constructed using algebraic or combinatorial
tools such as finite fields, finite geometries and combinatorial
designs.

10



LDPC Codes: Recent Developments IEEE IWT 2011

Codes in these two categories can be classified into two types:
1) codes whose parity-check matrices possess little structure and
2) codes whose parity-check matrices have structures.

A code whose parity-check matrix possesses no structure beyond
being a linear code is problematic in that both encoding and
decoding implementations become quite complex.

A code whose parity-check matrix has structures beyond being a
linear code is in general more easily implemented.
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Two desirable structures for hardware implementation of encoding
and decoding of LDPC codes are cyclic and quasi-cyclic structures.

A cyclic LDPC code can be efficiently and systematically
encoded using a single feedback shift-register with complexity
linearly proportional to the number of parity-check symbols (or
information symbols).

Encoding of a QC-LDPC code can also be efficiently implemented
but requires multiple shift-registers. It is in general more complex
than encoding of a cyclic code but still enjoys linear complexity.
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However, QC-LDPC codes enjoy some advantages in hardware
implementation of decoding in terms of wire routing. Furthermore,
the QC structure allows partially to full parallel decoding which
offers a trade-off between decoding complexity and decoding speed.

A cyclic LDPC code can be put in QC form through column and
row permutations. As a result, a cyclic LDPC code enjoys both
encoding and decoding implementation advantages.

Encoding is carried out in cyclic form while decoding is carried out
in QC form.
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Well Known Structured LDPC Codes

1. Finite geometry codes
2. Finite field codes
3. Algebraic geometry codes
4. Codes based on combinatorial (or experimental) designs
5. Superimposed codes
6. Graph-theoretic codes (including proto-graph codes, PEG-ACE
codes, and trellis-based codes)
7. Multi-edge-type codes
8. Accumulator-based codes (including repeat-accumulate (RA)
codes, irregular repeat-accumulate (IRA) codes, and
accumulate-repeat-accumulate (ARA) codes)
9. Generalized and doubly generalized LDPC codes
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Codes in the first five classes are constructed using finite or
algebraic geometries, finite fields and combinatorial mathematics.

Finite geometry LDPC codes are the first class of structured codes
ever constructed (2000 at the AAECC Conference in Hawaii and
published in IEEE Trans. Inform. Theory, Nov. 2001). They are
cyclic LDPC codes.

Recently, a large class of cyclic LDPC codes has been constructed
based on cyclic finite geometry codes.

Codes in the next four classes are constructed using
computer-based algorithms or methods.

Proto-graph, multi-edge-type, generalized and doubly generalized
LDPC codes are actually superimposed LDPC codes.
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IV. Row-Column Constraint

In almost all of the proposed constructions of LDPC codes, the
following constraint is imposed on the rows and columns of the
parity-check matrix H of an LDPC code:
No two rows (or two columns) can have more than one place
where they both have 1-components.

This constraint on the rows and columns of H and is referred to as
the row-column (RC)-constraint.

The RC-constraint ensures that the Tanner graph of an LDPC code
is free of cycles of length 4 and hence has a girth of at least 6.
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v0 v1 v2 v3 v4 v5 v6

c0 c1 c2 c3 c4 c5

Figure 2: A Tanner graph to demonstrate its cycles.
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For a (γ,ρ)-regular LDPC code, the RC-constraint on its
parity-check matrix H ensures that the minimum distance (or
weight) of the code is at least γ + 1.

This lower bound on the minimum distance is tight for a regular
LDPC code whose parity-check matrix H has a relatively large
column weight γ, such as a finite geometry LDPC code or finite
field LDPC codes.
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V. Iterative Decoding of LDPC Codes

Decoding algorithms devised for LDPC codes are iterative in
nature. These decoding algorithms are also referred to as
message-passing decoding (MPD) algorithms.

They are practically implementable.

The low-density nature of the parity-check matrix of an LDPC
code facilitates iterative decoding.

An iterative decoder consists of a collection of low-complexity
decoders working cooperatively in a distributed fashion to decode a
received codeword which may be corrupted by noise.
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Well Known Iterative Decoding Algorithms For Binary
LDPC Codes

Sum-product algorithm (SPA)

Min-sum algorithms (MSA)

Binary message-passing (BMP) algorithms

Bit-flipping (BF) algorithm

Weighted-BF (WBF) algorithms
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The SPA is a suboptimal (soft-decision) decoding algorithm which
gives the best error performance but requires the highest
computational complexity.

An MSA is a simplified version of the SPA. It may cause some
performance degradation.

BMP- and WBF-algorithms are reliability-based decoding
algorithms that provide effective trade-off between error
performance and decoding complexity.

The BF-algorithm is a hard-decision decoding algorithm that
requires the least decoding complexity but offers the least coding
(or performance) gain over an uncoded system.
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For Non-binary LDPC Codes

Q-ary SPA (QSPA)

FFT-QSPA

Reliability-Based Message-Passing Algorithms
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VI. Measure of Performance

The performance of an LDPC code with iterative decoding using
algorithms such as the sum-product algorithm (SPA) and the
min-sum algorithm (MSA), is measured by:
1) The bit and block error performance (how close to the Shannon
limit or sphere packing bound),
2) The rate of decoding convergence,
3) Error-floor,
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Error-Floor

LDPC codes perform amazingly well with iterative decoding
based on belief propagation.

However, with iterative decoding, most LDPC codes have a
common severe weakness, known as error-floor.

