
 

 

Some Analysis of Single Server Queues with Traffic 

Modeled by Heavy-tailed Distributions 

 
Abstract— Markovian models are not suitable to characterize 

traffic in some modern telecommunications networks. Among the 

new proposed models, those based on heavy-tailed distributions 

offer lower complexity. However, there are different approaches to 

traffic modeling using heavy-tailed distributions. In this paper we 

investigate the influence of these approaches in the performance of 

an isolated single server queue. The models considered are G/M/1 

and G/G/1, with G modeled by Pareto, Lognormal and Weibull 

distributions.  

 

I. INTRODUCTION 

Traffic in telecommunications networks has evolved from 

voice traffic to multimedia traffic, including voice, data and 

video. In this new scenario, the traditional Markov models are 

not suitable to characterize the traffic in the network. 

In 1994, Leland et al [1] demonstrate that Ethernet Local 

Area Network traffic is statistically self-similar and that none 

of the traditional traffic models is able to capture this behavior. 

Since then, several studies were conducted to propose new 

traffic models to telecommunications networks. These works 

can be classified in three categories: 

a) Based on measurements. 

b) Based on fractal models. 

c) Based on generic models. 

The approach based on generic models is less complex than 

fractal models [2][3] and is the subject of our work. In this 

kind of model, the arrival processes is modeled by a heavy-

tailed distribution, like Pareto, Lognornal or Weibull 

distributions, and the service time can be modeled by an 

exponential distribution (G/M/1 queue), by a heavy-tailed 

distribution (G/G/1 queue) or can be considered constant 

(G/D/1 queue). 

An important performance parameter of a queuing system is 

the mean waiting time, computed as a function of the 

utilization factor of the server. Thus, to define the performance 

of the system it is necessary to vary the utilization factor of the 

server. However, we found in the literature three different 

approaches to obtain this variation [4][5]: 

a) Fixing the service time and varying the arrival rate by 

varying the shape parameters of the heavy-tailed 

distributions. 

b) Fixing the arrival rate and varying the service time. In 

this case the shape parameters of the heavy-tailed 

distributions are fixed. 

c) Fixing the service time and varying the number of 

traffic sources (identical and independents). In this 

case, the shape parameters of the heavy-tailed 

distributions used in each traffic source are fixed. 

 

In this paper we compare the performance, based on 

simulations, of single server queues using these three 

approaches to vary the utilization factor of the server. We 

consider G/M/1 and G/G/1 systems, with G modeled by the 

following heavy-tailed distributions: Pareto, Lognormal and 

Weibull. Also, we introduce the idea of a performance factor, 

in order to compute the performance of a G/M/1 queue based 

on results from a M/M/1 queue. 

The parameter used to evaluate the performance of the 

systems is the mean waiting time of each queue, as a function 

of the utilization factor.  

The remaining of this paper is organized as follow: Section 

II presents some characteristics of the heavy-tailed 

distributions used in this paper; Section III describes the 

scenarios used in our simulations; Section IV presents the 

results for Scenario I; Section V shows the analysis for 

Scenario II; Section VI presents the results for Scenario III; 

Section VII presents the performance factor concept and its 

results; finally, Section VIII presents the conclusions.  

II. HEAVY-TAILED DISTRIBUTIONS 

Let X a random variable (R.V) with Probability Density 

Function (PDF) f(x) and Cumulative Distribution Function  

(CDF) F(x). The R.V. X has a heavy-tailed distribution if: [6] 
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Some important heavy-tailed distributions used to traffic 

modeling in telecommunications networks are Pareto, 
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Lognomal and Weibull distributions. The main characteristics 

of these distributions are resumed below. 

A. Pareto Distribution 

Pareto distribution is widely used for traffic modeling in 

telecommunications networks. This distribution can be 

represented using one, two or three parameters. Results 

presented in [7] show that the use of Pareto with two 

parameters results in a lower mean queuing time, compared 

with the one parameter distribution. In our work, we opted to 

use de Pareto Distribution with one parameter. 

The Probability Density Function of Pareto distribution with 

one parameter is given by: [7] 
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The parameter α is the shape parameter of the distribution. 