The error-floor of an LDPC code is characterized by the
phenomenon of an abrupt decrease in the slope of the code’s
error performance curve from the moderate SNR water-fall region
to the high SNR floor region, i.e., the error probability of a code in
the high SNR region suddenly drops at a rate much slower than
that in the region of low to moderate SNR (or even stops to
drop).
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Figure 3: A figure to demonstrate the error floor phenomenon.
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For the AWGN channel, the error-floor of an LDPC code is mostly
caused by an undesirable structure, known as trapping-set, in the
Tanner graph of the code based on which the decoding is carried
out.

Error-floor may preclude LDPC codes from applications requiring
very low error rates.

High error-floors most commonly occur for random or
pseudo-random LDPC codes.

Structured LDPC codes constructed algebraically, in general, have
much lower error-floors.
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Constructing (or designing) codes to avoid harmful trapping sets
to mitigate error-floor problem is a combinatorial problem, hard
but challenging.

Several subclasses of finite geometry and finite field LDPC codes
have been proved that their Tanner graphs do not contain small
harmful trapping sets.

The error-floor of an LDPC can be lowered by taking a
decoder-based strategy to remove or reduce the effect of harmful
trapping sets on error-floor.

Several such decoder based strategies have been recently proposed.
Among them, the most effective decoding strategy is the
backtracking iterative decoding algorithm proposed recently.
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Summary

The performance of an LDPC code is determined by a number of
structural properties collectively:
1. minimum distance (or minimum weight);
2. girth of its Tanner graph;
3. cycle distribution of its Tanner graph;
4. cycle connectivity (or structure);
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5. parity-check matrix row redundancy;
6. trapping set distribution of its Tanner graph;
7. degree distributions of variable and check nodes of its
Tanner graph; and
8. other unknown structures.

No single structural property dominates the performance of a code.

It is still unknown how the code performance depend on the above
structural properties analytically as a function.
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Remarks Based on Extensive Simulation Results

Error-floor performance of an LDPC is mostly determined by its
trapping set distribution and minimum distance.

Large girth does not necessarily give good error performance. In
fact, for finite geometry and finite field LDPC codes, a girth of 6 is
all that needed.

Large row redundancy of the parity-check matrix of an LDPC code
makes the decoding of the code converging faster.

Parity-check matrices of finite geometry and several classes of
finite field LDPC codes have large row redundancies. Their
decoding converges very fast.
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New Results

For algebraically constructed regular LDPC codes, RC-constraint
and large row redundancy ensure that their Tanner graphs do not
contain harmful trapping sets of sizes smaller than the column
weights of their parity-check matrices.

More specifically, the Tanner graph of an RC-constrained
(γ, ρ)-regular LDPC code contains no harmful trapping sets with
sizes γ or less.
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VII. Algebraic Constructions of Structured LDPC Codes

Construction based on finite geometries such as Euclidean and
projective geometries

Construction based algebraic geometries (not published yet)

Constructions based on finite fields: 1) additive subgroups; 2)
cyclic subgroups; and 3) primitive elements

Construction based on combinatorial designs: 1) Latin squares; and
2) balanced incomplete block designs (BIBDs)
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Construction based on Reed-Solomon (RS) codes

Superposition construction (including product)

Transform domain construction (new powerful approach)

Algebraic constructions mostly result in cyclic and quasi-cyclic
LDPC codes.
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The rest of This Talk

Two algebraic constructions including new results.
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VIII. Finite Geometry LDPC Codes

There are two classes of finite geometry (FG) LDPC codes, one
class constructed based on finite Euclidean geometries and the
other based on projective geometries.

Based each type of geometries, both cyclic and QC-LDPC codes
can be constructed.

They have large minimum distances and their Tanner graphs have
girth of at least 6.

Their parity-check matrices have large row redundancy.

They have very low error-floors.

35



LDPC Codes: Recent Developments IEEE IWT 2011

Binary Cyclic Euclidean Geometry (EG) LDPC Codes

In the following, we only consider construction of binary LDPC
codes based on Euclidean geometries over finite fields.

Let the m-dimensional Euclidean geometry, EG(m, q), over GF(q)
be the code construction geometry.

The parity-check matrix HEG of a binary EG-LDPC code CEG is
formed by the binary incidence vectors of all the lines in EG(m, q)
not passing through the origin.

HEG can be arranged as a column of circulants of size
(qm − 1) × (qm − 1).
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HEG satisfies the RC-Constraint.

The null space of HEG gives a binary cyclic EG-LDPC code CEG

whose Tanner graph has a girth at least 6.

Its minimum distance is at least (qm − 1)/(q − 1) + 1.
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A Special Subclass of Cyclic EG-LDPC Codes

For m = 2, the parity check matrix HEG constructed based on the
two-dimensional (2-D) Euclidean geometry, EG(2, q), over GF(q) is
a single (q2 − 1) × (q2 − 1) circulant with both column and row
weights q.

The null space of HEG gives a cyclic EG-LDPC codes of length
n = q2 − 1 with minimum distance at least q + 1.

Its Tanner graph contains no small trapping sets of sizes smaller
than q + 1.
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For m = 2 and q = 2s, the cyclic EG-LDPC code CEG has the
following parameters:
Length n = 4s − 1,
Number of parity bits n − k = 3s − 1,
Minimum distance dmin = 2s + 1.

It parity-check matrix HEG has 4s − 3s dependent rows and hence
has large row redundancy.

Its Tanner graph contains no trapping sets of sizes small than the
minimum distance dmin.
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Decoding

Besides decoding with the SPA and the MSA, EG-LDPC codes are
quite effective for other types of decoding such as: 1) one-step
majority-logic decoding (OSMLGD) (not iterative), 2)
BF-decoding, 3) WBF-decoding, 4) soft-reliability-based binary
message-passing (SRB-BMP) decoding, and 5)
hard-reliability-based binary message-passing (HRB-BMP)
decoding.

Various methods of decoding provide a wide spectrum of trade-offs
between error performance and decoding complexity.

Dual-mode decoder, SPA (MSA) plus (OSMLGD), can be designed
to improve error performance.
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Example 1

Construction geometry: EG(2,26) over GF(26).

Parity-check matrix HEG: a 4095 × 4095 circulant with both
column and row weights 64.

Code: a (4095,3367) cyclic LDPC code with minimum distance 65.

The error-floor of the code is very low.

The error performances of this code with various decoding methods
are shown in Figure 1.
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Figure 4: Bit error performances of the binary (4095,3367) cyclic EG-LDPC
code given in Example 2 decoded with the SPA and the scaled MS-algorithm.
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Binary QC-EG-LDPC Codes

The incidence vectors of lines in EG(m, q) not passing through the
origin can be used to form

Kc = (qm−1 − 1)/(q − 1)

circulants of size (qm − 1) × (qm − 1), each having both column
and row weights q.

For 1 ≤ k ≤ Kc, take k such circulants and arrange them in a row.

This results in a (qm − 1) × k(qm − 1) matrix HEG,qc over GF(2)
with column and row weights q and kq, respectively.

The null space of HEG,qc gives a QC-LDPC code CEG,qc of length
k(qm − 1) with minimum distance at least q + 1.
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Decomposition by Column and Row Splitting

Each circulant can be decomposed into an array of
(qm − 1) × (qm − 1) circulants using column and row splitting.

If each circulant in HEG,qc is decomposed into an array of the
same size, say c × c, we obtain a c × kc array MEG,qc of
(qm − 1) × (qm − 1) circulants.

MEG,qc is a c(qm − 1) × kc(qm − 1) matrix over GF(2).

The null space of MEG,qc gives a new QC-LDPC code.
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Example 2

NASA Standard Code for LANDSAT and Cruise Exploration Shuttle
Mission

Bit error performance requirement: 10−12.

Code construction geometry: EG(3,23) over GF(23).

Nine 511 × 511 circulants can be formed based on the incidence
vectors of the lines in EG(3,23) not passing through the origin.
Each circulant has both column and row weights 8.

Take 8 such circulants and arrange them in a row to obtain a
511 × 4088 matrix HEG,qc.
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Decompose each circulant in HEG,qc into a 2 × 2 array of four
511 × 511 circulants, each having both column and row weights 2.

The decomposition results in a 2 × 16 array MEG,qc of 511 × 511
circulants.

MEG,qc is a 1022 × 8176 matrix over GF(2) with column and row
weights 4 and 32.

The null space of MEG,qc gives a (8176,7156) QC-LDPC code
Cqc,nasa with rate 0.8752.

The performance of this code is shown in Figure 5.

Beautiful waterfall performance and no error-floor down to the
BER of 10−14.
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IX. New Cyclic and QC EG-LDPC Codes

Consider the (q2 − 1) × (q2 − 1) circulant HEG constructed based
on the two-dimensional Euclidean geometry EG(2,q) over GF(q).

The null space of HEG gives a cyclic EG-LDPC code CEG.

Let n = q2 − 1 and w = (w0, w1, ..., wn−1) be the first row of
HEG , which is called the generator of the circulant HEG.

Label the rows and columns of the circulant HEG from 0 to n − 1.

Suppose n can be properly factored as a product of two positive
integers, c and l, i.e., n = c · l.
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A Specific Permutation

Let Γ = {0, 1, 2, ..., c · l − 1} be the set of labels for the rows and
columns of HEG.

Define the following index sets:

π(0) = [0, c, 2c, . . . , (l − 1)c], (1)

π = [π(0), π(0) + 1, . . . , π(0) + c − 1]. (2)

Then, π gives a permutation of the indices in Γ.
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A Circulant Decomposition

Permuting the columns and rows of HEG based on π, we obtain
the following c × c array of circulants of size l × l:

ΦEG =















Ψ(w0) Ψ(w1) · · · Ψ(wc−2) Ψ(wc−1)

Ψ(1)(wc−1) Ψ(w0) · · · Ψ(wc−3) Ψ(wc−2)
...

...
. . .

...
...

Ψ(1)(w2) Ψ(1)(w3) · · · Ψ(w0) Ψ(w1)

Ψ(1)(w1) Ψ(1)(w2) · · · Ψ(1)(wc−1) Ψ(w0)















,

(3)
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For 0 ≤ i < c, the circulant Ψ(1)(wi) is obtained by simultaneously
cyclically shifting all the rows of Ψ(w) one place to the right.

Note that Ψ(1)(wi) and Ψ(wi) have identical set of rows and
identical set of columns.

Their null spaces are identical.

Each l × l circulant in ΦEG is called a descendant circulant of the
mother circulant HEG.
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Since the array ΦEG is obtained by applying the permutation π to
the columns and rows of the ciruclant HEG, we write
ΦEG = π(HEG).

Let π−1 be the inverse permutation of π. Then HEG = π−1(ΦEG).

The null space of ΦEG gives a binary QC-EG-LDPC code CEG,qc

which is equivalent to the cyclic EG-LDPC code CEG.

52



LDPC Codes: Recent Developments IEEE IWT 2011

Structure of the Array ΦEG,circ

Each row of l × l circulants in ΦEG is a right cyclic-shift of the row
above it, however, when the last circulant on the right is shifted
around to the left, all its rows are cyclically shifted one place to the
right within the circulant.