If this parameter takes values between one and two, the 

expected value of the R.V. is finite, its variance is infinity and 

the process is self-similar. The expected value can be 

computed by 
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B. Lognormal Distribution 

Although Lognormal distribution is mentioned in several 

works as a heavy-tailed distribution, it does not have infinite 

variance, which is the main characteristic of a heavy tailed 

distribution [8][9]. However, as their moments increase very 

rapidly, it has also been used for traffic modeling. 

The Probability Density Function for Lognormal 

distribution is given by: 
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where α and β are the shape parameters of the distribution. 

The expected value for this distribution is given by: 
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C. Weibull Distribution 

Weibull distribution has also been used to traffic modeling 

in telecommunications networks [5][10]. The PDF of this 

distribution is given by: 
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where α and β are the shape parameters of the distribution.  

To characterize a heavy-tailed distribution, the parameter α 

must take values between zero and one [11].  

The expected value of the Weibull distribution is given by:  
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III. SCENARIOS FOR THE SIMULATIONS 

In our simulations, we have used the software Arena 11.0 

Professional. This tool does not provide the possibility to 

generate Pareto distributions directly. Thus, for this 

distribution we have used the Percentile Transformation 

Method [12]. 

Gross et al [13] show that there are some difficulties in 

simulating queues with Pareto service. To overcome these 

problems, it is necessary to consider a truncated expected 

value, obtained from a truncated CDF, for the distribution. 

This truncated expected value is given by: 

 

( )
( ) ( ) ( )( ) ( )







−
+

+−
−

+
=

− 1

1

11

1

1

1
1 αααα

α
αα

TTTF
xET

(9) 

 

 

where T is the truncation parameter and F(T) is given by: 
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In our first scenario, called Scenario I, we keep the shape 

parameters of the heavy-tailed distributions fixed and vary the 

utilization factor varying the service time. Due this, it is 

necessary to normalize the mean waiting time of the queues in 

order to compare different results. Thus, in all results 

presented is this paper, we use the mean waiting time 

normalized by the service time. 

In the second scenario, called Scenario II, we fix the service 

time and vary the shape parameters of the heavy-tailed 

distribution, thus varying the input traffic and the utilization 

factor of the server 

Finally, in the third scenario, called Scenario III, we define 

a basic traffic generator with fixed shape parameters of the 

heavy-tailed distributions and fix the service time. The 

variation of the utilization factor is achieved by varying the 

number of traffic generators in the input of the queue system. 



 

 

This scenario is illustrated on Figure 1.  

 

 

 

 

 

 

 

 

 

Fig. 1: Block diagram for Scenario III. 

 

IV. RESULTS FOR SCENARIO I  

At first, let’s go to compare the influence of the heavy-tailed 

distribution on the performance of the system. Figure 2 shows 

the normalized mean waiting time for Pareto/M/1, 

Lognormal/M/1 and Weibull/M/1 systems. For Pareto and 

Weibull distributions, we also present the theoretical results 

using Transform Approximation Method (TAM) [4][5][14]. 

The shape parameters are fixed as: Pareto, α = 1.3; 

Lognormal, α = 1.015 and β = 2; Weibull, α = 0.257 and β = 

1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Normalized mean waiting time considering G/M/1 models -  shape 

parameter α:Pareto, 1.3; Lognormal, 1.015; Weibull, 0.257. 

 

 

We can see that, in this comparison, Lognormal distribution 

results in the best performance. If the utilization factor is less 

than 0.78, the worst performance is obtained with Pareto 

distribution; otherwise, Weibull distribution results in the 

worst performance. 

Figure 3 presents the results for a different set of shape 

parameters: In this case, we change the parameter α to: Pareto, 

α = 1.7; Lognormal, α = 2.8515; Weibull, α = 0.6515. Now, 

Lognormal distribution has the best performance and Pareto 

distribution the worst one, in all range of utilization factor. 

Comparing figures 2 and 3, we can see that the performance of 

the queue system depends on the shape parameters of the 

heavy-tailed distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Normalized mean waiting time considering G/M/1 models – shape 

parameter α:  Pareto, 1.7; Lognormal, 2.8515; Weibull, 0.6515. 