This structure is referred to as the doubly cyclic structure which
is pertinent to the construction of new cyclic LDPC codes from a
given cyclic EG-LDPC code.
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Cyclic LDPC Descendant Codes of a
Cyclic EG-LDPC Code

From the array ΦEG, we can construct new cyclic EG-LDPC codes
of three different types.

These new cyclic EG-LDPC codes are called cyclic descendant
codes (simply descendants) of the cyclic EG-LDPC code CEG.

The cyclic code CEG itself is called the mother code.
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Type-1 Cyclic Descendant LDPC Codes

For 0 ≤ i < c, if Ψ(wi) is a nonzero circulant, the null space of

H
(1)
i = Ψ(wi) gives a cyclic descendant of CEG, denoted by C

(1)
i ,

of length l.

This descendant code is referred to as a type-l descendant of CEG.
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Type-2 Cyclic Descendant LDPC Codes

From the array ΦEG, we see that each column consists of the
circulants in the first row of ΦEG.

For 0 ≤ i < c, each circulant Ψ(wi) or its cyclic shift Ψ(1)(wi)
appears once and only once in each column.

Since a circulant Ψ(wi) and its cyclic shift Ψ(1)(wi) differ only in
permutation of their rows and hence their null spaces are identical.

Consequently, the null spaces of all the columns of ΦEG are the
same.
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In fact, the null space of each column of ΦEG is identical to the
null space of the cl × l matrix











Ψ(w0)
Ψ(w1)

...
Ψ(wc−1)











.
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For 1 ≤ k < c, let i1, i2, ..., ik be k distinct integers such that
0 ≤ i1, i2, ..., ik < c. Let

H
(2)
col,k =











Ψ(wi1)
Ψ(wi2)

...
Ψ(wik)











, (4)

H
(2)
col,k is a kl × l matrix over GF(2) whose null space gives a cyclic

LDPC code of length l, denoted by C
(2)
k , which is referred to as a

type-2 cyclic descendant of the mother cyclic EG-LDPC code CEG.
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Type-3 Cyclic Descendant LDPC Codes

Construction of cyclic descendant LDPC codes of type-3 depends
on the doubly cyclic structure of the array

ΦEG =











Ψ(w0) Ψ(w1) Ψ(w2) · · · Ψ(wc−1)

Ψ(1)(wc−1) Ψ(w0) Ψ(w1) · · · Ψ(wc−2)

Ψ(1)(wc−2) Ψ(1)(wc−1) Ψ(w0) · · · Ψ(wc−3)
...

...
. . .

...

Ψ(1)(w1) Ψ(1)(w2) Ψ(1)(w3) · · · Ψ(w0)











,
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For 1 ≤ k < c, let i1, i2, ..., ik be a set of distinct integers such
that 0 ≤ i1, i2, ..., ik < c.

Suppose we replace the descendant circulants,
Ψ(wi1), Ψ(wi2), ...,Ψ(wik) and all their cyclic shifts in the array
ΦEG by zero matrices of size l × l.

By doing this, we obtain a c × c masked array

H
(3)
qc,mask = [ΦEG]mask of circulants and zero matrices of size l × l.
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The masked array [ΦEG]mask still retains the doubly cyclic
structure.

Applying the inverse permutation π−1 to the columns and rows of

the c × c array H
(3)
qc,mask = [ΦEG]mask, we obtain a new circulant

matrix
H

(3)
circ,mask = π−1([ΦEG]mask).

Then the null space of H
(3)
circ,mask gives a cyclic LDPC code C

(3)
mask

which is referred to as a type-3 cyclic descendant of the cyclic
EG-LDPC code CEG.
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The replacement of a set of circulants in the array ΦEG is called
masking.

Different masking patterns results in different cyclic descendants of
the cyclic EG-LDPC code CEG.

The results developed above show that decomposition of the
circulant parity-check matrix of a cyclic EG-LDPC code CEG gives
a family of cyclic LDPC codes.

Circulant decomposition enlarge the repertoire of cyclic LDPC
codes.
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Quasi-Cyclic LDPC Descendants of a
Cyclic EG-LDPC Code

For any pair (s, t) of integers with 1 ≤ s, t ≤ c, let ΦEG(s, t) be a
s × t sub-array of ΦEG.

Since ΦEG(s, t) is an array of circulants and satisfies the
RC-constraint, its null space gives a QC-LDPC code.

This QC-LDPC code is called a QC descendant of the cyclic
EG-LDPC code CEG.

Therefore, decomposition of a cyclic EG-LDPC code CEG gives a
family of QC-LDPC codes.
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Example 3

Consider the 4095x4095 circulant HEG constructed based on the
two-dimensional Euclidean geometry, EG(2,26) over GF(26).

Factor 4095 as the product of c = 3 and l = 1365.

Then the 4095x4095 circulant HEG can be decomposed into a 3x3
doubly cyclic array of circulants of size 1365 × 1365 in the form as
shown below:

ΦEG =







Ψ0 Ψ1 Ψ2

Ψ
(1)
2 Ψ0 Ψ1

Ψ
(1)
1 Ψ

(1)
2 Ψ0






.
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Both descendant circulants Ψ0 and Ψ2 have column and row
weights 24.

The descendant circulant Ψ1 has both column and row weights 16.

Consider the 1365 × 1365 descendant circulant Ψ1. Its rank is 600.

The null space of Ψ1 gives a (1365,765) type-1 cyclic descendant

LDPC code C
(1)
EG of the (4095,3367) cyclic EG-LDPC code CEG

with rate 0.56 and minimum distance at least 17.
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The error performance of the code over the AWGN channel using
BPSK signaling decoded with 50 iterations of SPA (or MS) is
shown in Figure 6.

At the block error rate (BLER) of 10−5, the code perform 1.6 dB
from the sphere packing bound.
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Figure 6: The error performances of the binary (1365,765) cyclic EG-LDPC
code given in Example 3 decoded with 50 iterations of the SPA and the
MS-algorithm.
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Example 4

Suppose we replace Ψ2 and its cyclic-shift Ψ
(1)
2 in the decomposed

array ΦEG,qc given in Example 3 by two 1365× 1365 zero matrices.
We obtain the following 3 × 3 masked array:

[ΦEG]mask =





Ψ0 Ψ1 O

O Ψ0 Ψ1

Ψ
(1)
1 O Ψ0



 .

The masked array [ΦEG]mask still has the doubly cyclic structure.
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Applying the inverse permutation π−1 to [ΦEG]mask, we obtain a

masked 4095 × 4095 circulant H
(3)
circ,mask = π−1([ΦEG]mask) with

both column and row weights 40.

The null space of H
(3)
circ,mask gives a (4095,2703) type-3 cyclic

descendant LDPC code of the (4095,3367) cyclic EG-LDPC code.

The code has rate 0.66 and minimum distance at least 41.

The error performances of this cyclic descendant LDPC code
decoded with 3, 5, and 50 iterations of the SPA is shown in Figure
7.
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Figure 7: (c) The bit and block error performances of the binary (4095,2703)
cyclic EG-LDPC code given in Example 4.
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X. A New Class of QC-LDPC Codes

Suppose we factor q2 − 1 as the product of c = q + 1 and l = q− 1.

Then, the (q2 − 1) × (q2 − 1) circulant HEG constructed based on
EG(2,q) over GF(q) can be decomposed into a (q + 1) × (q + 1)
doubly cyclic array [ΦEG]cpm of circulants of size (q − 1) × (q − 1).

Each circulant in [ΦEG]cpm is either a (q − 1) × (q − 1) circulant
permutation matrix (CPM) or a (q − 1) × (q − 1) zero matrix
(ZM). Each row (or column) block of ΦEG consists of q CPMs and
one zero matrix.
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The null space of [ΦEG]cpm gives a QC-EG-LDPC code CEG,qc

which is equivalent to the cyclic EG-LDPC code CEG constructed
based on EG(2,q).

For any pair of integers, (γ, ρ) with 1 ≤ γ, ρ ≤ q + 1, let
[ΦEG(γ, ρ)]cpm be a γ × ρ subarray of [ΦEG]cpm.

The null space of [ΦEG(γ, ρ)]cpm gives a descendant QC-LDPC
code of the cyclic EG-LDPC code CEG.

The above decomposition and construction give a large class of
QC-EG-LDPC codes with various lengths, rates and minimum
distances.
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Example 5

Consider the 4095 × 4095 circulant HEG over GF(2) constructed
based on the 2-D Euclidean geometry EG(2,26) over GF(26) given
in Example 1.

We factor 4095 as the product of c = 65 and l = 63.

Decompose the 4095 × 4095 circulant HEG into a 65 × 65 array
[ΦEG]cpm of CPMs and ZMs of size 63 × 63.

The null space of [ΦEG]cpm gives a (4095,3367) QC-EG-LDPC
code which is equivalent to the cyclic EG-LDPC code constructed
based on EG(2,26).
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Suppose we choose the first 6 rows of [ΦEG]cpm to from a 6 × 65
subarray [ΦEG(γ, ρ)]cpm of [ΦEG]cpm

It is a 378 × 4095 matrix over GF(2) with constant row weight 64
and two column weights, 5 and 6.

The null space of this matrix gives a (4095,3771) descendant
QC-EG-LDPC code with rate 0.921.

Its error performance with 50 iterations of the SPA is shown in
Figure 8.

At the BLER of 104, the code performs 0.75 dB from the sphere
packing bound.
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Figure 8: The bit and block error performance of the binary (4095,3771)
QC-LDPC code given in Example 5.
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A Very Low Error Floor QC-LDPC Code
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Figure 9: The bit and block error performances of the binary QC-LDPC code.
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Algebraic LDPC Codes

• From late 1950’s to early 1970’s, finite fields were successfully used to

develop algebraic coding theory and construct linear blockcodes,
especially cyclic codes, with large minimum distances for hard-decision

algebraic decoding, such as BCH codes, RS codes, Reed-Mueller codes,
FG codes, quadratic codes, self-dual, Goppa codes and many others.

These codes are calledclassical codes.

• Finite fields can also be used to construct Shannon capacity approaching
LDPC codes, calledmodern codes.

• For any finite field GF(q), it is possible to construct a family of

structurally compatible QC-LDPC codes of various lengths,rates and
minimum distances, whose Tanner graphs have a girth of at least 6.

• Codes in the same family can be encoded with the same encodingcircuit
and decoded with the same decoding circuit.
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A General Construction
Binary Matrix Dispersions of Field Elements

• Consider the Galois field GF(q). Let α be a primitive element of GF(q).

Then,

α−∞ = 0, α0 = 1, α, α2, · · · , αq−2

give all theq elements of GF(q) andαq−1 = 1.