 

Now, we compare the performance of the queuing system 

considering G/G/1 model. Figure 4 presents the results for the 

shape parameters fixed as in Figure 2; and Figure 5 shows the 

results considering shape parameters fixed as in Figure 3.  

Again, Lognormal distribution results in best performance 

and Pareto, in most of the range of the utilization factor, has 

the worst performance. Comparing figures 4 and 5, we 

conclude again that the performance of the queuing system 

depends on the shape parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Normalized mean waiting time considering G/G/1 models -  shape 

parameter α:Pareto, 1.3; Lognormal, 1.015; Weibull, 0.257. 
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Fig. 5: Normalized mean waiting time considering G/G/1 models – shape 

parameter α:  Pareto, 1.7; Lognormal, 2.8515; Weibull, 0.6515 

 

Comparing Figure 2 with Figure 4 and Figure 3 with Figure 

5, as expected, we can see that the performance in G/G/1 

queues is much worse than the performance in G/M/1 queues.   

 

V. RESULTS FOR SCENARIO II  

In this scenario we fix the service time and vary the shape 

parameters of the distributions to obtain the variation of the 

utilization factor. We use two set of parameters: 

Set 1: we fix the service time to 0.333 seconds and vary the 

shape parameters of the heavy-tailed distribution as follows: 

Pareto, 0.4596 ≤ α ≥ 2.9439; Lognormal, -1.579 ≤ α ≥ 0.2773 

and β = 1; Weibull, 0.1698 ≤ α ≥ 1.0879 and β = 0.5.  

Set 2: we fix the service time to 0.1 seconds and vary the 

shape parameters as follows: Pareto, 1.532 ≤ α ≥ 9.813; 

Lognormal, -2.7837 ≤ α ≥ -0.9265; Weibull, 0.0509 ≤ α ≥ 

0.3263.  

The range of parameter values was chosen to obtain the 

desired variation in the utilization factor.  

The problem with this approach is that the shape parameters 

assume values outside the range needed to guarantee the self-

similarity of the traffic. 

At first, figures 6 and 7 presents the results for G/M/1 

systems, with different service times. In Figure 6, only to 

validate the simulation processes, we also present the 

theoretical results obtained using the method TAM. In Figure 

6 we use the parameters as defined in Set 1; while in Figure 7 

we use the Set 2. 

Based on these figures, we can see the influence of the 

service time on the performance of the system. In both cases, 

the best performance was obtained by Lognormal distribution 

and the worst one by Weibull distribution.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Normalized mean waiting time considering G/M/1 models – shape 

parameter fixed as defined in Set 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Normalized  mean waiting time considering G/M/1 models – shape 

parameter fixed as defined in Set 2. 

 

Now, we present the results for Scenario II considering 

G/G/1 models. Figure 8 shows the performance obtained with 

the parameters defined as in Set 1 and Figure 9 considers the 

Set 2.   

Again, the worst performance was obtained with Weibull 

distributions. The best performance depends on the set of the 

shape parameters: for Set 1, Lognormal offer the best 

performance, while Pareto has the best performance for the Set 

2. Thus, we can conclude again that the service time influences 

the normalized mean waiting time.  

Comparing the results obtained for Scenario I (figures 2, 3, 

4 and 5) with the results for Scenario II (figures 6, 7, 8 and 9), 

we can see that the way used to vary the utilization factor of 

the queue has significant influence on system performance.  
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Fig. 8: Normalized mean waiting time considering G/G/1 models – shape 

parameter fixed as defined in Set 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Normalized mean waiting time considering G/G/1 models – shape 

parameter fixed as defined in Set 2. 

 

VI. RESULTS FOR SCENARIO III 

In the scenario analyzed in this section we define a basic 

traffic generator and vary the number of generators to obtain 

the variation of the utilization factor (see Figure 1). In this 

case, the shape parameters of the basic traffic generators are 

fixed with the same values used in Scenario I. The service time 

is fixed equal to 6.49 seconds for Pareto distribution and equal 

to 1 second for Lognormal and Weibull distributions. 