• For0 ≤ i < q − 1, let Pi denote the(q − 1) × (q − 1) circulant

permutation matrix (CPM) over GF(2) whose top row has its single

1-component at theith position. There are exactlyq − 1 CPMs over

GF(2) andP0 is the(q − 1) × (q − 1) identity matrix.

• For the nonzero elementαi with 0 ≤ i < q − 1, we represent it by the

(q − 1) × (q − 1) CPMP
i.
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• This matrix representation is referred to as the (q − 1)-fold binary
matrix dispersion (or simply binary matrix dispersion) ofαi.

• The binary matrix dispersions of two different nonzero elements in GF(q)

are different.

• Since there are exactlyq − 1 different(q − 1) × (q − 1) CPMs over

GF(2), there is aone-to-one correspondencebetween a nonzero element

of GF(q) and a(q − 1) × (q − 1) CPM. Therefore, each nonzero element

of GF(q) is uniquely represented by a(q − 1) × (q − 1) CPM.

• For a nonzero elementδ in GF(q), we useB(δ) to denote its binary

matrix dispersion. Ifδ = αi, thenB(δ) = P
i.

• For the 0-element of GF(q), its matrix dispersion is defined as the

(q − 1) × (q − 1) zero matrix.
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A Row-Distance Constrained Matrix over a Fi-
nite Field

• Consider anm × n matrix over GF(q),

W =

















w0

w1

...

wm−1

















=

















w0,0 w0,1 · · · w0,n−1

w1,0 w1,1 · · · w1,n−1

...
...

.. .
...

wm−1,0 wm−1,1 · · · wm−1,n−1

















(1)
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• We require the rows ofW to satisfy the following constraint: For

0 ≤ i, j < m, i 6= j and0 ≤ k, l < q − 1, the Hamming distance

between the twoq-ary (n − 1)-tuples,αk
wi andαl

wj , is at leastn − 1,

(i.e.,αk
wi andαl

wj differ in at leastn − 1 places).

• The above constraint on the rows of matrixW is called theα-multiplied
row-distance (RD)-constraint.

• W is called anα-multiplied RD-constrained matrix .
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Binary Array Dispersion

• For0 ≤ i < m and0 ≤ j < n, dispersing each nonzero entrywi,j of W

into a binary(q − 1)× (q − 1) CPMBi,j = B(wi,j) over GF(2) and zero

entry into a(q − 1)× (q − 1) zero matrix, we obtain the followingm× n

array of(q − 1) × (q − 1) CPMs and/or zero matrices over GF(2):

Hb =

















B0,0 B0,1 · · · B0,n−1

B1,0 B1,1 · · · B1,n−1

...
...

...

Bm−1,0 Bm−1,1 · · · Bm−1,n−1

















(2)

• Hb is called the binary (q − 1)-fold array dispersion ofW. It is an

m(q − 1) × n(q − 1) matrix over GF(2).
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• The RD-constraint imposed onW ensures thatHb satisfies the

RC-constraint. Hence, the associated Tanner graph ofH has a girth of at

least 6.
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Binary QC-LDPC Codes

• For any pair (γ,ρ) of integers with1 ≤ γ ≤ m and1 ≤ ρ ≤ n, let

Hb(γ, ρ) be aγ × ρ subarry ofHb.

• Hb(γ, ρ) is aγ(q − 1) × ρ(q − 1) matrix over GF(2) and satisfies the

RC-constraint.

• The null space ofHb(γ, ρ) gives a binary QC-LDPC codeCb,qc of length

ρ(q − 1) with rate at least(ρ − γ)/ρ, whose Tanner graph have girth of at

least 6.

• If Hb(γ, ρ) has constant column and row weights, thenCb,qc is a regular

binary QC-LDPC code.
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Masking

• A set of CPMs in a chosenγ × ρ subarrayHb(γ, ρ) = [Bi,j] of the array

Hb given by (2) can bereplaced by a set of zero matrices.

• This replacement is referred to asmasking.

• Masking results in a sparser matrix whose associated Tannergraph has

fewer edges and hence fewer short cycles and probably a larger girth than

that of the associated Tanner graph of the originalγ × ρ subarray

Hb(γ, ρ).

• To carry out masking, we first design a sparseγ × ρ matrix

Z(γ, ρ) = [zi,j ] over GF(2).
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• Then take the following matrix product:

Mb(γ, ρ) = Z(γ, ρ) × Hb(γ, ρ) = [zi,jBi,j ],

wherezi,jBi,j = Bi,j for zi,j = 1 andzi,jBi,j = O (a (q − 1) × (q − 1)

zero matrix) forzi,j = 0.

• We callZ(γ, ρ) themasking matrix, Hb(γ, ρ) thebase arrayand

Mb(γ, ρ) themasked array.

• Since the base arrayHb(γ, ρ) satisfies the RC-constraint, the masked

arrayMb(γ, ρ) also satisfies the RC-constraint,regardlessof the

masking matrix.

• Hence, the associated Tanner graph of the masked matrixMb(γ, ρ) has a

girth of at least 6.

• The null space of the masked arrayMb(γ, ρ) gives a new binary

QC-LDPC code.
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Classes ofα-Multiplied RD-Constrained Ma-
trices

• Suppose thatq − 1 can be factored as a product of two integers,c andn,

that are relatively prime. Thenq − 1 = cn.

• Let β = αc andδ = αn. Then the orders ofβ andδ aren andc,

respectively.

• The setsG1 = {β0 = 1, β, ..., βn−1} andG2 = {δ0 = 1, δ, ..., δc−1}

form two cyclic subgroups of the GF(q).

• G(1) ∩ G(2) = {1}.

• If q − 1 is a prime, we setc = 1 andn = q − 1 (or c = q − 1 andn = 1).
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First Class

• For0 ≤ i, j < c andδj−i ∈ G2, form the followingn × n matrixWi,j

over GF(q):

Wi,j =

















δj−iβ0 − β0 δj−iβ0 − β1 · · · δj−iβ0 − βn−1

δj−iβ1 − β0 δj−iβ1 − β1 · · · δj−iβ1 − βn−1

...
. ..

...

δj−iβn−1 − β0 δj−iβn−1 − β1 · · · δj−iβn−1 − βn−1

















.

(3)
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The matrix Wi,j of has the following structural
properties:

• The entries are formed based on one elementδj−i in the cyclic subgroup

G2 and all the elements of the cyclic subgroupG1.

• Each row is the right cyclic-shift of the row above itmultiplied by β and

the first row is the right cyclic-shift of the last row multiplied byβ.

• Each column is thedownward cyclic-shift of the column on its left

multiplied byβ and the first column is the downward cyclic-shift of the

last column multipliedβ.

• All the entries in a row (or a column) are distinct elements ofGF(q).

• Any two rows (or columns) differ in every position.

• For i 6= j, all the entries inWi,j are nonzero elements of GF(q).

• For i = j, the entries on the main diagonal ofWi,i are zeros and all the

other entries are nonzero.
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• Wi,j is ann × n β-multiplied circulant matrix over GF(q).

Theorem 1: For0 ≤ i, j < c, the(q − 1) × (q − 1) matrixWi,j satisfies

theα-multiplied RD-constraint.
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• By array dispersion ofWi,j given by (3), we obtain the followingn × n

array of binary(q − 1) × (q − 1) CPMs and zero matrices:

Hi,j =

















B
i,j
0,0 B

i,j
0,1 · · · B

i,j
0,n−1

B
i,j
1,0 B

i,j
1,1 · · · B

i,j
1,n−1

...
...

...
...

B
i,j
n−1,0 B

i,j
n−1,1 · · · B

i,j
n−1,n−1

















. (4)

• B
i,j
0,0 = B

i,j
1,1 = · · · = B

i,j
n−1,n−1

= O
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Second Class

• For0 ≤ i, j < c, use then × n matricesWi,j ’s as the building blocks to

form the followingc × c array:

W =

















W0,0 W0,1 · · · W0,c−1

W1,0 W1,1 · · · W1,c−1

...
...

...
...

Wc−1,0 Wc−1,1 · · · Wc−1,c−1

















, (5)

where for or0 ≤ i, j < c, Wi,j is given by (7).

• W is composed of ac × c array ofβ-multiplied circulants over GF(q).

• It is ann× n matrix over GF(q) with entries on its main diagonal equal to

zeros.
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• Theorem 2: W satisfies theα-multiplied RD-constraint.
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A Class of Binary QC-LDPC Codes

• By array dispersion ofW given by (5), we obtain the followingc × c

array ofn × n subarrays of binary(q − 1) × (q − 1) CPMs and zero

matrices:

Hb =

















H0,0 H0,1 · · · H0,c−2

H1,0 H1,1 · · · H1,c−2

...
...

. ..
...

Hc−1,0 Hc−2,1 · · · Hc−2,c−2

















(6)
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• Hb is a(q − 1) × (q − 1) array of(q − 1) × (q − 1) CPMs and zero

matrices with zero matrices on the main diagonal ofHb. The zero

matrices are on the main diagonalHb.

• Hb is a(q − 1)2 × (q − 1)2 matrix over GF(2) with both column and row

weightsq − 1.

• SinceW satisfies theα-multiplied RD-constrained,Hb satisfies the

RC-constraint.

• Consequently, the associated Tanner graph ofHb has a girth of at least 6.

• The rank ofHb is 3m − 3.
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• For any pair (γ, ρ) of integers with1 ≤ γ, ρ < q, let Hb(γ, ρ) be aγ × ρ

subarray ofHb. Hb(γ, ρ) is aγ(q − 1) × ρ(q − 1) matrix over GF(2) and

it also satisfies the RC-constraint.

• The null space ofHb(γ, ρ) gives a binary QC-LDPC codeCb,qc of length

ρ(q − 1) with rate at least(ρ − γ)/ρ and minimum distance at least

γ + 1,whose Tanner graph has a girth of at least 6.

• If Hb(γ, ρ) does not contains any zero matrix ofHb, it has constant

column and row weights,γ andρ, respectively. ThenCb,qc is a binary

(γ,ρ)-regular QC-LDPC code.

• For a given finite field GF(q), the above construction gives a family of

structurally compatible binary QC-LDPC codes.
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A Special Sub-Class of Binary QC-LDPC Code

• For q = 2m, the binary QC-LDPC code given by the null space of the

entire arrayHb has:

Length =(2m − 1)2

Dimension =(2m − 1)2 − 3m + 3

Minimum distance≥ 2m

• This code denoted byCb,qc,f , not only performs well with iterative

decoding using the SPA but also offers effective trade-offsbetween error

performance and decoding complexity when it is decoded with

bit-flipping (BF), weighted BF(WBF) and otherreliability-based
binary message-passing(BMP) decoding algorithms.
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Example 3

• Let GF(26) be the field for code construction. Letα be a primitive

element of GF(26).

• Factor26 − 1 = 63 as the product ofc = 7 andn = 9. Let β = α7 and

δ = α9.

• Let G1 = {β0 = 1, β, ..., β8} andG2 = {δ0 = 1, δ, ..., δ6} be two cyclic

subgroups of GF(26) generated byβ andδ, respectively.