Here we are interested in comparing the performance 

achieved in this scenario with that obtained in Scenario 1. The 

comparisons are shown on the next figures. Figures 10, 11 and 

12 compare the performance for G/M/1 models, with G 

modeled by Pareto, Lognormal and Weibull, respectively. 

Figures 13, 14 and 15 compare the performance considering 

G/G/1 models (Pareto, Lognormal and Weibull, respectively). 

 Based on figures 10, 11 and 12, we can see that the 

performance of the Scenario III is better than the performance 

of Scenario I in most of the range of utilization factor, 

considering G/M/1 model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Comparing the normalized mean waiting time for Scenario I and 

Scenario III considering Pareto/M/1 model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Comparing the normalized mean waiting time for Scenario I and 

Scenario III considering Lognormal/M/1 model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Comparing the normalized  mean waiting time for Scenario I and 

Scenario III considering Weibull/M/1 model. 
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Fig. 13: Comparing the normalized mean waiting time for Scenario I and 

Scenario III considering Pareto/Pareto/1 model. 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Comparing the normalized mean waiting time for Scenario I and 

Scenario III considering Lognormal/Lognormal/1 model. 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Comparing the normalized mean waiting time for Scenario I and 

Scenario III considering Weibull/Weibull/1 model. 

 

Based on figures 13, 14 and 15, we can see that, in this case, 

the results for Scenario III are always better than the results for 

Scenario I. 

VII. PERFORMANCE FACTOR 

Finally, in this section we investigate the possibility to 

define a performance factor to compute the mean waiting time 

for G/M/1 systems from the results obtained for an M/M/1 

system. The performance factor (δ) is a number that satisfies 

the following equality: 

( ) ( )1//1// MwMMwG tEtE ⋅≅ δ                   (11) 

 

where E(twG/M/1) and E(twM/M/1) are the mean waiting time for 

G/M/1 and M/M/1 queues, respectively. 

Figures 16 and 17 show the results for Scenario 1 and 

Pareto/M/1 queue. In Figure 16 the shape parameter is fixed to 

α = 1.3, while in Figure 17 is α = 1.7. In Figure 16 we use δ = 

16 and the performance factor can be defined only for 

utilization factor less than 0.75. In Figure 17 we use δ = 4.8 

and the performance factor is valid for any value of utilization 

factor. As we can see, in this case, the performance factor is a 

function of the shape parameter. Similar conclusions can be 

obtained for Lognormal and Weibull distributions [15].   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: Performance factor for Scenario I and Pareto/M/1 queue with α = 

1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Performance factor for Scenario I and Pareto/M/1 queue with α = 

1.7. 
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For Scenario II, we investigated the performance factor as a 

function of the departure rate (µ) of the queue (the departure 

rate is the inverse of the service time). We conclude that for µ 

greater than or equal to 10 packets/second, the performance 

factor is fixed and equal to 1.2. Figure 18 shows the result for 

Pareto/M/1 queue. The results for Lognormal and Weibull 

distributions can be obtained in [15]. 

 

   

 

 

 

 

 

Fig. 17: Performance factor for Scenario II and Pareto/M/1 queue. 

 

Finally, Figure 18 shows the performance factor for 

Scenario III, with the shape parameters fixed as defined on 

Section VII, considering Pareto/M/1 model. In this case, the 

performance factor can be defined for utilization factor less 

than or equal to 0.75 and its value is δ = 5. 

Similar results can be obtained for Lognormal and Weibull 

distributions [15]. 

 

 

 

 

 

 

 

 

 

Fig. 18: Performance factor for Scenario III and Pareto/M/1 queue. 

 

VIII. CONCLUSIONS 

In this paper we analyzed three different approaches to 

characterize traffic in telecommunications networks using 

heavy-tailed distributions. We conclude that the normalized 

mean waiting time in the queue system can vary significantly, 

depending on the approach used.  

We also introduce the performance factor concept, a factor 

that permits to compute the performance of a G/M/1 queue 

from results of M/M/1 queue. We show that this factor vary 

with the approach used to characterize the traffic and with the 

parameters in each scenario analyzed. 

As a future work, we intend to complete the performance 

factor analysis, trying to establish its value based on a closed 

equation, as a function of the parameters of the heavy-tailed 

distribution and the service time. 
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