• Based on (3) and (6), we form aα-multiplied RD-constrained64 × 64

matrixW over GF(26) which consists of7× 7 array of9× 9 submatrices

Wi,j ’s over GF(26).

• Dispersing the entries ofW, we obtain a63 × 63 arrayHb of 63 × 63

CPMs and zero matrices.
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• For any pair (γ, ρ) of positive integers, with1 ≤ γ, ρ ≤ 64, the null space

of anyγ × ρ subarrayHb(γ, ρ) of Hb gives a binary QC-LDPC code of

length63ρ.
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• Chooseγ = ρ = 63.

• Hb(63, 63) = Hb is a3969 × 3969 RC-constrained matrix over GF(2)

with both column and row weights equal to 62. The rank of this matrix is

36 − 3 = 726.

• The null space ofHb gives a (3969,3243) QC-LDPC code with minimum

distance at least 63.

• The performance of this code with 5, 10 and 50 iterations of the SPA is

shown in Figure 3.

• Decoding of this code converges very fast.
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Figure 3: Error performance of (3969,3243) QC-LDPC code.
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Example 4

• Let GF(29) be the code construction field. Letα be a primitive element of

GF(26).

• Factor29 − 1 = 511 as the product ofc = 7 andn = 73. Let β = α7 and

δ = α73.

• Based on (4) to (7), we construct a511 × 511 arrayHb of 511 × 511

CPMs and zero matrices.

• Chooseγ = 63 andρ = 126. Take a63 × 126 subarrayHb(63, 126)

from Hb, avoiding the zero matrices.
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• Construct a masking matrixZ(63, 126) with column and row weight

distributions closed to the following variable- and check-node degree

distributions of the Tanner graph of a code designed for rate1/2 using

density evolution (with adjustment).

γ(X) = 0.4524X + 0.3492X2 + 0.1587X7 + 0.0397X9

ρ(X) = 0.1746X7 + 0.8254X8

• MaskingHb(63, 126) with Z(63, 126), we obtained a masked array

Mb(63, 126) of 511 × 511 CPMs and zero matrices.

• Mb(63, 12) is a32193 × 64386 matrix over GF(2).

• The null space ofMb(63, 128) gives a (64386,32193) QC-LDPC code

whose performance over the AWGN channel decoded with 50 iterations

of the SPA is shown in Figure 2(a).

• At the BER of10−8, the code performs 0.55 dB from the Shannon limit.
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Figure 4: Error performance of (64386,32193) LDPC code overAWGN chan-

nel.
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• Also included in Figure 4 is the performance of the DVB S-2 standard

(64800,32400) LDPC code with and without a BCH outer code.

• The DVB S-2 LDPC code is anIRA (irregular repeat-accumulated) code.

The BCH code is a (32400,32208) shortened BCH code with

error-correction capability 12.

• The BCH outer code is used to push down the error-floor of the DVB S-2

code.

• The (64386,32193) QC-LDPC code outperforms DVB S-2 code by 0.15

dB with or without the BCH outer code.
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• The performance of the (64386,32193) QC-LDPC code over the BEC is

shown in Figure 5.

• At the unresolved erasure bit rate (UEBR) of106, the code performs

0.053 bit per channel usage from the Shannon limit 0.5.
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Figure 5: Error performance of (64386,32193) LDPC code overBEC.
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A Special Case

• Consider the special case for whichc = 1 andn = q − 1. In this case,

β = α, δ = 1 and the RD-constrainedα-multiplied matrix has the

following form

W = W0,0 =

















1 − 1 1 − α · · · 1 − αq−2

α − 1 α − α · · · α − αq−2

...
...

...
...

αq−2 − 1 αq−2 − α · · · αq−2 − αq−2

















. (7)
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Example 5

• Code construction field: GF(73).

• Base matrix for array dispersionW: 72 × 72 matrix over GF(73).

• DisperseW into a72 × 72 arrayHb of 72 × 72 CPMs.

• Take a32 × 64 subarrayHb(32, 64) from Hb.

• Construct a32 × 64 masking matrixZ(32, 64) = [G1G2] over GF(2)

which consists of two32 × 32 circulants with generators,

g1 = (10100100000000000000000000000000),

g2 = (10000010000000100000000000000000).
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• MaskingHb(32, 64) with Z(32, 64) results in a32 × 64 masked array

Mb(32, 64) which is a2304 × 4608 matrix with column and row weights

3 and 6, respectively.

• The null space ofMb(32, 64) gives a (3,6)-regular (4608,2304)

QC-LDPC code.

• The performance of the code is shown in Figure 6.

• No error-floor down to the BER of5 × 10−10.



59

0 1 2 3 4 5 6 7 8
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it/

W
or

d 
E

rr
or

 R
at

e

 

 
Uncoded BPSK
Regular, WER
Regular, BER
irregular, WER
Irregular, BER
Shannon Limit

Figure 6: Error performance of (3,6)-regular (4608,2304) QC-LDPC code.
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• An irregular version of this code will be used as the MMB T-2 standard

code.
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Example 6

• Code construction field: GF(271).

• Code: a (6,90)-regular (16200,15125) QC-LDPC code with rate 0.9336.

• Performance: See Figure 7. There is no error-floor down to10−12.

• Possible applications: being considered for applicationsin two high-rate

and low error-rate systems.
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Figure 7: Error performance of (6,90)-regular (16200,15125) QC-LDPC code.
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Conclusion and Remarks

• Conclusion and Remarks
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